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ABSTRACT: 
 
This paper focuses on practical aspects when performing boresight calibration in airborne laser scanning using rigorous 
methodology implemented in LIBOR software. LIBOR technique, introduced by (Skaloud and Lichti, 2006), is based on expressing 
the boresight calibration parameters within the direct-georeferencing equation separately for each target point and conditioning a 
group of points to lie on a common planar surface. Although there is no need for a priori information about the plane parameters as 
these are part of the unknowns, good estimation requires implication of various planar features that differ in slope and orientation. 
Such conditions are typically fulfilled in residential-urban areas where the presence of planes in form of roof-tops is abundant. These 
are identified by grouping points belonging to the same surface into a distinct class separately for each flight line and finding class-
correspondences among the flight lines. We present an automated approach for this selection process that stems from intrinsic 
geometry of curved surfaces. This classification is followed by additional fine-filtering for returns from features as chimneys, 
antennas etc. The presented discussion focuses on practical examples with data from continuously-rotating and oscillating-mirror 
systems. These findings show that good automated point selection is possible and acts as a pre-requisite to robust estimates of all 
boresight angles with accuracy that is several times superior to the system noise level. 
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1. INTRODUCTION 

In contrary to relatively well developed approaches to boresight 
estimation between an Inertial Measurement Unit (IMU) and 
frame/line-based imagery (Cramer and Stallmann, 2002; Kruck, 
2001; Skaloud and Schaer, 2003) the existing procedures for the 
LiDAR-IMU misalignment, while functional, are recognized as 
being suboptimal and much research is devoted to their 
improvement. The adopted approaches are usually based either 
on physical boundaries or cross-sections (Schenk, 2001),  DTM 
gradients (Burman, 2000) or mimic the photogrammetric 
calibration approach via signalized or intensity-deduced targets 
points (Morin, 2002). The drawback of these methods is the 
lack (or simplification) of assurance measures, correlation with 
the unknown terrain shape or limits imposed by laser pointing 
accuracy and uncertainty due to beam-width. Not long ago, a 
more rigorous class of calibration procedures started to emerge 
(Filin, 2003; Friess, 2006; Skaloud and Lichti, 2006). These 
types of approaches model all systematic errors directly in the 
measurement domain and condition groups of points to reside 
on a common surface of known form. This alleviates the 
problem of LiDAR beam-pointing uncertainty experienced in 
photogrammetry-like approaches while preserving the correct 
formulation of the observation equation for each point 
separately. It was also demonstrated that estimating the 
calibration parameters together with those of surfaces does not 
compromise the estimate of the boresight (Skaloud and Lichti, 
2006) and the self-calibrating scheme is indeed possible. We 
will exploit this approach further with the aim of achieving its 
complete automation when selecting and classifying the needed 
planar features.  
 
The organization of the paper is as follows. After recalling the 
functional model for the recovery of calibration parameters we 
propose an algorithm for automated detection and extraction of 
the planar section of the rooftops. After that we present a 
synthesis of our practical experience when applying this 

approach to airborne scanners of different type (i.e. oscillating 
or continuously rotating mirror) and providers (e.g. Optech, 
Leica, Riegl).  
 

2. ESTIMATION MODEL 

Following (Skaloud and Lichti, 2006) the functional model is 
based on conditioning the georeferenced LiDAR target points to 
lie on surfaces of known form, particularly planes. The plane 
coefficients are estimated together with the calibration 
parameters. The a-priori unknowns of a plane j are represented 
as 1 2 3 4j j j j

T
js s s s s⎡ ⎤= ⎣ ⎦ and the desired form of the 

condition used for the parameter estimation reads:  
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where, [ Tg X Y Z= are the coordinates of IMU-centre in 

the mapping frame at time i, ( , , )
i

m
bR f r p y=  is the orientation 

matrix from the IMU body frame (b) to the mapping frame 
parameterized by roll (r), pitch (p) and yaw (y) observations at 
time i, a  is the lever-arm offset between the IMU and LiDAR 
measurement centers expressed in the IMU body frame, α, β 
and γ are the unknown boresight angles and U is the skew-
symmetric matrix of LiDAR vector defined by means of the  
mounting orientation matrix (

u
*b

sT ) as well as encoder (θ) and 
range (ρ) measurements and as: 
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Other system-related calibration parameters can be expressed in 
the Eq. (2), as it is the case for a constant range finder offset Δρ. 
The Eq. (1) contains two sets of unknowns, first related to the 
boresight and systematic laser errors and second related to 
plane coefficients. The combined (or Gauss-Helmert) 
adjustment model is used after the linearization in estimating 
the corrections of the parameter sets 1 2

ˆ ˆ,δ δ  from a relation:  
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where A1, A2 are the respective design matrices of partial 
derivatives of the functional (2) with respect to calibration and 
plane parameters, B is the design matrix of partial derivatives of 
the same functional taken with respect to the observations, G is 
the design matrix of partial derivatives of the linearized 
constrains imposed on the plane parameters, w is the misclosure 
vector, P and Pc are the weight matrices (often diagonal) related 
to observations and the constrain, respectively. The sparse 
structure of the design matrices allows formulating a 
contribution of individual observation equations in such a way 
that they can be added directly to the normal equations in a 
sequential manner. This enables the practical efficiency when 
using large LiDAR data sets.  
 

3. AUTOMATED ROOF DETECTION 

The described method for the parameter estimation was 
encoded into a program baptized LiBOR. The prerequisite for 
its correct functioning is the planarity of the selected surfaces. 
This assumption (i.e. no departures greater than the noise level 
of surface measurements) is indeed central to this method. 
Nevertheless, finding the planar features in the ‘natural’ terrain 
requires the use of sophisticated classification routines or visual 
guidance by means of orthophoto or approximate elevation 
models. Our experience in this regard has been that finding 
suitable natural terrain even on such ‘planar’ surfaces like 
soccer fields is problematic. On the other hand, their existence 
is relatively abundant within urban datasets. Moreover, surfaces 
like roofs often vary in aspect and slope, which is needed for 
good parameter de-correlation. The selection of rooftops can be 
performed by manual ‘fence-drawing’; however, the 
classification needs to be done separately for each strip. Hence, 
there is a practical need to automate the roof selection process 
completely. Such automation should also minimize the 
existence of the outliers, i.e. points that do not belong to the 
surface (e.g. returns from antennas, chimneys, etc.).    
 
The proposed algorithm follows the global workflow depicted 
in Fig. 1. First, the vegetation is removed and the roofs are 
identified within a reference strip (normally the strip with the 
best data quality) by means of a local covariance analysis, 
whose details will be described later. The location of the 
corresponding planes in the subsequent strips is approximately 
estimated by matching Digital Surface Models (DSM) derived 
from those strips with that of reference. The search is further 
refined for individual points by means of covariance analysis of 
the neighborhood and the surface boarders are finalized by 
region growing. The outcomes of this process are groups of 
points within different strips that can be conditioned to lie on a 

same plane. The individual steps of this process will be 
presented in more detail.  
  

 
Figure 1:  Generalized workflow of roof finder algorithm 
 
3.1 Covariance analysis 

The principle of local neighborhood covariance analysis is a 
key component for classifying the laser point cloud (Fig. 2). 
The estimate of a local covariance for a query point needs to be 
preceded by spatial indexing. This is achieved once for all 
points by the method of k-d tree decomposition. Local 
covariances are then computed for a pre-selected volume and 
their principle orientation is found by eigenvalue 
decomposition. It was previously reported that such approach is 
computationally very efficient mean of estimating surface 
normal vectors and local curvatures directly out of unstructured 
laser data (Bae and Lichti, 2004; Pauly et al., 2002). 
 

 
Figure 2:  ALS point cloud of urban area with buildings and 

trees (color-coded by absolute height)   
 
 
3.2 Roof detection within a strip 

Referring to the algorithm flow in Fig. 1 the first step after the 
covariance analysis consists in the removal of points reflected 
by vegetation. In general, points belonging to the ground or 
buildings can be characterized by low curvature values (surface 
can often be approximated by a plane), whilst scanning points 
within vegetation and on roof edges generate high curvature 
values. These properties allow setting up a Boolean test based 



 

on a threshold on the local curvature computed out of the local 
terrain normal (Schaer et al., 2007). The results of this selection 
are shown in Fig. 3 where points belonging to the trees and 
some points on the roof edges are identified in green. 
 

 
Figure 3:  Removal of vegetation (mainly) by setting a 

threshold on local curvature estimate (in green) 
 
The next step consists in removing all points belonging to the 
ground. By specifying a maximum building size and minimum 
building height for the area of interest, the algorithm searches 
for initial ground points (defined as the lowest point within a 
given cell, where cell size is larger than maximum building 
size). These points are used as initial query points to search for 
other point belonging to the ground until all points are classified 
(Fig. 4). 
 

 
Figure 4:   Removal of ground points (in red) 
 
Once the points on the ground are identified, the remaining 
points can be clustered to points belonging to the same plane 
(thus to the same roof). This is achieved by a region growing 
approach that compares the estimated local terrain normals. In 
other words, two points (pq and pj) are considered as belonging 
to the same plane when the following criteria are met (Fig. 5): 
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Figure 5:  Comparison of local normal to evaluate if two points 

belong to the same plane 

 
Figure 6:   Points clustered to roof groups 
 

 
Figure 7:   Computation of best fitting planes 
 
Fig. 6 shows the result of the roof clustering step. Roof groups 
having fewer points than a certain threshold are removed 
automatically (minimal number of points for one group is 
defined by specifying minimal roof size). In the last step, the 
plane parameters for each roof are computed by the least square 
matching (Fig. 7).  
 
3.3 

3.4 

Roof correspondence between strips 

Prior to calibration, the initial boresight value is often 
considered as zero. Consequently, strip mismatches on the 
ground coordinates can reach several meters, even for boresight 
approximation better than a degree. Due to the possible 
existence of such large separation (mainly between flight lines 
of different orientation and altitude) the process of identifying 
the corresponding rooftops between strips is separated in two 
steps. An approximate ‘global’ shift between the strips is 
estimated first, and the search is refined in the second phase. 
The former employs the well known technique of raster 
matching by cross-correlation. Comparing the DSM of one strip 
to that of the reference strip yields a planar shift (ΔX, ΔY) that 
is applied as an approximate match. 
 
Once the roof groups have been determined for the reference 
strip and the initial planar shifts have been applied, the search 
for a corresponding group is initiated from the reference group 
centre by applying the rules stipulated in Equation 4 and the 
area is augmented by regional growing.   
 

Roof finder interface 

To interactively control the results of the roof finder algorithm 
and eventually apply corrections (if necessary), the 
computations are guided by a Graphical User Interface (GUI). 
Within the GUI the user can easily adapt the processing 
parameters and visualize every intermediate result of the 
process. The interface also indicates the quality of the detected 
features in terms of standard deviation and maximum out-of-
plane deviation (Figure 8). 



 

 
Figure 8: User interface of software for roof detection: the 

boundaries and the selected points for every roof are 
directly visualized on top of the DSM (vegetation 
already removed)  

 
4. CALIBRATION EXAMPLES 

In the following we present a synthesis of our experience when 
applying the presented adjustment methodology and automated 
roof-detection algorithm on data lasers of different scanning 
principles and from the market-leading manufactures like 
Optech, Leica and Riegl.  
  

 
Figure 9: Typical calibration field and flight pattern 
 
4.1 

4.2 

Calibration field(s) and flight pattern 

The prerequisite for the choice of the calibration field selection 
is the presence of larger planar features (e.g. rooftops) that vary 
in aspect and inclination. This is typically the case of an urban 
area, as shown in Fig. 9. The same figure illustrates a cloverleaf 
flight pattern that is usually executed at two different altitudes. 
The variation of flight orientation and height is important for 

achieving good de-correlation between the estimated 
parameters.  
 

Optech 

The first example concerns the calibration of the Optech's 
ALTM 3100 airborne laser scanner. Its scanning principle 
employs an oscillating mirror that produces the zig-zag 
scanning pattern. The system operates at selected frequencies 
with maximum of 100 kHz, while about 75 kHz were used for 
the calibration. The maximum aperture is 50 degrees. To reduce 
some undesirable distortions due to imperfect design, this 
aperture is often limited to 22 degrees, as was the case for the 
calibration. The laser pulses have an aperture of 0.3mrad (e.g. 
this represents a laser dot size of 30cm at 1km distance) and the 
system allows to register up to four returns per single pulse. 
They are habitually equipped with Applanix 510 navigation 
system, which in this particular case consists of the LTN200-A1 
IMU (1deg/h FOG) and Novatel L1/L2 GPS receiver. The flight 
pattern was executed twice as shown in Fig. 9, at 550 m and 
1100 m above the ground.  
 
Laser returns from 20 planes were selected to participate in the 
LiBOR adjustment. Some of these were used as “check planes”, 
i.e. planes that do not contribute to parameter estimation but are 
useful for control purposes. This is depicted in Fig. 10, on the 
out-of-plane residuals (1σ and maximum) plotted for previous 
and following adjustments.  
 

 
Figure 10: Out-of-plane residuals before and after adjustment 

(automated plane selection) 
 
The groups of points per plane were first selected manually by 
drawing polygon lines separately for each strip. Second 
selection was made automatically by the proposed procedure. 
The results of boresight estimates for these two inputs are 
compared in Table 1. As it can be seen from this table the 
boresight values are practically the same for both selections, 
albeit the latter saved considerably the operator’s time.   
 

roll Pitch yaw σr σp σyMethod 
[deg] [deg 10-3] 

Manual 0.058 -0.031 0.038 0.2 0.2 2.5 
Auto 0.058 -0.031 0.031 0.1 0.1 2.0 
Optech -0.054 -0.035 0.000  ?  ?  ? 

Table 1: Comparison of boresight estimates for Optech’s ALS 
 
The boresight values are also compared to the best estimate 
provided by Optech for the same system. Optech’s boresight 
calibration strategy for this particular system employed the 
cross-section method that can relatively well estimate the 
boresight in roll and pitch, but is inappropriate for estimating 
the yaw angle. Therefore, there is a good agreement to those 
estimated by LiBOR in the roll and pitch angle, but there is a 



 

large difference in yaw as the boresight in this direction was not 
estimated by the manufacturer. 
4.3 Leica 

Leica’s ALS50 employs also an oscillating mirror and therefore 
has a similar scanning pattern to that of ALTM3100. The 
maximum scanning frequency and aperture are 150 kHz and 75 
degrees, respectively. The laser pulses have an aperture of 0.33 
mrad (e.g. this represents a laser dot size of 33cm at 1km 
distance). The type of navigation equipment varies with the 
year of fabrication. The calibration field was again in an urban 
area and flight pattern was similar to that of Fig. 9 but at 
altitude levels of 1000 m and 1500 m above the terrain. The 
combination of the flight speed, altitude and scanning 
frequency resulted in point densities of 2.6 pts/m2 and 1.4 
pts/m2, respectively.  
 
The choice of the flight parameters was not optimized for the 
LiBOR approach where more favorable geometry could be 
attained at lower flying height. This was due to a compromise 
with the calibration requirements according to a different 
methodology (Morin, 2002) that was performed simultaneously 
by the system owner. Nevertheless, this offers a possibility to 
compare the results attained by both calibration methods. As 
shown in Table 2, the differences are practically insignificant in 
roll and pitch but somewhat consequential in yaw. 
Nevertheless, the most outstanding discrepancy concerns the 
range finder offset, the value of which was assumed as 
calibrated (in well controlled environment of many GCPs). This 
effect should be, however, considered cautiously as ALS50 
defines biases in range measurements separately for each of 255 
possible intensity values. Although it can be assumed that the 
intensity values vary only little for the rooftops of similar kind, 
no detailed analysis has been performed in this respect. 
Nonetheless, the correlation of the range finder offset with the 
rest of the estimated parameters is investigated in the plot of 
Fig. 11. There it can be seen that it is not significantly 
correlated to other estimated parameters, and its value should 
therefore be considered as significant. Its relation to residual 
influences of other systematic corrections applied prior to 
LIBOR input then cannot be ruled out.  
 

roll pitch yaw σr σp σy Δρ σΔρ  Me-
thod [deg] [deg 10-3] [cm] 
Libor 1.091 -0.645 0.024 .1 .1 .1 -23 1.2 
Leica 1.091 -0.651 0.043 ? ? ?   0  ? 

Table 2: Comparison of boresight estimates for Leica’s ALS50 
 

 
Figure 11:  Correlation matrix between parameters where 

black=0 and white=1. The order of parameters is 3 

boresight angles, Δρ followed by 4x47 plane 
coefficients 

   
4.4 Riegl 

The last presented examples concern the short-range 2D 
scanners (Riegl LMS Q240-x) with a scanning angle of 60° and 
maximum ranges of 450 (Q240) and 650 m (Q240i) at 80% 
reflectance. Its scanning mechanism employs rotating mirror 
providing unidirectional and parallel scanning pattern. The rate 
is chosen as a function of desired point density and flight 
parameters, typically several points per m2 when transported by 
a helicopter. As the system is available to our research institute 
the results of calibrations are available for different IMU 
configuration as shown in Table 3.  
 

roll pitch yaw σr σp σyLiDAR / IMU 
[deg] [deg-3] 

Q240/LN200 0.139 -0.060 -0.057 .7 .9 9.3 
Q240i/FSAS 0.445  0.150  0.025 .7 .7 4.0 

Table 3: Boresight estimates for different system configurations 
 
Using a helicopter to carry the system allows reducing the 
flying height above the terrain, which has a favourable effect on 
the geometry (i.e. the inclination of the planes is larger across 
the swath). To some extent, the quality of the modelling can be 
judged from the distribution of observation residuals after the 
adjustment. Fig. 12 shows a histogram of the residuals for all 8-
types of measurements together with their respective RMS. It 
can be noticed that all histograms are centred on zero (i.e. they 
are unbiased) and their respective RMS values are fairly small 
(i.e. mm or cm level in position and range; arc-second level for 
the angular quantities). The number of residuals close to zero is 
also reduced, which means that the geometry is such that most 
of the planes contribute to the estimates. Overall, it can be 
concluded that no important parameters were omitted from the 
model, and that the overall estimation is in good condition.  
 

 
Fig. 12:  Histogram of measurement residuals for the urban 

data of strong geometry  
 

5. CONCLUSIONS 

The ‘LiBOR’ approach on boresight self-calibration in airborne 
laser scanning was studied in light of its practicability. After 
recalling its underlying adjustment principles the emphasis was 
given on the automation of its input, i.e. separation and 
classification of planar rooftops segment per plane and strip. 



 

The experience confirms the suitability of the presented 
algorithm for urban areas where the buildings are separated and 
have relatively simple roof structure (e.g. as in Fig. 2). For a 
situation where the ‘roof landscape’ is complex (e.g. buildings 
are attached in varying angles or large presence of dormer 
windows, chimneys, etc.) the algorithm has more difficulties to 
locate suitable planar features. In such a case small assistance 
can be easily applied via the roof finder GUI by specifying a 
polygon around roof borders by means of visual guidance based 
on the DSM of the reference strip. On the other hand, the 
selection of the appropriate points and the search of rooftops 
correspondences in other strips remain completely autonomous. 
The practical examples were given for instruments from three 
market leaders in the ALS industry. In all cases the comparison 
of parameter mean values and accuracy estimated by LiBOR 
was either equal or superior to that based on the methods 
proposed by its manufactures. Hence, the benefits of the studied 
method are not only in the rigorous modeling and automation 
but also in its suitability to systems of different providers or 
scanning principles. 
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