
SUITABILITY ASSESSMENT OF GROUND LEVEL IMAGERY  
FOR GEOSPATIAL VR MODELING 

 
Anthony Stefanidis   Charalampos Georgiadis            Giorgos Mountrakis 

 
Dept. of Spatial Information Science & Engineering, University of Maine, 348 Boardman Hall, Orono, ME 04469-

5711, USA – {tony, harris, giorgos}@spatial.maine.edu 
 
 

Commission V, WG V/4 
 

 
KEY WORDS:  Ground-level Imagery, VR Modeling, Suitability Ranking 
 
 
ABSTRACT: 
 
Improvements in sensor technology and modeling capabilities have resulted in a trend towards generating large-scale VR models of 
urban scenes, for use in geospatial applications. Selecting the appropriate imagery to generate VR models from a large collection of 
available ground-level photos is currently performed through visual inspection. In this paper we introduce well-defined metrics to 
support the automation of this time-consuming task. We make use of geometric and radiometric suitability metrics, describing image 
suitability for optimal image selection to use in VR modeling. In the paper we present these metrics, and demonstrate the 
applicability of our approach through experiments. 
 
 

1. INTRODUCTION 

Recent advancements in sensor availability and computing 
capabilities have fostered the development and management of 
large-scale virtual reality (VR) models of urban scenes. Such 
VR models are becoming increasingly popular in an expanding 
array of applications, and are expected to substitute traditional 
geospatial databases (e.g. maps and layers of geographic 
information systems – GIS) in the near future.  
 
For the generation of massive scale VR models we usually rely 
on existing GIS information, aerial photogrammetry, airborne 
or ground-based laser scanning, GPS measurements, and 
classical surveying techniques to provide the geometric 
foundation (the equivalent of wireframe models of urban 
scenes). This information is then augmented by the radiometric 
content (building façade depictions) of ground level imagery, 
captured by mobile or static sensors in the area of interest. 
Processing ground level imagery for façade extraction remains 
a labor-intensive process, with human operators still heavily 
involved in it. Automating this process is a crucial task for the 
image processing community.  
 
For many years now, the main focus of the photogrammetric 
community in VR applications was mostly on cultural and 
architectural landmarks (see e.g. [El-Hakim et al., 2004; 
Pollefeys et al, 2003] for recent relevant publications). Parallel 
to this work, we can recognize substantial efforts during the last 
few years towards the generation of VR models of broad urban 
areas. The group of Seth Teller at MIT worked on the automatic 
modeling of city areas using specialized equipment like the 
Argus camera and the Rover roaming platform to collect the 
required imagery [Coorg & Teller, 1999; Antone & Teller, 
2000]. [Neumann et al., 2003] presented a method for 
integrating data from multiple sensors in real time for the 
creation of augmented virtual environments. Regarding texture 
content assessment for VR modeling, [Haala, 2004] presented 
an approach based on view geometry and image segment 
resolution, to evaluate suitability without considering the 
radiometric content of images.  

 
In this paper we present our automated approach for the optimal 
building façade image selection for VR modeling of urban 
scenes. Its innovation lies on the simultaneous analysis of 
radiometric and geometric information. We introduce well-
defined metrics and processes in order to evaluate the suitability 
of extracted facades by considering the corresponding scale and 
orientation parameters, and radiometric statistics of the images. 
Furthermore, through its integration with suitability assessment 
functions we allow users to set their own parameters in this 
process, thus customizing the results to meet their own patterns 
of preference.  
 
Our approach is especially suitable for processing of imagery 
captured at quasi-video rate by ground level sensors roaming a 
scene, due to the increased availability of potential façade 
imagery. The structure of the remaining parts of our paper is: 
section 2 offers an approach overview, in section 3 we analyze 
the suitability assessment metrics, and section 4 presents 
experiments leading to our concluding remarks (section 5). 
 
 

2. APPROACH OVERVIEW 

The challenge we address in this paper is to select the best 
frame to generate the VR model of a façade when we have 
available numerous frames that depict this facade in various 
orientation conditions. We make use of suitability metrics that 
express the degree of each frame’s appropriateness, and by 
quantifying this expression we allow ranking the available 
frames, from best to worst, for VR modeling purposes. 
We assume to have available ground level imagery, with façade 
outlines approximately delineated in them. Our frame selection 
approach is based on the analysis of appropriate radiometric 
and geometric image characteristics, as visualized in fig. 1. The 
criteria we consider are as follows: 
 
 
 
 



 

 

 
i) Geometric criteria. Regarding geometry, we aim to identify 
facades that are imaged nearly perpendicularly in the 
corresponding photo, and at maximum scale (i.e. finer 
resolution). The objects we are considering (i.e. building 
facades) are mainly planar surfaces. In order to evaluate the 
geometric suitability of each facade we make use of expressions 
of its image location as they are conveyed through the three 
rotation angles (ω, φ, κ) and the image scale (s). 
 
ii) Radiometric criteria. Regarding radiometry, the objective 
is to select facades that are free of occlusions, and have nearly 
constant illumination throughout. In order to evaluate this, we 
analyze the chromaticity properties of each image. More 
specifically we consider the mean value of lightness in an 
image and the corresponding standard deviation of gray values 
within a façade rectangle. In our approach we use various color 
spaces. An optimal facade is one with mean lightness value 
close to a predefined target value to ensure uniform illumination 
throughout facades in the VR model, and minimal standard 
deviation for uniform illumination within each facade.  
 
These criteria are formulated as suitability assessment functions 
(SAF), expressing the effects of parameter variations on the 
suitability of the corresponding image for use in VR modeling. 
A weighted aggregation of the SAFs values produces a 
Geometric Suitability Index (GSI) and a Radiometric Suitability 
Index (RSI), respectively. At the last processing stage, we 
combine the radiometric and geometric suitability indices into 
the final GeoSpectral Suitability Index (GSSI) expressing the 
overall image suitability. 
 

3. IMAGE SUITABILITY ASSESSMENT 

 
Suitability assessment takes place in two stages, first 
calculating the individual geometric and radiometric metrics, 
and then aggregating them into one total metric. 
 
Geometric suitability of imagery for VR modeling is 
expressed as a function of the corresponding aforementioned 
geometric parameters (the three rotations ω, φ, κ and the single 
scale parameter s). More specifically, for each parameter 
individually, we use a suitability assessment function (SAF), 
expressing the suitability of the corresponding image parameter 
for use in VR modeling. Images that are suitable receive high 
SAF values (close to 1), while images with low suitability 
receive decreased SAF values (close to 0).  
 

Considering the scale parameter for example, as the objective of 
geometric analysis is to select imagery with the best possible 
resolution, a SAF value of 1 is assigned to the image with the 
best resolution (façade covers the complete sensor array) and 
SAF values decrease linearly until they reach a value of 0 for 
images where the façade is depicted as a single pixel. 
Regarding rotation, the objective is to select imagery where the 
two rotation angles ω, φ are minimal, thus ensuring nearly 
parallel depictions of the object of interest. For these two 
rotation angles SAF values drop as we move from this ideal 
towards oblique views (angles approaching 90o). In terms of 
rotation κ, a primary goal is to select imagery where the object 
is depicted at minimal rotation angles, as this would minimize 
the need for resampling (and associated errors) when using this 
image to generate a VR model. Similar to the other SAFs, 
values drop as we deviate from this ideal and approach an 
extreme rotation of 45o.  
 
This is communicated through SAF graphs like the one in Fig. 
2. The vertical (Y) axis of these graphs expresses the degree of 
suitability, ranging from 1 for an ideal situation to 0 for a highly 
unsuitable one, while the horizontal (X) axis expresses 
variations of the corresponding geometric parameter (φ angle in 
Fig. 2 ).  
 
The shape of the SAF functions may be chosen to reflect the 
effects of the above-mentioned parameters. Considering scale 
for example, its effects are linear, and thus can be expressed 
through a linear function (similar to the straight line in fig. 2). 
On the other hand, the effects of rotation angles are more 
complex in their nature (as expressed through the rotation 
matrix), and thus may be better expressed through more 
complex functions. An excellent example of such a function is 
the sigmoidal (dashed line in fig. 2). The sigmoidal offers the 
advantage of being highly suitable to express very efficiently 
non-linear user preference patterns, where suitability remains 
high as long as the actual parameter deviates slightly from the 
ideal, and then reduces rapidly as soon as we move beyond this 
range (e.g. 35 degrees in Fig. 2). A sigmoidal function for input 
X is expressed as: 

SAFSigmoidal (X) =
1

1 + e−a (X−c)              (1) 

The c parameter specifies the function’s translation along the X 
axis. The steepness of the slope of the sigmoidal is expressed 
through parameter a. An important characteristic of the 
sigmoidal function is the large range of modeling capabilities. 
Efficient manipulation of the slope can result in representing a 
variety of cases, ranging from linear to step-like behavior. The 
diverse capabilities together with the large operational range in 
the input space and the mathematical continuity of the function 
(first derivative exists everywhere) establishes the sigmoidal as 
appropriate solution from a variety of fuzzy functions.  
 
As both approaches (linear and sigmoidal) are monotonic they 
do not differ in the ranking of numerous frames based on a 
single geometric parameter, but rather on the actual suitability 
value that is assessed to a particular frame. This can become 
quite important when integrating numerous geometric 
parameters (and corresponding graphs) to a single suitability 
metric. The actual SAF values may be pre-selected, using 
expressions like equation 1, or they may be learned through a 
relevance feedback process (Mountrakis & Agouris 2003; 
Mountrakis et all 2003). 
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Figure 1: Integrating criteria for suitability 



 

 

 The four SAF values are integrated in a single geometric 
suitability index (GSI) as the weighted average of the SAF 
values:  
GSI = wsSAFs + wφSAFφ + wωSAFω + wκSAFκ         (2) 
 
The weight coefficients wi in eq. 2 may be selected 
heuristically, or they may be based on user responses (whereby 
a user may assign higher weight to the effects of a single 
parameter as an application may dictate). In our experiments 
these weight coefficients are selected to be 0.2 for the scale, 
0.35 for each of the φ, ω angle, and 0.1 for the κ angle. The 
overall GSI value will be in the range [0,1] similar to the range 
of each SAF value, as Σwi = 1. Higher GSI values reflect higher 
suitability of the corresponding imagery for use in VR 
modeling.  
 
Radiometric suitability assessment involves the analysis of 
radiometric content in three color spaces: HSV, YIQ and 
CIELab. The objective is to select imagery with minimal 
illumination variations, thus representing non-distorted views of 
the facade of interest. In order to evaluate the degree to which 
an image satisfies this condition we consider the color 
parameters of each façade rectangle to identify one that has a 
mean value close to a predefined target lightness value, and 
minimal standard deviation.  
 

 
Figure 2: SAF assignment for angle φ 

 
The suitability assessment function (SAF) values for these 
parameters is estimated by normalizing the SAF value range 
[0,1] to [highest, lowest] standard deviation value range for the 
SAFst.dev. In the case SAFmean we use a symmetric suitability 
function where the value of 1 corresponds to the predefined 
target value and decreases gradually to zero. Linear or 
sigmoidal functions can be used based on preference 
requirements, following the above-mentioned geometric SAFs 
paradigm. The weighted average of the two radiometric SAF 
functions is the radiometric suitability index (RSI):  
RSI = wmeanSAFmean + wst.dev.SAF st.dev.    (3) 
 
In our applications wmean=0.25 and wst.dev.=0.75, as we are 
interested in uniform illumination within the façade, which 
translates in standard deviation values being more important 
than having the mean close to the pre-defined target. These 
radiometric indices may be evaluated in either of the 
aforementioned color spaces independently, or use an average 
of their results as we see in the experiments section.  
 

The geometric and radiometric SAFs are integrated in a single 
GeoSpectral Suitability index (GSSI), calculated as the 
weighted aggregation of GSI and RSI: 
GSSI = wGSIGSI + wRSIRSI     (4)  
 
In our applications we assign equal weight to each component 
(wGSI=wRSI=0.5), but these values may be altered as necessary.   
Depending on user preferences higher weight can be given to 
the geometric part (e.g. when images are used for 3d modeling 
or scene reconstruction) or the radiometric part (e.g. to 
eliminate shadows from our VR model).      
 

4. EXPERIMENTS 

In order to demonstrate the performance of our approach we 
present here experiments with synthetic and real datasets. 
Firstly, in order to evaluate the effects of illumination variations 
in the radiometric SAF values we use the dataset of Fig. 3. The 
top left image (1p) is the original image. All others are 
artificially created by altering the original image to simulate the 
effects of various illumination conditions and occlusions. We 
generated the various versions (1a-1n) by altering the 
radiometric content either: 

• locally (second row) through the introduction of 
artificial occlusions and/or shadows, or  

• globally (third row). 
 

 
 

Figure 3: Indoor Synthetic Dataset 
 
We applied our linear metric in three different color spaces and 
integrated the mean and standard deviation SAF values as 
presented in the previous section. For our RSI metric we used 
the average value of the results in all three color spaces. As we 
can see in table 1 all three color spaces give similar results for 
the top four and last four candidates, with minor variations in 
the intermediate ordering. Thus ranking images radiometrically 
using only one of the three color spaces is adequate for our 
purposes.   
 
In order to demonstrate the evaluation of geometric suitability 
we used three different datasets. We captured several images of 
building facades in our Campus and present here three 
representative samples. For the first façade we captured 10 
different images depicting it, for the second façade we captured 
9 images, and for the third façade we captured 11 images. In 
figure 4 we can see the images of the first dataset, in figure 5 
the images of the second dataset and in figure 6 the images of 
the third dataset. 
 



 

 

 
Table 1: Radiometry Suitability Results 

 
These images were captured at a camera-façade distance 
ranging between 5 and 15 meters for these datasets. The images 
(3072x2048 pixels) were captured using a Canon Digital Rebel 
uncalibrated camera. The camera pixel size was 7.4 microns 
and since the camera is uncalibrated we used as focal length the 
nominal value provided by the manufacturer.  
 
Using vanishing points we computed the three rotation angles 
for each view, and then we selected the image with the lower 
distortions (rotation angles) to serve as a reference frame for the 
computation of the relative scale between the images.  
 
In order to consider delineation errors in the assessment of 
suitability using our metrics we created three error-affected 
versions of each original façade image by introducing random 
errors in the corresponding corner determination. The 
magnitude of these errors ranged from a maximum of 2 pixels 
for version 2 to a maximum of 5 pixels for version 3, and 10 
pixels for the fourth version. We used the results of these three 
versions in addition to the original errorless results (version 1).  
 
Errors in corner determination affect the accuracy with which 
we compute the corresponding rotation angles and scale 
parameters; and accordingly may affect the evaluation of our 
suitability metrics. By considering all four versions of our 
imagery we investigated the robustness of our metrics to such 
errors.  
 
 

 

  
 

Figure 4: Facade 1 Dataset 

Image GSI GSI 2p GSI 5p GSI 10p
1 0.7254 0.7258 0.7189 0.7309
2 0.7617 0.7639 0.7563 0.7658
3 0.8064 0.8076 0.8106 0.8104
4 0.8668 0.8710 0.8711 0.8807
5 0.8437 0.8460 0.8421 0.8512
6 0.7920 0.7938 0.7835 0.7948
7 0.7627 0.7633 0.7635 0.7761
8 0.7380 0.7388 0.7340 0.7457
9 0.7209 0.7245 0.7169 0.7244

10 0.7622 0.7653 0.7567 0.7665  
Table 2: Dataset 1 Results  

 
The results of our metric for façade 1 are presented in Table 2. 
The images of fig. 4 are numbered left-to-right, top-to-bottom 
(i.e. image 4 is the fourth image in the first row, 7 is the second 
in the second row). The façade of interest is marked by a red 
box in image 3 of Fig. 4. Using our metrics we can see that 
image 4 is ranked as best for this façade. Visual inspection 
verifies the suitability of this façade for VR rendering. It is also 
interesting to observe that image 4 was ranked first in all 3 
error-affected versions (columns headed GSI 2p to indicate 
error of 2 pixels, GSI 5p to indicate error of 5 pixels, and GSI 
10p to indicate error of 10 pixels). Thus our metrics display 
robustness with respect to delineation errors. 

 

 
Figure 5: Façade 2 Dataset 

 
Name GSI GSI 2p GSI 5p GSI 10p

1 0.7056 0.6910 0.6797 0.6643
2 0.6625 0.6476 0.6363 0.6198
3 0.6709 0.6665 0.6526 0.6566
4 0.6433 0.6348 0.6433 0.5819
5 0.6694 0.6639 0.6616 0.6595
6 0.6930 0.6888 0.6730 0.6697
7 0.7481 0.7425 0.7436 0.7270
8 0.7755 0.7677 0.7737 0.7434
9 0.7245 0.7065 0.7384 0.6407  

Table 3: Dataset 2 Results  
 

We performed similar experiments with two other facades, with 
the corresponding datasets shown in Figs. 5 and 6, with the 
façade of interest delineated by a red box in one image in each 
of these datasets. The corresponding ranked results are 
tabulated in Tables 3 and 4 respectively. Visual inspection 
verifies the suitability of the best ranked images. Furthermore, 
we see that the best candidate remains ranked at the top in the 
presence of noise for these facades as well. The only exception 
is for façade 3, where the best match (image 6) drops to second 

Rank Rank Rank Rank
1b 0.97 1 0.97 1 0.98 1 0.98 1
1n 0.93 2 0.94 2 0.94 2 0.94 2
1p 0.93 3 0.93 4 0.93 3 0.93 3
1m 0.92 4 0.93 5 0.93 4 0.93 4
1j 0.91 5 0.93 3 0.9 5 0.91 5
1e 0.68 6 0.7 7 0.81 6 0.73 6
1a 0.64 7 0.66 8 0.8 7 0.7 7
1l 0.59 8 0.73 6 0.53 11 0.62 9
1f 0.57 9 0.61 9 0.72 8 0.64 8
1g 0.51 10 0.56 10 0.71 9 0.59 10
1c 0.37 11 0.39 11 0.56 10 0.44 11
1i 0.18 12 0.31 12 0.34 12 0.28 12
1d 0.16 13 0.19 13 0.3 13 0.22 13
1h 0.1 14 0.08 14 0.29 14 0.15 14
1k 0.06 15 0.03 15 0 15 0.03 15

AVERAGEYIQ HSV CIELab



 

 

choice, as it is overtaken by image 4 in the presence of gross 
delineation errors (10 pixel error). Nevertheless, the difference 
in suitability between images 4 and 6 for façade 3 was minimal, 
so this minor reversal does not affect the validity of our 
approach. These representative experiments demonstrate the 
overall robustness of our approach even in the presence of 
delineation errors. 
  

 
 Figure 6: Façade 3 Dataset 

 
Name GSI GSI 2p GSI 5p GSI 10p

1 0.6733 0.6777 0.6688 0.6916
2 0.6905 0.6926 0.6895 0.7100
3 0.7424 0.7445 0.7402 0.7594
4 0.8011 0.8026 0.8014 0.8206
5 0.7897 0.7920 0.7898 0.8097
6 0.8039 0.8045 0.8033 0.8145
7 0.7343 0.7358 0.7349 0.7591
8 0.6996 0.7021 0.6967 0.7185
9 0.6650 0.6676 0.6623 0.6928

10 0.6181 0.6211 0.6152 0.6307
11 0.6653 0.6674 0.6625 0.6936  

Table 4: Dataset 3 Results  
 

Regarding time performance we should point out that the most 
time consuming components of our suitability evaluation 
process are object delineation and the computation of mean and 
standard deviation values for each façade rectangle. In the worst 
scenario (using a full resolution image and a façade covering 
80% of a frame), calculations took 1.22 sec per image to run on 
a Pentium4 2.8 GHz. This is perfectly acceptable for off-line 
image processing, and can even meet real-time in-field analysis 
when images are captured at a rate of approximately 1 frame 
per second. 
 

5. CONCLUSIONS 

In this paper we addressed the optimal selection of close range 
imagery for VR modeling within geospatial environments. The 
inputs for our analysis are geometric and radiometric properties 
like scale, the three rotation angles, brightness, and illumination 
variations. We introduced a set of suitability assessment 
functions to express image fitness for the task at hand. More 
specifically, the flexibility of SAFs ranging from linear to 
complex sigmoidal functions, together with our weighting 
scheme, support advanced customization of the results. 
 
Experiments demonstrated the robustness of radiometric 
ranking in various color spaces. Another important finding is 
that ranking images according to our geometric suitability 
method does not require the precise delineation of objects in all 

datasets. Using imprecise object blobs is adequate for the 
correct ranking of candidate imagery.  To summarize, our 
metrics allow for an automated ranking of incoming imagery, 
thus eliminating the need for visual inspection and selection. By 
automating this process, we alleviate a cumbersome task, and 
enable the exploitation of large datasets of imagery to support 
VR modeling. 
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