
VISUALIZING AND ANALYZING LARGE AND DETAILED 3D DATASETS

Louis Borgeat, Guy Godin, François Blais, J-Angelo Beraldin, PhilippeMassicotte and Guillaume Poirier

Visual Information Technology Group
Institute for Information Technology
National Research Council of Canada

Ottawa, Ontario, Canada
first.last@nrc-cnrc.gc.ca

KEY WORDS: Multi-resolution modeling, interactive visualization, GPU programming, large datasets, texture mapping, foveal dis-
plays, tele-collaboration.

ABSTRACT:

This paper presents a set of tools developed to model, visualize and analyze large 3D datasets built from 2D and 3D sensor data. These
tools, grouped under the Atelier3D framework, first include a techniquefor processing and interactively visualizing datasets made of
hundreds of millions 3D samples and tens of gigabytes of texture from digital photography. It also includes various analysis tools to
visualize and transform the data, including non-photorealistic rendering techniques implemented on the GPU that provide the capabil-
ities to extract information from the datasets not always visible using classical shading techniques. Atelier3D also contains advanced
display and interaction functionalities to support multi-projector and multi-resolution tele-collaborative hardware configurations.

1 INTRODUCTION

Figure 1: Two representations of a dataset obtained from LiDAR
range data. Top: a regular OpenGL shading. Bottom: a combina-
tion of contour-line-based shading and of regular shading. This
last representation was chosen to provide a global impression of
terrain elevation relative to the height of the buildings.

Cultural heritage and conservation applications have provided a
stimulating testing ground for many developments in 3D acqui-
sition, modeling, and display over the last decades (Godin et al.,
2002, Levoy et al., 2000). This is in part because this field pro-
vides a wide variety of very detailed objects of all size and shape
and is therefore a source of limitless challenge for new technol-
ogy development. As of today, sensors can acquire up to billions

of sample points and tens of gigabytes of texture in a single day
of data acquisition. But as the resulting models increase in size
and improve in detail and quality, there is a growing need for
the development of more advanced tools to visualize and analyze
those datasets to be able to access all the valuable knowledge they
contain: data must not only be displayable at various scales under
various representations without creating any misleading artefacts,
but it also increasingly needs to be transformed to enhance un-
derstanding by the viewer. In this paper we present the Atelier3D
framework, a prototype application composed of a set of tools
developed over the years to fulfill the visualization and analysis
needs of different application projects, in good part in the field
of cultural heritage. We first describe a technique for process-
ing and interactively visualizing datasets made of hundreds of
millions 3D samples and tens of gigabytes of texture from dig-
ital photography. We then present tools to analyze the data, in-
cluding non-photorealistic rendering and filtering techniques im-
plemented in real-time on the GPU(Graphics Processing Unit) to
be able to extract information from the datasets not always visi-
ble using typical shading techniques. We also describe advanced
display and interaction functionalities to support multi-projector
and multi-resolution tele-collaborative hardware configurations.
We will finally present renderings of different models produced
using the Atelier3D framework, illustrating how the capacity to
interactively switch between different representations, many al-
ready well known, allows for the extraction of much more infor-
mation from the datasets, and in many cases, information simply
not visible using traditional rendering techniques. Figure 1 gives
a simple example of a representation adapted from contour lines
for aerial 3D data.

2 RELATED WORK

Solutions aimed at interactively displaying models that are too
large for brute force rendering on graphics systems are well estab-
lished in computer graphics (Clark, 1976, Funkhouser and Séquin,
1993). But these solutions must be constantly renewed as the
graphics hardware evolves and the datasets grow in size and com-
plexity. In the case of sensor-based datasets, models usually have
a relatively simple structure, so visibility culling of the data is
rarely the main issue. However, such models can easily be com-



posed of hundreds of millions polygons and contain tens of gi-
gabytes of texture data, far more than even a modern graphics
adaptor can handle. The main challenge is therefore to be able to
adapt in real-time the resolution of the rendered data to the reso-
lution of the display, making it small enough for interactive dis-
play, yet high resolution enough to produce a quality image from
the current viewpoint. The first step is to choose some criteria to
perform the actual simplification of the model. The most popular
approaches are based on quadric error metrics(Garland and Heck-
bert, 1998, Hoppe, 1999). Techniques that allow for a very fine
grained real-time adaptation of the surface based on the viewpoint
were popular a few years ago(Hoppe, 1997). But as the power of
graphics adaptors grew rapidly, coarser methods that operate on
larger geometry blocks were proposed. They required less CPU
and made a closer to optimal use of graphic resources (Borgeat
et al., 2005, Cignoni et al., 2004, Niski et al., 2007). Methods
that render hierarchies of points instead of meshes have also been
proposed(Rusinkiewicz and Levoy, 2000), but the performance
benefits are less significant when a high quality rendering is tar-
geted(Zwicker et al., 2004). Techniques to properly order vertices
in meshes have also made these solutions less advantageous(Yoon
et al., 2005). For the now frequent cases where the model is too
large to fit even in system memory, many solutions have also been
proposed. We refer you to (Borgeat et al., 2005) for an example
and a more complete review of the field. Less work has been
published that presents actual analysis results obtained from non-
photorealistic representations of 3D datasets. A good example
would be (Anderson and Levoy, 2002), where scanned cuneiform
tablets are processed using curvature and accessibility coloring to
make them easily readable.

3 LARGE DATASETS MANAGEMENT

We have developed a general technique to interactively display
large scanned surface datasets(Borgeat et al., 2005) that can eas-
ily handle models composed from hundreds of millions of poly-
gons and tens of gigabytes of associated texture data. The method
is an extension of view-dependent hierarchical levels of detail
(LOD), where we use geomorphing to ensure temporal and spa-
tial continuity between the different levels of detail and across the
entire model.

This rendering technique combines several important advantages:

• By using static pre-optimized geometry units as the primi-
tives for the view-dependent computations, we strike a bet-
ter balance between GPU and CPU usage, and can bene-
fit from on-GPU geometry and texture caching and from
better use of the GPU vertex cache. On a model such as
the Mona Lisa of Figure 10, we can render well over 100
millions geomorphed polygons per second when rendering
with the regular OpenGL lighting, thus allowing to render
the multi-resolution models with sub-pixel accuracy at in-
teractive frame rates.

• We also minimize the visual artefacts associated with the
view-dependent transformation of the displayed data through
the use of geomorphing. One of the known inconvenients
of LOD-based approaches are the popping transitional arte-
facts associated with changes in the resolution level. When
rendering models at high resolution, no artifacts are visible
even if we set a target resolution slightly over one pixel, but
we can also get very good results on various models when
rendering at a lower geometrical resolution if resources are
limited.

• This technique requires very little CPU usage. All the ge-
omorphing being performed on the GPU, CPU is only re-
quired to cull the coarse hierarchical level-of-detail structure
as with any scene graph, and to pre-fetch data during naviga-
tion. Resources are therefore available for other tasks such
as A/V transcoding for tele-collaboration (see Sect. 4.3).

• The method is well adapted to models that contain massive
amounts of texture. The pre-processing can in these cases
be optimized to adapt the created hierarchical structure to
minimize the amount and size of texture units.

• Finally, one of the key aspects of this technique is that we
display the original model when the user is sufficiently close
to the model to require its full resolution to produce an im-
age. This is very important since we want to be able to
differentiate between real features present in the data and
artifacts caused by the processing and rendering steps as-
sociated with the large dataset management issues. This is
absolutely crucial for many analytical application both in
heritage and other application fields.

Figure 2: Illustration of the data structure for the interactive ren-
dering. Left: Recursive subdivision process in the level of detail
hierarchy. Right: corresponding geometry for each level of detail
for a selected area of a wooden duck model.

3.1 method overview

Before we can interactively display a model with Atelier3D, we
must first precompute the appropriate multi-resolution data struc-



ture. This process will take a few hours for a model of the size
of the Mona Lisa (333 millions polygons) on a recent worksta-
tion. During this pre-processing, the triangular mesh model is
basically converted into a compressed level-of-detail hierarchy
of optimized geometry patches and associated texture or attribute
data. The first step of this preprocessing is to simplify the entire
model into a sequence of discrete LODs using an algorithm based
on vertex aggregation. This choice of simplification technique
is important since the aggregation paths become the geomorph-
ing paths at rendering time. Figure 2 shows different levels of
simplification for an example 3D model. The lowest resolution
LOD is then decomposed into a set of triangle patches. The next
higher resolution level is then partitioned along the same bound-
aries, and each group in this level is sub-partitioned until the de-
sired granularity for the view-dependent computations is reached.
This process is applied in sequence to all levels of the model, re-
sulting in a hierarchy of group subdivisions spanning the whole
sequence of LODs. Groups can be shaped according to crite-
ria such as compactness, common orientation, texture/viewpoint
association, culling requirements, model structure, existing parti-
tions, and number of primitives per group. These criteria change
depending on the type of model to be displayed: for example,
for a model with much more texture than geometry, we will want
to create patches that segment images in texture space in order
to minimize the size and number of texture units. While for
a color-per-vertex model we will simply make patches that are
more compact to minimize errors in the view dependent compu-
tations. Groups are finally individually converted into triangle
strips optimized for the GPU vertex-cache in order to maximize
rendering speed. These groups or patches constitute the basic
units for all the view-dependent computations.

Figure 3: View-dependent mesh for a given frame with(left) and
without(right) geomorphing.

At run time, a front in the LOD patch hierarchy is selected dur-
ing the culling process just as with traditional hierarchical level-
of-detail structures. Groups are selected based on a determined
maximum screen pixel error and on a unique worst-case pre-
computed error measurement associated with each group. Ge-
omorphing ratios between selected groups and their lower reso-
lution parent are computed for each frame. Seamless continu-
ity between neighboring LOD groups is maintained at all time
by geomorphing boundary points between groups according to
a specific set of rules while the other points are morphed using
a uniform ratio per individual patch. The geomorphing is actu-
ally performed by a vertex program on the graphics processing
unit (GPU), so it requires almost no CPU resources. Geomor-
phing is applied to space and texture coordinates, normals and
colors. Out-of-core pre-fetching is done asynchronously on a dif-
ferent thread to insure smooth navigation and interaction. Groups
are assigned for pre-fetching during culling by selecting another
front in the LOD hierarchy, this time using a lower pixel-size er-
ror. Using geomorphing maintains a more uniform polygon size
during navigation, as seen in Figure 3.

In the previously described method(Borgeat et al., 2005), per-
vertex geomorphing ratios were computed on the CPU and up-
loaded to the GPU for interpolation. The method has been im-

proved significantly and now only a few ratios have to be com-
puted for each patch and uploaded to the GPU for interpolation.
Basically, each unique interpolation ratio shared by a group of
border points of the patch is computed only once. This is possi-
ble since points who share the same set of neighboring patches
by definition also share the same unique geomorphing ratio. The
amount of CPU processing for this technique is therefore almost
identical to the load of culling the equivalent static LOD scene
graph structure. This allows for the creation of a more fine-
grained tree structure, making frustum culling more efficient and
minimizing the selection of uselessly high resolution data associ-
ated with more coarse-grained multi-resolution techniques. The
geometric data is also now uploaded to the GPU in a simple
compressed format. This new optimization actually reduces the
amount of data to upload to the GPU by a factor of 2 for color-
per-vertex models.

3.2 texture management

Figure 4: Construction of the level of detail structure in the con-
text of high resolution textured models. Recursive segmentation
is performed in texture space instead of in geometric space to
minimize the size of the final texture units set for the paging pro-
cess.

In the cases where dense 3D information is derived from pho-
tographic data (El-Hakim, 2006), the resolution of texture and
geometry are by definition the same. But in more typical cases
where digital photographs are mapped onto data acquired with a
3D sensor(Beraldin et al., 2002), we are usually faced with much
more texture than 3D data. In those contexts, the performance
of the interactive rendering process will be mostly driven by the



amount of texture that will need to be paged between the disk, the
system memory and the GPU, and by the amount of GPU mem-
ory needed to store all the texture associated with the displayed
geometry. We must therefore optimize the segmentation process
used to create the level of detail hierarchy to minimize the size
and amount of texture units generated. In those cases, instead of
subdividing the geometry in Euclidian 3D space, we subdivide
it in the parameterization texture space associated with each tex-
ture image, as shown in Figure 4. We assume as a starting point
that we already have an initial texture-geometry association, and
that we have a projection space obtained through photogramme-
try. We then apply a heuristic that recursively subdivides textures
to maximize the following set of criteria: minimal texture area,
squareness of units, and size uniformity. Minimal constraints
on the resulting shape of the corresponding 3D geometry units
are also applied. Such an approach will end up producing more
patches for a given target 3D size for the patches, but will mini-
mize the amount of texture to page and store in real-time, there-
fore maximizing the real-time performance and minimizing the
global file size.

The initial association of geometry and texture must be done se-
quentially, but all the subsequent processing of the image data
can be done in parallel on a per-image basis, making this tech-
nique highly scalable. Depending on the application, displayed
texture resolution can be set to a different target than resolution
of the geometry. We might want for example to display geometry
at lower resolution to save resources but to have high resolution
textures at all time. This association has to be specified during
the pre-processing phase.

4 INTERACTIVE ANALYSIS

One key feature of Atelier3D is the ability to analyze the model
using a wide range of data representations. In that regard, the
intent of Atelier3D is to provide conservators, art historians and
archaeologists with a set of intuitive tools and filters to be able
to extract all available information from a large 3D dataset. Ul-
timately, the objective is to have something analogous to what is
available in 2D image processing environments such as Photo-
shop or the Gimp but adapted to the 3D context. In this section
we will describe a few of those tools and representations, illus-
trating how they are implemented on the GPU and what are the
actual performance costs associated with them in the context of
large dataset visualization.

Modern GPUs provide significantly more control on the image
generation pipeline than their early counterparts. They are also
significantly more powerful and can perform much more compu-
tations in real time. Thus it becomes interesting to harness this
additional power to further process the rendered multi-resolution
model by implementing transformations that are useful as analyt-
ical tools. With such hardware, we can easily implement simple
tricks such as rendering highlighted depth instead of the color to
visualize other aspects of the datasets; but we can also perform
in real time complex multi-step filtering and image composition
techniques that would take a significant amount of effort and ma-
nipulation to reproduce in a conventional 2D image processing
tool such as Photoshop for a single viewpoint, notwithstanding
the need to generate and carry cumbersome intermediate repre-
sentations. These newer GPUs also provide the possibility to op-
erate on 32-bit float buffers, allowing for high precision compu-
tations and measurements to be executed directly on the GPU.

The first representation we describe is the one used to produce
the wood grain detail and face close-up images of the Mona Lisa
in Figure 10. One of the problems encountered when analyzing

the painting came from the multi-resolution nature of the 3D data
of the wood panel. Indeed, important shape information from the
paint layer is hidden in larger shape variations associated with the
wood grain structure of the wood panel, which in turn gets lost
in the significant curvature of the wood piece itself. We therefore
implemented this filter in order to be able to separate small detail
variations in the local shape of an object at a given resolution
from its global more general structure, acting as a high-pass filter
for the data at the current level of detail. Figure 5 illustrates what
we try to achieve here. The objective is to have the interesting
details being represented using the entire color or gray scale by
removing the global shape of the 3D data.

Figure 5: Illustration of the principle behind the relative depth
filter. Higher frequency variations in the datasets are highlighted
by removing global shape variations. They can then be mapped
more efficiently to a color or grayscale spectrum.

The first step to implement this representation is to render the
multi-resolution model from the chosen viewpoint. This is done
mostly in the same way as for the photorealistic mode, using the
same interpolation process between levels of detail as described
earlier when processing the vertices. The first difference is that
the target buffer is a single channel 32-bit float buffer. At the end
of the vertex processing stage, we pass the position of the vertex
in the observer’s reference frame as a full floating point value to
the rasterizer, so that we get a precise depth value for each candi-
date fragment in the next stage, without the non-linear resolution
distribution of the depth buffer under perspective transformation.
The fragment program simply renders the floating point value it
receives into the 32-bit float buffer instead of assigning the color
information. At the end of our first pass, we obtain a 32-bit depth
image of the 3D data from the chosen observer viewpoint. The
problem with such an image is that the human eye can only dis-
tinguish a limited number of different shades of gray. So even if
small shaped details are actually present in this 32-bit high preci-
sion image, they are not visible when mapped into the color space
because they are hidden in the global shape of the data.

The second step is to create a representation of the overall shape
in the form of a second float image obtained by convolving the
depth image with a large Gaussian blur kernel. Convolution is
simply implemented in a new rendering pass by fetching all sur-
rounding values overlapping the kernel as texture fetches in the
unfiltered image. In fact, such a filter is implemented even more
efficiently on a GPU (Fernando, 2004) by filtering sequentially
with a unidimensional kernel along both image axes, resulting in
much less texture fetches. We in effect filter out all the fine details
we seek to recover while keeping the global warping of the panel.
Very large kernel filters can be implemented by simply repeating
this sequence. By adapting the filter size, different elements can
obviously be highlighted under user control.

In the following step, we subtract the original image from the fil-
tered one in a new rendering pass. The outcome of this process
is a new image that contains only the local variations that were
contained only in the original buffer. We now only need to trans-
form those small variations into color values for display. Since



the GPU needs to re-scale values between zero and one to pro-
duce color values, we need to find the minimum and maximum
depth values in our depth image. The fastest way to achieve this
on a GPU is to iteratively combine neighboring pixel values by
rendering recursively into smaller buffers until we are left with a
one-by-one image containing our result, a technique called par-
allel reduction (Fernando, 2004). We use two color channels to
find the minimum and the maximum at the same time. The final
result can be mapped to either a color or a gray-scale spectrum
depending on user preference. In practice, for a typical rendering
at 2560x1600 of a large model with sub-pixel geometry resolu-
tion, we observe a reduction by a factor of between 2 and 3 in
rendering speed, even if we now actually perform 6 full passes
(plus the smaller ones for the reduction) instead of a single one.

The second representation we describe relates to the classical
contour lines representation that is at the basis of 2D cartographic
representations of terrain data. Again, implementing it on the
GPU in a multi-resolution context comes with many advantages:

• Computations are only performed at the visible resolution
for every frame, therefore at very low cost.

• Instead of being fixed, the reference frame for the virtual
elevation can be based either on the observer viewpoint, on
a real elevation axis when applicable, or on any interactively
chosen frame.

• The density, color and phase of contour lines can be adjusted
in real time to easily choose appropriate contrasts and bal-
ance between precision of the information and clutter of the
underlying scene.

From an implementation perspective, this is actually simpler than
the multi-pass filtering we just described. Here, we modify the
fragment program so that it will blend or replace the traditional
shading computed for the vertices and interpolated for the frag-
ments. This is done based on simple mathematical rules. The
interface provide control on the frequency of contour lines rela-
tive to depth variation, phase of the apparition of the lines, and
speed of the color cycling in the contour line set. We must also
ensure that the contour line is only one pixel wide, even in flat ar-
eas that fall within the boundary values characterizing a specific
line. This is achieved by taking the derivative of the depth image
at that fragment, a functionality provided by the driver, and only
coloring the pixels that border fragments of different depths. By
adding another pass, it would be possible to smooth and fine-tune
the width of contour lines and remove very small contours that
tend to clutter the image.

Figures 8 and 10 both contain illustrations of this visualization
tool. A variation of this technique is the color coding frequently
used in scientific visualization where a full color spectrum is
mapped onto the value range of a variable. In the case of the
left image of Figure 10 we actually blend contour lines, regular
color shading and depth coloring to produce the imagery.

4.1 the Atelier3D Interface

The Atelier3D GUI provides interface tools to first control the
multi-resolution process, such as choosing the resolution or the
amount of data to pre-fetch to balance speed, memory usage and
pre-fetch misses. It provides tools to control classical lighting and
texturing, allowing to add new sources and control their color and
parameters such as their specularity and ambient vs directional
component, change their orientation, remove texture, and other

simple features expected from a versatile 3D viewer. But as we
have shown the interface also provides a set of tools to interac-
tively transform the rendered geometry and pixel data to produce
other representations. The interface is completed with other tools
to render large images, apply histogram adjustments, fit planes
in the data for better orientation selection, make virtual cuts and
perform distance measurements.

The need for Atelier3D came from the fact that many of the re-
quired tools to analyze 3D data exist but are dispersed and some-
times ill-adapted to the specific context of large sensor-based datasets.
For example, analysis software for industrial applications pro-
vides tools to directly perform measurements and filter 3D data
but cannot handle models that size. Another possibility is to ren-
der the datasets into images using large model visualization tools
and then try to extract information using 2D image processing
tools. But this is limitative and sometimes cumbersome. Apply-
ing the relative depth filter in a 2D tool from a initial full size
depth rendering would involve selecting areas, cropping, apply-
ing a filter to data that is at too high a resolution and therefore
waiting for the result, figuring out numerical values for the fil-
ters, etc., not to mention that many of the common image edit-
ing/processing software tools do not operate on 32-bit floating
point images. And in that case one also needs to choose the right
viewpoint before seeing the result. Navigating the result space is
obviously more desirable.

Movie animations are a very powerful way of communicating re-
sults from 3D modeling projects and have been used extensively
in recent years. Atelier3D provides adapted functionality to pro-
duce movies in contexts where datasets are too large for exist-
ing production software or when rendering resources are limited.
Simple navigation paths in the scene for the observer and for light
sources can be imported from other authoring softwares as X3D
or VRML in Atelier3D to produce pre-animated sequences, these
can then be played interactively or rendered into a sequence of
images to be integrated in a movie production. The application
can divide each frame into tiles to render scene at arbitrarily large
resolutions. We have produced movie sequences of the Mona
Lisa at a resolution of up to 4096x2160 on a single inexpensive
PC with individual tiles being rendered in near real-time. With
3D datasets of the size of what can easily be produced with cur-
rent sensor technology, the ability to render at very high reso-
lution becomes essential. Complete movies can then be easily
assembled from those sequences using existing editing and post-
processing software.

4.2 display resolution

High resolution models yield very high resolution imagery which
should be appropriately displayed in order to be fully appreciated.
When working in a workstation configuration, we can leverage
our datasets by using one or two relatively affordable digital 30
inch screens with a resolution of 2560x1600 pixels. However,
when working collaboratively on larger screens, we are quickly
limited by the much lower resolution of commodity projectors.
Indeed, a 1024x768 meeting room projector is more expensive
than our high resolution digital display although it can display
five time less pixels. Typical solutions to this problem involve
using multiple projectors and image tiling to obtain more resolu-
tion. But such setups can become very expensive and require very
large installations, especially in the context of stereoscopic visu-
alization which requires either doubling the number of projectors
for passive techniques, or the use of time-multiplexed stereo pro-
jectors. We have developed an alternative technique that com-
bines stereoscopic visualization with a focus+context or foveated
approach(Figure 6). On a large display wall, we project a high



Figure 6: Top: Structure of a foveated display wall: a high reso-
lution inset is added to a normal display wall setup using a second
projector, or pair of projectors for a stereo configuration. Bottom:
resulting image in a monoscopic configuration.

resolution, high brightness stereo image into a larger, lower res-
olution one. Each image is produced by a pair of commodity
PCs and projectors. Such a setup combines the advantages of ac-
cessing a high resolution area of interest while keeping a larger
context within sight. Techniques have been developed which in-
sure that the presence of the inset does not affect the stereoscopic
perception along its boundary, and that no special manual efforts
are required to align the projectors.(Godin et al., 2004a)(Godin et
al., 2004b)

4.3 Collaborative environment

We have also included modalities to support collaborative work
on our display wall(Borgeat et al., 2004). Figure 7 illustrates
such a collaborative session where participants can share a virtual
world based on a multi-resolution model, and interact by insert-
ing X3D avatars with video insets and audio links in the environ-
ment. Participants can annotate the model using 3D drawing and
guide the viewpoint of other participants to collaborate. The ap-
plication has been entirely designed with large datasets in mind,
and numerous optimizations have been implemented to maximize
resource usage. For example, video is partially encoded and de-
coded on the GPU as part of the 3D rendering, and all the 3D an-
notations are performed using information from the depth buffer

Figure 7: Top: Participant interacting within a collaborative 3D
environment using a laser pointer. Bottom: Video insets and
avatars are used to locate participants, and 3D annotations to the
model provides interaction with the dataset.

at screen resolution so that no useless intersection computations
have to be done with the datasets. The scene graph is also syn-
chronized between the different collaborators using efficient dif-
ferential encoding.

5 RESULTS AND DISCUSSION

We now present a few results produced from snapshots of the
interactive Atelier3D interface rendering window. These images
come from models of various size and types and are produced
using different acquisition and modeling techniques.

Figure 10 shows snapshots of a 3D model of Leonardo’s Mona
Lisa illustrating results that were of interest to conservators and
art historians. The 3D scan of the Mona Lisa was part of the
largest scientific examination ever conducted on the Mona Lisa
(Mohen et al., 2006). It was led by the Centre de recherche et de
restauration des musées de France (C2RMF) at the request of the
Paintings Department of the Louvre; the study coincided with the
move of the painting to the newly renovated Salle desÉtats. The
obverse(front), reverse and sides of the wood panel were scanned
using a prototype high-resolution polychromatic 3D laser scan-
ner. The laser scans of the Mona Lisa were assembled into a
333 million polygon color-per-vertex model, with higher resolu-
tion (average sampling of 60µm) on the obverse (front) surface.
Some of the preliminary results from the study have already been
published (Mohen et al., 2006). Many of the features in Atelier3D
were developed in the context of that project.

The 3D modeling of the Mona Lisa aimed at documenting the
state of the painting and at providing complementary information



for the analysis of the pictorial layer, concerning both conser-
vation issues and indications relative to the painting technique
of Leonardo. These objectives could not be reached using only
photorealistic rendering of the model. Specific transformation
techniques were required to enhance features of interest, such as
wood grain, or measured local variations of the pictorial layer.
The 3D model also allowed detailed examination of various fea-
tures, such as insect galleries or other traces of events such as
restorations that occurred throughout the painting’s five centuries
of existence.

The landscape model in Figure 1 and 8 was produced from data
gathered by TerraPoint (Terrapoint, 2005) using their proprietary
ALMIS350 LiDAR system and a digital camera. It is composed
of 103 million data points and texture from 6800 4Mpixels pho-
tographs. The hydrographic network is clearly visible using the
relative depth technique described in the previous section. The
contour lines are also an obvious representation for such a dataset.
The hybrid contour/color coding/shading image in Figure 1 is
also interesting in that it provides a good perception of the impor-
tance of elevation relative to the height of the buildings, giving a
good impression of possible lines of sights between the buildings
before having to confirm it using an appropriate grazing view-
point.

The model from Figure 9 was produced from digital photographs
using the technique described in (El-Hakim, 2006). It is com-
posed of 15M polygons. The figure illustrates again how trans-
forming the data can help efficiently extracting useful informa-
tion, in this case by easily being able to read the text. This high
resolution modeling technique from photographs has obviously
the potential to lead to the creation of very large 3D models. Such
data could be either converted to a textured multi-resolution rep-
resentation if keeping all the geometric resolution is unnecessary,
or to a simpler color-per-vertex one since there is naturally a one-
to-one mapping between vertices and pixels in the images.

6 CONCLUSIONS AND FUTURE WORK

This paper introduced the Atelier3D framework, which provides
a useful set of tools to support the visualization and analysis of
datasets made from range and color sensor data. The represen-
tations illustrated here are only examples of the tools required to
analyze 3D datasets. It is clear that many more could and should
be implemented to reach that goal. Nevertheless, they give a good
overview of the kind of processing that can be easily implemented
on a GPU and of the importance of not limiting the visualiza-
tion of our 3D models strictly to realistic representations. Finally,
these results also emphasize the fact that there is no substitute to
actual 3D visualization for exploring and understanding 3D data.

ACKNOWLEDGMENTS

The authors would like to thank Christian Lahanier and Bruno
Mottin at the C2RMF, Paul Mrstik and Kresimir Kusevic from
Terrapoint Inc., Prof. Virginia Valzano of the University of Lecce
(Italy), and our NRC colleagues Luc Cournoyer, Michel Picard,
John Taylor, Louis-Guy Dicaire, Marc Rioux and Daniel Gamache.

REFERENCES

Anderson, S. and Levoy, M., 2002. Unwrapping and visualizing
cuneiform tablets. IEEE Comput. Graph. Appl. 22(6), pp. 82–88.

Beraldin, J.-A., Picard, M., El-Hakim, S., Godin, G., Valzano, V.,
Bandiera, A. and Latouche, C., 2002. Virtualizing a Byzantine

Figure 8: From the top: Textured rendering of a dataset com-
posed of 103 million LiDAR range samples and 6800 digital pho-
tographs. Another area of the model rendered using interactive
contour lines. Two bottom images: a third area of the model
first rendered using classical OpenGL shading with a raking light
source, then rendered using monochrome relative depth render-
ing.



Figure 10: Different snapshots taken from the Atelier3D interactive visualization software illustrating selected aspects of the Mona
Lisa: the global curvature of the wood panel, the wood grain structure, pictorial layer depth, and restored areas on the back of the panel.

Figure 9: Two representations of a 3D model build from pho-
togrammetry and shape from shading. Left: regular shading,
Right: relative depth analysis and histogram adjustments.

crypt by combining high-resolution textures with laser scanner
3D data. In: Proceedings of the 8th International Conference on
Virtual Systems and Multimedia, pp. 3–14.

Borgeat, L., Godin, G., Blais, F. and Lahanier, C., 2005. GoLD:
Interactive display of huge colored and textured models. In: Proc.
of SIGGRAPH 2005, Los Angeles, California.

Borgeat, L., Godin, G., Lapointe, J.-F. and Massicotte, P., 2004.
Collaborative visualization and interaction for detailed environ-
ment models. In: Proc. of the 10th International Conference on
Virtual Systems and Multimedia, Softopia Japan, Ogaki, Japan,
pp. 1204–1213.

Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F.
and Scopigno, R., 2004. Adaptive tetrapuzzles: efficient out-
of-core construction and visualization of gigantic multiresolu-
tion polygonal models. ACM Transactions on Graphics 23(3),
pp. 796–803.

Clark, J. H., 1976. Hierarchical geometric models for visible
surface algorithms. Commun. of the ACM 19(10), pp. 547–554.

El-Hakim, S., 2006. A sequential approach to capture fine geo-
metric details from images. In: ISPRS Commission V Sympo-
sium, Image Engineering and Vision Metrology, IAPRS, Dres-
den, Germany, pp. 97–102.

Fernando, R., 2004. GPU Gems: Programming Techniques, Tips
and Tricks for Real-Time Graphics. Pearson Higher Education.

Funkhouser, T. A. and Śequin, C. H., 1993. Adaptive display
algorithm for interactive frame rates during visualization of com-
plex virtual environments. In: Proceedings of ACM SIGGRAPH
93, Computer Graphics Proceedings, Annual Conference Series,
ACM, ACM Press, New York, pp. 247–254.

Garland, M. and Heckbert, P. S., 1998. Simplifying surfaces with
color and texture using quadric error metrics. In: Proceedings
IEEE Visualization ’98, IEEE Computer Society Press, pp. 263–
269.

Godin, G., Beraldin, J.-A., Taylor, J., Rioux, M., El-Hakim, S.,
Baribeau, R., Blais, F., amd J. Domey, P. B. and Picard, M., 2002.
Active optical 3D imaging for heritage applications. Computer
Graphics and Applications 22(5), pp. 24–35.

Godin, G., Lalonde, J.-F. and Borgeat, L., 2004a. Projector-based
dual-resolution stereoscopic display. In: IEEE Conference on
Virtual Reality 2004, pp. 223–224.

Godin, G., Massicotte, P. and Borgeat, L., 2004b. Foveated
stereoscopic display for the visualization of detailed virtual en-
vironments. In: Eurographics Symposium on Virtual Environ-
ments, Grenoble, France, pp. 7–16.

Hoppe, H., 1997. View-dependent refinement of progressive
meshes. In: Proceedings of ACM SIGGRAPH 97, Computer
Graphics Proceedings, Annual Conference Series, ACM, ACM
Press, New York, pp. 189–198.

Hoppe, H., 1999. New quadric metric for simplifiying meshes
with appearance attributes. In: Proceedings IEEE Visualization
’99, IEEE Computer Society Press, pp. 59–66.

Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D.,
Pereira, L., Ginzton, M., Anderson, S., Davis, J., Ginsberg, J.,
Shade, J. and Fulk, D., 2000. The Digital Michelangelo Project:



3D scanning of large statues. In: Proceedings of ACM SIG-
GRAPH 2000, Computer Graphics Proceedings, Annual Confer-
ence Series, ACM, pp. 131–144.

Mohen, J.-P., Menu, M. and Mottin, B., 2006. Mona Lisa: Inside
the Painting. Harry N. Abrams.

Niski, K., Purnomo, B. and Cohen, J., 2007. Multi-grained level
of detail using a hierarchical seamless texture atlas. In: SI3D ’07:
Proceedings of the 2007 symposium on Interactive 3D graphics
and games, ACM Press, New York, NY, USA, pp. 153–160.

Rusinkiewicz, S. and Levoy, M., 2000. QSplat: a multiresolu-
tion point rendering system for large meshes. In: Proceedings of
ACM SIGGRAPH 2000, Computer Graphics Proceedings, An-
nual Conference Series, ACM, ACM Press/Addison-Wesley Pub-
lishing Co., pp. 343–352.

Terrapoint, 2005. Terrapoint Inc. http://www.terrapoint.com/.

Yoon, S.-E., Lindstrom, P., Pascucci, V. and Manocha, D.,
2005. Cache-oblivious mesh layouts. ACM Trans. Graph. 24(3),
pp. 886–893.

Zwicker, M., R̈as̈anen, J., Botsch, M., Dachsbacher, C. and Pauly,
M., 2004. Perspective accurate splatting. In: GI ’04: Proceed-
ings of the Graphics Interface Conference, Canadian Human-
Computer Communications Society, pp. 247–254.


