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ABSTRACT:

Building 3D models is important in many applications, ranging from virtual visits of historical buildings, game and entertainment, to
risk analysis in partially collapsed buildings. This task is performed at different scales: city, buildings, indoor environments, objects
and using different sensors: cameras, 2D and 3D laser, etc. Moreover, different map representation have been considered: metric
(or feature based) 3D maps represented as a set of 3D points (plus color information), in contrast with maps represented as a set of
semantic structural elements (i.e., floors, walls, steps, stairs, etc.). In this paper we describe an approach to generate visually realistic
3D maps formed by semantic structural elements. The approach is suitable for indoor environments and integrates three different
sensors: a 2D laser range finder, a stereo camera, an inertial measurement unit (IMU). Data acquisition is automatically performed by
an autonomous mobile robot mounting such sensors on board. Model building is then achieved by using 2D SLAM techniques for
building 2D consistent maps, stereo vision and inertial navigation system to detect semantic elements. Stereo vision is also used to
extract textures of such elements. While the main objective of our research is to represent a 3D map as a set of 3D elements with their
appropriate texture, and to use a generative model to build the map starting from such primitives, in this paper we outline a system
doing this task and present some experiments to evaluate the impact of human interaction in the modelling process on increasing the
semantic modelling and the visual realism of the maps.

1 INTRODUCTION

Building 3D models is important in many applications, ranging
from virtual visits of historical buildings, to game and entertain-
ment, to risk analysis in partially collapsed buildings. Exist-
ing systems for building 3D representation of environments have
been developed at different scales: city, buildings, indoor envi-
ronments, objects, presenting many differences in the sensors and
in methods used to acquire data, in the techniques used to process
the data, and in the kind of result computed.

Many different sensors have been used for data acquisition. Cam-
eras are the main sensors, since they provide images that contain
a very high amount of information: geometry of the scene, col-
ors, textures, etc. However, these data are very difficult to ana-
lyze, since Computer Vision problems are still very challenging
in real, unstructured environments. To retrieve information about
the geometry of the environment, 2D and 3D Laser Range Finders
(LRF) are very useful since they provide very precise measure-
ments of the environment. In fact, mapping 2D or 3D environ-
ments with LRF has been an active research topic in the last year
(this problem is also known as Simultaneous Localization and
Mapping (SLAM)) and many systems have been demonstrated
to be very effective in this task (specially for 2D environments).
However, the use of 3D Laser Scanners is very expensive, while
using 2D LRF mounted on pan-tilt unit allows for scanning 3D
data, but it requires some time due to the movement of the pan

The methods used for data acquisition are mostly human driven.
Typically, sensors are mounted on a mobile vehicle (e.g., a car
driven by human around a city (Früh, 2004), an aerial vehicle, or
a mobile robot (Thrun et al., 2004)) that navigates through the en-
vironment to acquire data and reconstruct it. In some cases, some
form of autonomy is required by the mobile platforms, since the
operating scenario may be difficult to access by human operators.
For example, in a Search and Rescue mission, robots may need
to enter places that are not accessible to humans (for example,

for safety reasons) and the communication may not be available
at all times. Such robots thus need to acquire data autonomously
and to come back to the base station after the acquisition has been
completed.

One additional and important characteristic of these systems is
the way in which they represent the output map: metric (or fea-
ture based) 3D maps represented as a set of 3D points (plus color
information), in contrast with maps represented as a set of seman-
tic structural elements (i.e., floors, walls, steps, stairs, etc.).

The approach followed in this paper is to generate visually real-
istic 3D maps formed by semantic structural elements. The ap-
proach has been tested in indoor multi-level planar environments
and integrates three different sensors: a 2D laser range finder, a
stereo camera, and an inertial measurement unit (IMU). Data ac-
quisition is automatically performed by an autonomous mobile
robot mounting such sensors on board, model building is then
achieved by using 2D SLAM techniques for building 2D consis-
tent maps, stereo vision and inertial navigation system to detect
semantic elements, stereo vision to extract textures of such ele-
ments.

The paper is organized as follows. Section 2 describes related
work and compares our approach with previous research in this
field. Section 3 presents an overview of the proposed system,
and Sections 4 to 7 describe the main components of our system,
namely, 3D SLAM, semantic structure extraction, texture extrac-
tion and model generation. Section 8 shows some results of the
proposed system, and, finally, Section 9 draws some conclusions
and present ideas for future work.

2 RELATED WORK

Several approaches have been presented for 3D environment re-
construction, using different sensors (cameras, stereo cameras,



multiple 2D LRF, 3D LRF, and combinations of them). For ex-
ample, (Diebel et al., 2004) use active stereo vision for building
a 3D metric map of the environment, (Thrun et al., 2004, Früh,
2004) use two orthogonal 2D LRF to build 3D maps of indoor and
outdoor environments, while (Nüchter et al., 2005) use a 2D LRF
mounted on a tilt unit that is able to acquire a very precise 3D scan
of the environment with a relative cheap sensor, but it requires a
higher acquisition time due to the rotation of the laser. The gener-
ation of large 3D maps of portions of a city is considered in (Früh,
2004); data acquisition is performed through a truck equipped
with a horizontal 2D laser scanner (for localization), a wide an-
gle camera and a vertical 2D laser scanner for reconstructing the
building’s facades. Obstacles, such as trees, cars or pedestrians,
are removed considering their relative depth, while holes in the
facades arising from the presence of obstacles and from the pres-
ence of specular surfaces, are filled through interpolation. The
localization was achieved with the help of aerial images, thus in-
creasing the cost requirements of such a system. On the other
hand, approaches based on feature extraction and computer vi-
sion techniques have been proposed (e.g., MonoSLAM (Davi-
son et al., 2007)), providing for 3D feature-based maps. Outdoor
mapping has also been investigated. For example, in (Konolige
et al., 2006) the use of stereo vision and visual odometry has
been proposed for long distances outdoor navigation of a mo-
bile robot. All these approaches are focused on building metric
or feature based maps, either considering relative small environ-
ments to map or focussing on the navigation capabilities of an
autonomous platform.

Another set of works have instead focused on extracting seman-
tic features (mostly walls) from 3D data. Maps composed by
semantic structures are also called object maps (Thrun, 2002).
A first example has been given in (Iocchi et al., 2001), where
textured planes of the floor and the walls of an office-like en-
vironment have been extracted from stereo vision data; this ap-
proach exploits planar assumption and deals with loop closures
by assuming all orthogonal walls. The acquisition of multi-planar
maps has also been investigated in (Thrun et al., 2004), by us-
ing 2 orthogonal 2D laser range finders and Expectation Maxi-
mization Algorithm to extract planar features from 3D data. Also
this approach assumes that the robot is well localized. A simi-
lar approach has been proposed in (Nüchter et al., 2003), where
planar features such as walls, doors or floors are detected using
a method that mixes ICP and RANSAC. Labels are assigned to
such planes with a predefined semantic net that implements the
general knowledge about the scene. Also, a set of relational con-
straints such as those of parallelism, or perpendicularity, are pro-
duced by the labelling. After a simplification of the plane set,
where neighboring planes are merged, the set of planes is glob-
ally refined at the same time optimizing the point (i.e. data) to
plane distance and enforcing the semantic constraints introduced
in the labelling step. This method offers a solution that is suited
for indoor simple environments. However, scenes without many
regularities to exploit in the semantic labelling and in the succes-
sive optimization may represent a problem for this kind of solu-
tion. Finally, in (Biber et al., 2004) a mobile robot is equipped
with a panoramic camera and a 2D laser range finder. The pro-
cessing starts from the 2D map obtained with the laser scanner,
and features such as walls and the floor are extracted and finally
augmented with their own textures.

The approach described in this paper aims at combining the ro-
bustness and efficiency of 2D SLAM techniques with the need of
building 3D visually realistic maps of an environment. The main
idea is to consider a multi-level planar environment and to per-
form an off-line analysis of the 3D data, in order to cluster them
in many sets each belonging to a single plane. On each of these

sets of data coming from a planar environment 2D SLAM tech-
niques are applied and then these sub-maps are merged together
using visual odometry techniques. 3D semantic structures are ex-
tracted from the 2D maps and from stereo vision data, while color
images are used to retrieve texture of relevant parts of the envi-
ronment (e.g., the floor). Exploiting robustness and efficiency of
state-of-the-art 2D SLAM methods and of computer vision tech-
niques, the proposed approach can provide a 3D visual realistic
representation of large environments.

3 OVERVIEW

The system we have developed is based on a mobile robot that
carries different sensors for 3D data acquisition. After an explo-
ration phase, in which the robot collects and stores data from the
environment, these data are processed off-line to build a 3D rep-
resentation of the environment.

The robot used in the experiments is a Pioneer 3 equipped with an
on-board PC, a wireless connection to a base station, and 3 dif-
ferent sensors: a 2D SICK Laser Range Finder, a Videre Stereo
Camera, and an XSens IMU. The robot has software compo-
nents for autonomous exploration based on an on-line fast map-
ping approach (Calisi et al., 2005), and thus it can be operated
in three modalities: fully autonomous (i.e., the robot runs the
autonomous exploration algorithm), partial autonomous (i.e., the
user can specify target locations to reach and the robot is able
to go there), fully tele-operated (i.e., the robot is controlled by a
human operator through a wireless network connection).

For the purposes of 3D environment reconstruction described in
this paper, the main goal of the robot is to gather data from the
environment, while exploring it, and to store these data on a local
disk. The data will be processed off-line at a later stage, possibly
on another machine. More specifically, we store all the sensor
readings with a 10 Hz frequency (except for stereo images that
are acquired at 1 Hz): for each frame, we memorize 180 readings
for the 2D LRF, a pair of images from the stereo camera (color
left image and disparity image), and 6 values from the XSens
IMU. All these data are synchronized with a time-stamp that is
generated by the PC on board the robot.

In these experiments data have been acquired through autonomous
exploration, although other modalities would have been adequate
too. Further details on the data collected for the experiments are
reported in Section 8.

Our approach for off-line data processing is based on four mod-
ules that are executed in the described order and are responsible
for: 1) computing a 3D map of the environment as a set of 2D
maps connected together; 2) recognizing and extracting proper-
ties of 3D structural elements; 3) extracting textures of these ele-
ments; 4) generating a model of the environment. It is important
to notice that off-line execution is exploited by processing the
data sets multiple times, refining the environment representation
iteratively.

In the following, we will give a brief overview of the main system
components that are explained in details in the next sections.

• 3D-SLAM is realized as composition of two process: a) 1D
SLAM on the Z coordinate, under the assumption of multi-
planar environment this allows for determining the number
of planes present in the environment and to associate sensor
readings to each detected plane; b) several 2D SLAM pro-
cesses, one for each detected plan, using the corresponding



sensor readings as determined in the phase a). The rela-
tive poses among the different 2D maps are established with
some visual odometry steps that are executed from positions
belonging to different and adjacent planes. A multi-level 2D
map is thus obtained in this phase.

• Structural element extraction is performed on the 2D maps
in order to extract relevant structural elements (also called
objects) from the environment. Walls are detected by ap-
plying a Probabilistic Hough Transform detection on the 2D
maps, while 3D structures, like stairs, steps, ramps are de-
tected using a Neural Network classifier using stereo vision
3D data. The multi-level 2D map is then augmented by plac-
ing in it the recognized structural elements. In some cases,
such 3D information are used to connect different planes in
the map (e.g., stairs).

• Texture extraction for the semantic elements composing
the map is performed by ad-hoc procedures, possibly in-
volving user intervention. However, it is also possible to use
synthetic textures, that still make the world realistic, even
though they do not reproduce exactly the real environment.
In this step, color images from the stereo camera and the reg-
istration of the robot poses in the map, obtained as a result of
the SLAM process, are used to associate color information
to the geometry of the environment.

• Model Generation is achieved by using a simple script lan-
guage for describing objects and their properties to show in
the map. A script file is interpreted by a 3D viewer that al-
lows for navigating in the environment and to interact with
it, adding, removing and changing properties of objects.

4 3D SLAM THROUGH 1D + 2D SLAM

In our procedure, the first step to reconstruct a 3D environment
is that of acquiring its multi-level map. Having to explore the
environment with an autonomous robot, the problem is that of lo-
calizing the robot and at the same time acquiring the map. This
is the well known SLAM problem. The solutions proposed in
these last years efficiently solve the problem in the 2D situation,
thus retrieving the robot position and orientation on the plane and
acquiring the 2D map of the explored environment. However,
the described solution is not suited when dealing with non com-
pletely planar scenarios. In fact the SLAM problem has been gen-
eralized to the 3D case (see for example (Nüchter et al., 2006)).
Due to the increase in complexity, these solutions are difficult to
implement and tune, computationally demanding and not always
robust.

Not having to deal with a completely planar environment, we can-
not use only a 2D SLAM algorithm. Yet we do not need to use a
full 3D SLAM algorithm. Indeed, we can exploit the assumption
that the environment that we wish to reconstruct is piecewise pla-
nar. Our idea is that we can still use a robust 2D SLAM algorithm
(Grisetti et al., 2006) to acquire the map in a planar section of the
environment. But, to cope with the transitions between different
levels, we use the IMU sensor together with the stereo camera.
In particular the IMU is used to detect the transitions, while the
visual odometry is used to compute the movement of the robot in
this transition phase, where, otherwise, the 2D laser range finder
would have been useless.

Summarizing, we process the data as follows: 1) IMU is used to
detect plane-to-plane transitions; 2) visual odomotery is applied
to measure the displacement of two points when a transition oc-
curs; 3) 1D SLAM is performed to extract the number of planes

Figure 1: The ROLL and PITCH data coming from the IMU sen-
sor. The robot navigates in a planar environment except a single
small step (5cm) that the robot has to climb down and then up. In
correspondence with these events it is evident a variation in the
data coming from the IMU sensor.

and to cluster data in sub-sets each belonging to a single plane;
4) 2D SLAM is applied for each sub-set of data belonging to a
single plane; 5) 2D maps are aligned using visual odometry in-
formation computed before. These steps are described in details
in the rest of this section.

4.1 PLANE TRANSITION DETECTION

To detect a possible change in the plane we analyze data from
the IMU sensor. The IMU is collocated on the mobile robot, and
we use it to retrieve the ρ,σ Euler angles, respectively the roll
and pitch angles of the robot (in fact, other information would be
available, but they are not of interest in this application). An ex-
ample of the ρ and σ values provided by the IMU is reported in
figure 1. The data refer to a path in which the robot has first to
climb down and then climb up a small step (less than 5 centime-
ters). Even if the depth of the step is small, the data show how
clearly the sensor can be used to detect such a change. In fact,
it is enough to apply a threshold to the pitch angle σ (the pitch
is enough because our robot cannot move sideways) to detect a
change. It must be noted that this procedure is affected by false
positives. Indeed, when a robot need to overcome an obstacle on
its path, there might be a significant change of the σ value. This
will be taken into account in the 1D SLAM process by merging
planes at the same height (see below).

4.2 VISUAL ODOMETRY

In order to determine the movement of the robot while it is going
through a transition phase, we use a visual odometry technique
that processes the input images from the stereo camera mounted
on the robot. While the robot is in a transition phase, the data
coming from the scanner are not taken into account (thus also
preventing the 2D mapping algorithm to take into account the
non valid laser data when the robot is climbing over an obstacle).
Instead the data coming from the camera are used to determine
the movement of the robot.
The visual odometry technique that we have used is based on
a standard approach (Hartley and Zisserman, 2000). This pro-
cess is implemented by using a feature detector to identify feature
matches between two consecutive stereo images. Then triplets of
features are used to determine the 3D displacement of the camera
(and thus of the robot) with a RANSAC approach.



Feature detection is based on the well known KLT feature tracker
(Shi and Tomasi, 1994). For our visual odometry implementa-
tion, we consider 200 features tracked over consecutive frames.

To compute the rigid displacement between two consecutive frames
ft and ft+1, in a noise-less case, it would be enough to have three
feature associations over the two frames. Having to drop the
noise-less assumption, one might consider using a least square
method (Lorusso et al., 1995), possibly with more than three as-
sociations. Nevertheless, the presence of outliers would still rep-
resent a major problem that should be taken into account. In or-
der to do this, a RANSAC algorithm (Fischler and Bolles, 1981)
is first used to remove outliers. In particular, a set of candidate
transformations Ti from ft to ft+1 are calculated by randomly
sampling triplets of feature associations over the two frames. Each
transformation Ti is evaluated by calculating the residual dis-
tance

d(Ti) =
∑
〈α,β〉

(Tiα − β)2

where α is a generic feature of frame ft and β is the associated
feature in frame ft+1. The triplets with smallest residual distance
are chosen and optimized together to yield the final estimated
rigid transformation between the two frames.

Visual odometry process explained above is iterated for a small
number of frames (10 to 20 depending on the situation) that are
selected in such a way they cover the passage from one plane to
another. More specifically, by analyzing IMU data, we can select
two time steps: tS is the starting time of the change of level, i.e.,
the robot at time tS is on the first plane, tE is the ending time
of this process, i.e., the robot at time tE is on the second plane.
Then, we consider a set of intermediate frames within this time
interval.

It is important to observe here that using visual odometry for a
short time allows for ignoring the incremental error that is gener-
ated with this method. Moreover, we can further reduce such an
error, by using a bundle-adjustment approach, like the one pro-
posed in (Konolige and Agrawal, 2007), that considers not only
consecutive frames but also frames that are distant in time to im-
prove the quality of the solution.

4.3 1D SLAM

The multiplanar mapping could be handled as a series of 2D pla-
nar mappings if one could separate the data coming from each
of the planes and could know the relative position of one floor
level with respect to the others. The problem of calculating this
displacement can be termed 1D SLAM, since the unknown value
is principally the vertical position zt of the robot (and, as a con-
sequence, of the different planes). We can model the probelm
as

zt′ = zt + ∆z[t:t′] (1)

where ∆z[t:t′] is the displacement between zt and zt′ calculated
from the observations. The problem then becomes that of eval-
uating ∆z[t:t′]. Exploiting again the assumption, it is easy to
realize that for most of the times the value of ∆z[t:t′] for two
frames close in time ft and ft′ will be zero, since most of the
time the robot will be navigating a planar environment. There-
fore, it is sufficient to evaluate ∆z[t:t′] while a transition between
two planes is occurring. Transitions are detected by using IMU
data and measured through visual odometry, as explained before.
Therefore ∆z[t:t′] is modeled as

∆z[t:t′] =

{
0 if |σ| < threshold;

∆zVO[t:t′] otherwise.
(2)

where ∆zVO[t:t′] is the vertical component of the displacement of
the robot position between time t and t′ measured with visual
odometry and σ is the pitch of the robot measured with the IMU.
However, this modeling does not consider the loop closure prob-
lem, that arises when visiting for a second time a place. In the
1D SLAM problem, this means that the robot can visit the same
floor level twice. For example, a robot might explore a room,
leave the room by climbing down the stairs, explore another floor
level and then, possibly through another entrance, enter again the
already visited room by climbing up the stairs or a ramp. Being
the visual odometry, and as a consequence the ∆zVO[t:t′], affected
by noise, the zt will not be the same both times the robot visit
the same floor. A procedure to recognize if the floor level has
already been visited must be considered. In our case, not hav-
ing to deal with many different floors, we used a simple nearest
neighbor approach. In particular, a new floor gi is initialized af-
ter a change in the level has been detected at time t (and at the
beginning of the exploration, of course) and inserted in a set G.
The floor is assigned with the measured zt. Then each floor gi

is checked against every gj in G and if the distance is less than a
threshold, the two planes are merged and one of them is removed
from G. Though the simplicity of the approach, the procedure has
been found to successfully merge the same plane when explored
twice.

4.4 2D SLAM

For each plane gi in G, a 2D map is computed. In order to do
this, a SLAM algorithm (Grisetti et al., 2006) is applied on all
the laser data collected in each plane. Since the different planes
have been separated and opportunely merged, there is no need to
further develop the 2D SLAM method, that indeed can be applied
in its original formulation. The only thing that is necessary to
do is to opportunely reinitialize the robot position every time a
transition between two planes occurs. This can be done by simply
spreading the variance around the position estimated with visual
odometry. The spreading must be taken into account accordingly
to the extent of the stereo measurement noise.

4.5 MAPS ALIGNMENT

The final process is to algin the 2D maps by determining, for each
pair of adjacent maps, the displacement of two points in them.
Notice that, our assumption is to navigate in a multi-level planar
environment, with all parallel planes, thus only 4 parameters are
needed to register different 2D maps. Consequently, for each pair
of adjacent and consecutive 2D maps, the values ∆x,∆y,∆z,∆θ
computed by visual odometry are used to align the two maps and
a single multi-level map of the environment is thus computed.

5 DETECTING SEMANTIC STRUCTURES IN THE
ENVIRONMENT

Once a 2D map has been retrieved for each plane of the envi-
ronment, the next step is that of extracting significant structures.
In our case we concentrated mostly on two kind of structures,
namely walls and stairs, but others can be added with some ad-
hoc procedures. For the extraction of walls, a first approximation
of wall positions and sizes can be achieved looking for lines in
the 2D map of each floor. However, the 2D map coming from the
SLAM algorithm is a metric representation, and is not provided
with information about segment or line positions in it. These in-
formation need to be extracted using some post-processing. Ba-
sically, our approach is divided in three steps. Since in the metric
representation coming from the SLAM algorithm the low inten-
sity pixels represent walls, in the first step we apply a threshold to



distinguish the wall pixels from the other map pixels that refer to
an empty or unknown area. In the second step we used a proba-
bilistic Hough transform (Kiryati et al., 1991) that computes seg-
ments in the map. Finally, the third step deletes those segments
that are too close each other. In particular, the segments extracted
are first ordered by length, and those that are too short are not
taken into account. This is done to avoid to consider small ob-
stacles, such as chairs or tables, as walls. From the longest to the
shortest, each segment is enclosed in a rectangle that is as long as
the segment and with a width related to the sensor (in this case the
laser range finder) measurement error. When a new segment has
to be checked for inclusion, the overlapping area between its en-
closing rectangle and the rectangles enclosing the other segments
previously included is checked. If the relative overlapping area is
greater than a certain threshold, the segment is not included.

After the procedure has completed, there will be many holes among
the walls. This arises as a side effect of the first step of the pro-
cedure just described, when we decided to filter out the shortest
segments. To recover from this situation, the walls are connected
by their extremities. In particular, for each wall we determine its
two extremities we1 and we2 . Then, for each extremity wei , we
find the nearest extremity wej that does not belong to the same
wall and whose distance is smaller than the threshold that we
used before to filter out the short segments. An example of the
procedure just described is reported in Figure 2.

The second kind of semantic element extraction is performed by
training a neural network on 3D stereo data, for classifying five
kinds of structure in front of the robot: planar ground, stairs (up
and down), ramps (up and down). The neural net classifier is
very simple and has an accuracy of about 80%. Although this is
not very high, the possibility in our approach to interact with the
system in the model generation phase (see Section 7) allows for
discarding false positives and adding features not detected by this
module. Moreover, IMU data can be used to refine this result, for
example filtering out some of the false positives.

Finally, it must be noted that not all the human recognizable struc-
tures present in the environment are attempted for a reconstruc-
tion. That is to say that those that are not in our knowledge base
will not be taken into account. So far, we only reconstruct them in
the map as obstacles, by simply introducing in the model a small
3D column for each point in the 2D laser map that has not been
classified otherwise. In the future, we aim both at increasing the
number of objects that might be recognized by our application
and at reconstructing in the model with higher fidelity also those
objects that are not recognized.

6 TEXTURE EXTRACTION

In the current implementation of our system, the texture extrac-
tion phase includes only one automatic process for detecting the
floor texture; for the other elements user interaction is needed.

Texture of the ground floor is automatically extracted by analyz-
ing stereo data and using the registered pose of the robot in the
map. For each frame, given the robot pose at that time (com-
puted by the SLAM module) and the pose of the camera with
respect to the robot (that is fixed, and thus pre-computed), we ex-
tract from the stereo data the 3D point cloud of the scene relative
to the map. Selecting from this point cloud those pixels that are
on the ground does not return very precise result, due to noise
in computing stereo data, specially if the floor is poorly textured.
Therefore, we use 3D information to segment the image in two
parts: the floor and the remaining of the scene. To do this, we
consider that this process is performed only when the robot is

in a planar part of the environment (we know this from the 1D
SLAM procedure), and therefore it is possible to assume that the
closer part of the image is the floor. Consequently, we proceed
to examine vertical scan-lines from the bottom of the image stop-
ping the process at contact points. These contact points are either
pixels that has a value of the height from the ground higher than
a given threshold, or points corresponding to a 3D position in
the environment that corresponds to a wall or an obstacle in the
map. By connecting these contact points, we obtain a curve in
the image that delimits floor ground from the rest of the scene.
The pixels below this curve are then rectified (i.e., transformed in
the ground plan coordinate system) and shown on the map. The
texture of the floor extracted with our technique is shown in the
Figures 3 and 4.

The texture of other elements (walls, stairs, etc.) is extracted with
human interaction. The user interface we have developed allows
for selecting a position in the map and the system can display
the image taken by the robot near that position. In this way, ex-
tracting textures of the walls is very simple, since it only requires
the user to point a pose on the map and to select a region in the
corresponding image to be used as texture of that part of the wall.

Finally, synthetic textures can be used as well for all the elements
of the map. An example of maps produced by using only syn-
thetic textures is described in Section 8.

7 3D MODEL GENERATION

The 3D model generation is achieved in two steps: in the first step
the procedures described in the previous sections automatically
extract the model of the environment. Both because at the end
of this step there are still unmodelled structures and because we
want to allow the user to introduce objects that were not present
in the explored scenario, the model is subsequently modified with
some user interventions.
The purpose of our reconstruction is that of focusing on the se-
mantic of the environment structures. In other words, while we
do not want to disregard the metric aspects, our goal is that of
reconstructing the environment using as many as possible known
structures. This fact implies that the description of the environ-
ment can be easily parametrized. Roughly speaking, the envi-
ronment can be reconstructed by only specifying where to add
a particular structure, together with some specific parameters of
that structure. In order to do this, a language with a simple syntax
has been developed. The language offers the possibility of build-
ing, interacting and navigating the reconstructed world. This is
done including three sets of instructions:

• add/remove instructions: allow to insert or remove an ele-
ment in the environment. The instruction takes as arguments
the name chosen for the structure together with some pa-
rameters, such as those specifying the desired pose or some
specific parameters of the structure.

• set/change instructions: used to change the properties of
some structures already present in the environment, such as
moving an object or opening a door.

• navigate instructions: allow the user to navigate the envi-
ronment, changing the point of view or specifying a path to
follow in the reconstructed environment; these instructions
have effect only if used with a map viewer (see below), since
they do not modify the model

The first set of instructions is used by the automatic process to
generate the model, while the user can interact with it using all



Figure 2: The five steps of the procedure used to extract walls. The input to the procedure is the 2D map (a) coming from the SLAM
algorithm. In the next step a threshold is applied to distinguish wall pixels from those coming from empty or unknown areas. The
resulting image (b) is processed with a probabilistic Hough filter(c). In the forth step, overlapping segments are removed (d). Finally,
only close wall extremities are connected each others (e).

the instructions. In particular, our application is provided with
a user utility that shows the real images collected by the robot in
the exploration phase simultaneously with the views of the recon-
structed environment from the same point of observation. This al-
lows the user to easily modify the environment appropriately.This
utility is a component of the map viewer that has been built using
the openGL library to visualize the reconstructed environment.
In particular, the viewer is provided with an interpreter that reads
the instructions (automatically generated or provided by the user)
and draws a 3D scene accordingly. In section 8 examples of im-
ages and a link to a video of the reconstructed environment and
its views through the interpreter will be reported.

8 RESULTS AND DISCUSSION

The system described in the previous sections has been tested on
a real scenario integrating data from a 2D laser range finder, an
IMU sensor and a stereo camera. The scenario used for the exper-
iments is on 3 levels: our laboratory, an outside corridor (slightly
below the lab level), and the street level. Two different data sets
from the same environment have been acquired and processed.
The results are similar, so we will report only the ones from the
first data set. The size of the explored environment is 18 x 12 me-
ters and the total acquisition time has been 13 minutes. Storage
requirements are mainly due to the stereo vision data. In the cur-
rent implementation, we did not use a compressed format to store
stereo data, thus for each stereo image we store on a local disk
the left 640x480 color image and the disparity map at 1 frame
per second. The total amount of disk space needed to store stereo
data has been 1.12 GB, that is about 86.8 MB/min. Data from
the LRF and IMU sensors have been acquired at 10 Hz, but disk
space used for their storage is very small compared to the stereo
data.

As already mentioned, all the map reconstruction processing was
performed off-line. The only processing modules that were active
on-board were the autonomous exploration module based on a 2D
map generated through a simple scan matching method (Grisetti,
2006) and the stereo correlation algorithm to produce the dispar-
ity map.

The following figures show some results of our system. Since
the stereo camera was pointing down (about 25 degrees from the

horizon line), the reconstruction focusses on the ground level and
on the lower parts of the walls and other objects.

Figure 3 shows an example of automatic reconstruction. All the
processing in this case was done without the user interaction.
Videos showing a parallel navigation in the real and in the sim-
ulated environment, as well as additional information, extracted
data, and reconstructed environments are available on-line at
http://www.dis.uniroma1.it/∼iocchi/3DMG.

The map shown in Figure 3 is augmented with user interventions
by adding three desks, removing some small obstacles and low-
ering some walls according to the aspect of the real environment.
The result is reported in Figure 4. A video analogous to the previ-
ous one just described, but this time taking into account the user
augmented map, is available on the above mentioned website.

Finally, the map in Figure 5 is generated by using only synthetic
textures. Even if this representation does not reproduce exactly
the environment from which the data have been acquired, it is still
a realistic representation with a nicer appearance.

9 CONCLUSIONS AND FUTURE WORK

We have proposed a strategy to reconstruct a piecewise quasi-
planar scenario through the use of a laser range finder, a stereo
camera and a IMU. First the localization and mapping problem
are decomposed in a 2D SLAM method that makes use of the
laser data and a 1D method that makes use of the IMU and the
stereo camera. The reconstraction exploits the structuredness of
the environment, by searching for walls and stairs with ad-hoc
procedures. A refined reconstruction is achieved by allowing the
user to interact with the process. All the processing results in a
description of the environment specified by a set of simple state-
ments. The description is finally used to generate a model of the
environment. Future work will focus on developing other proce-
dures to recognize object in the environment, in order to reduce to
a minimum the user interaction. Also, a more advanced optimiza-
tion technique (namely bundle adjustment) is being implemented
in order to extract a better displacement estimation from the vi-
sual odometry data. Finally, we would like to integrate the gen-
erated models in other applications. For example, USARSim1 is

1http://usarsim.sourceforge.net/



Figure 3: Two views of the map automatically reconstructed.

Figure 4: Two views of the map obtained from the map in Figure 3 with some user interventions

Figure 5: Two views of the map obtained from the map in Figure 3 with some user interventions and using only synthetic textures.



a 3D robotic simulator based on a game engine that allows to run
robotic tasks in simulated 3D environments. At the moment, the
3D environments are defined by the user using CAD-like tools. In
this context, our objective is to automatically generate 3D maps
for the USARSim simulator, that are reproductions of real envi-
ronments.
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