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ABSTRACT: 
 
Linear array CCD - based panoramic cameras are being used for measurement applications. The elegant image acquisition mode 
and the high information content of those images make them suitable candidates for quantitative image analysis. For accurate 
measurements a sophisticated camera calibration is an important prerequisite. In our previous investigations we designed a sensor 
model for linear array CCD - based rotating panoramic cameras, which models substantial deviations from the pinhole model using 
additional parameters. The additional parameters are related to the camera itself, the configuration of camera, the turntable, and 
mechanical errors of the camera system during rotation (i.e. tumbling). We measured the tumbling of the SpheroCam by an 
inclinometer and also modeled tumbling in connection with the collinearity equations. We showed a subpixel level accuracy after 
tumbling modeling. Determining tumbling parameters with bundle adjustment needs many control points and this makes the use of 
this sensor a bit inconvenient. Using existing object space information, such as 3D straight lines can provide extra conditions for 
reducing the number of control points for calibration and orientation. So far straight line information has been mainly used for 
determining interior orientation and additional parameters with single frame cameras. Due to the eccentricity of the projection 
center from the rotation axis the acquired panoramic images do not have a single projection center. Therefore the formulations 
which have been used for single projection center cameras cannot be applied in this case. 
 
In this paper we give a new formulation for the processing of 3D straight lines in panoramic cameras. We show how 3D straight 
line information can be used in addition to tie points for calibration and orientation. We will present the results of our new 
investigations by using 3D straight lines as stochastic constraints in the bundle system for determining the tumbling parameters in 
addition to the other additional parameters. This allows us to do a full calibration and orientation without control points, which 
makes the use of the sensor more efficient. 

 
 

 1. INTRODUCTION 
 
With the development of digital technology, a new generation 
of dynamic rotating panoramic cameras was introduced. The 
principle of the operation is the same as with analogue rotating 
panoramic cameras. The imaging sensor is a CCD line, which is 
mounted on a turntable parallel to the rotation axis. A large 
linear array provides a large format size for the final image. The 
EYESCAN, jointly developed by German Aerospace Center 
(DLR) and KST Dresden GmbH and the SpheroCam, 
SpheronVR AG are two different products of linear array-based 
panoramic cameras.  
 
The EYESCAN camera as used in terrestrial photogrammetric 
applications was addressed in Scheibe et al., 2001. Schneider 
and Maas, 2003 and Amiri Parian and Gruen, 2004 have worked 
on the mathematical modeling of linear array-based panoramic 
cameras. Schneider and Maas, 2003 investigated a geometrical 
model for a prototype of the EYESCAN and they performed 
calibration by using a 3D testfield. They also performed 3D 
positioning using bundle block adjustment (Schneider and 
Maas, 2004). We worked on the mathematical model of general 
linear array-based panoramic cameras. We performed 
calibration and accuracy tests using a 3D testfield for the 
EYESCAN and the SpheroCam (Amiri Parian and Gruen, 
2003). We improved the mathematical model by modeling the 
mechanical errors of the rotating turntable, e.g. the tumbling, 

and we reported a subpixel level of accuracy and the 
improvement of the accuracy by a factor of two in the case of 
using tumbling parameters in the bundle adjustment process 
(Amiri Parian and Gruen, 2004a).  We investigated the minimal 
number of control points for selfcalibration and showed that 
with 3 control points selfcalibration is possible provided that the 
additional parameters of the mechanical errors are available in 
advance (Amiri Parian and Gruen, 2004b). We estimated the 
additional parameters which are related to mechanical errors by 
selfcalibration using many control points. However this is not 
practical in real projects. One solution could be to use object 
space constraints such as straight lines. 
 
Straight line features in camera calibration procedures have 
been used by Brown, 1971 who introduced the plumb-line 
method. Straight lines were used to derive symmetrical radial 
and decentering lens distortions. The principle behind this 
method is that the straightness of the lines in object space 
should be preserved in image space by perspective projection if 
an ideal camera is considered. Deviations of the projected 
straight line in image space are modeled by respective 
additional parameters which are mainly symmetrical radial and 
decentering lens distortion parameters. Kager and Kraus, 1976 
incorporated geometric constraints such as lines, coordinate 
differences, horizontal and space distances, different lines of 
planes and angles to improve the traditional bundle adjustment 
method. Hell, 1979 proposed line constraints and used it in the 



form of coplanarity conditions in the bundle adjustment. 
Heuvel, 1999 used parallel and perpendicular straight lines and 
estimated in addition to radial lens distortion parameters other 
parameters: shift of principal point and focal length (interior 
orientation parameters). Habib et al., 2004 investigated the 
possibility of using straight lines for calibration and orientation. 
They used directly the model of 3D straight lines in object 
space. 
 
After our investigation on sensor modeling and accuracy tests 
we are also interested in to do camera calibration with no 
control points at all or without using more control points than 
needed for minimal constraints datum definition by means of 
3D straight line information. 
 
 

2. PANORAMIC IMAGING 
 
Several techniques have been used for panoramic imaging. 
Mosaicking/stitching of a rotated frame-CCD camera, mirror 
technology including single mirror and multi mirrors, near 180 
degrees with large frame cameras or one shot with fish-eye lens 
and recently a new technology of creating high resolution 
panoramic images by rotating a line-CCD camera are some 
known methods for panoramic imaging. Up to now, these 
techniques have mainly been used for pure imaging purposes, 
such as indoor imaging, landscape and cultural heritage 
recording, tourism, advertising, image-based rendering, and 
recently for efficient Internet representations. However, some of 
these techniques are used in computer and robot vision for 
navigation applications due to the large field of view, but none 
of them is used for precise measurements and efficient 3D 
reconstruction. 
 
Among the mentioned techniques for panoramic imaging, the 
linear array-based panoramic camera has the possibility to 
produce a high-resolution panoramic image (more than 300 
Mpixels) in one turn. The camera principle of this technique 
consists of a linear array, which is mounted on a high precision 
turntable parallel to the rotation axis. By rotation of the 
turntable, the linear array sensor captures the scenery as a 
continuous set of vertical scan lines. In this investigation we 
used the SpheroCam from SpheronVR AG. In previous works 
(Amiri Parian and Gruen 2003, 2004a, 2004b) we have also 
used and calibrated the SpheroCam. 
 
2.1. SpheroCam 
 
The structure of the SpheroCam (Figure 1) includes three parts: 
a camera head, an optical part which is compatible with 
NIKON-lenses, and a DC motor to rotate the linear array.  The 
SpheroCam is specially designed for use with a fish-eye lens, 
which has a near 180° vertical field of view. When it rotates 
around its vertical axis, it captures a complete spherical image. 
The linear array consists of 5300 pixels. It scans 39270 columns 
during one rotation with a 50-mm lens. The final image has 
approximately 200 Mpixels resolution. For more details on 
specifications of the camera see Amiri Parian and Gruen, 2003 
and 2004a. 
 

3. SENSOR MODEL 
 
For the sake of simplicity of the formulations, we have defined 
four coordinate systems as follows:  
 

1. Pixel coordinate system 
2. Linear array coordinate system 

3. 3D auxiliary coordinate system 
4. 3D object coordinate system 

 
Figure 2 shows these coordinate systems and Figure 3 the pixel 
coordinate (i, j) system in which the original image observations 
are stored. 
 

 
Figure 1. The digital terrestrial panoramic camera 
SpheroCam. 

 

Figure 2. The object coordinate (X, Y, Z), auxiliary 
coordinate (X’, Y’, Z’) and linear array (x, y, z) coordinate 
systems. 

 

 
Figure 3. The pixel coordinate system (i, j). 

 
The functional model for an ideal sensor (Amiri Parian and 
Gruen, 2003), which shows principally the relation of the four 
coordinate systems to each other, becomes: 
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where, 
 

hA ……………. Resolution of rotation 

vA ……………. The pixel size of the linear array 
c ……………... Camera constant 
N ……………. The number of rows or number of pixels 

in the linear array 

zR ……………. 3D rotation matrix around Z axis 
P ………….…. Transformation matrix. From the linear 

array to the auxiliary coordinate system 
),,( cyx − …….. Coordinates of image points in the linear 

array coordinate system 
λ …………….. Scale factor  

kwM ,,ϕ
………… Rotation matrix 

),,( 000 ZYX ….. Location of the origin of the auxiliary 
coordinate system in the object space 
coordinate system 

 
Systematic errors will disturb the ideal sensor model. For the 
linear array-based panoramic cameras the most important ones 
with a distinct physical meaning are: 
 
1. Lens distortion 
2. Shift of principal point 
3. Camera constant 
4. Tilt and inclination of the linear array with respect to the 

rotation axis 
5. Eccentricity of the projection center from the origin of the 

auxiliary coordinate system 
6. Resolution of rotation 
7. Mechanical errors of turntable during rotation, including 

tumbling and uneven rotation of the turntable 
 
We formulated additional parameters for the modeling of the 
systematic errors and added them to the sensor model. They can 
be divided into four different groups. The first is related to the 
camera head and optics (parameters of classes 1, 2 and 3). The 
second group of parameters (Figure 4) is related to the 
configuration of the camera head and the plane of the turntable 
(parameters of classes 4 and 5). The third group is related to the 
turntable itself (the parameter of class 6). The fourth group 
refers to the mechanical errors of the turntable, tumbling, while 
the camera rotates (parameters of class 7). 
 
One of the main systematic errors of the camera system is 
tumbling, resulting from the mechanical properties of the 
instrument and mainly caused by an incomplete shape of ball 
bearings and the contacting surfaces (Matthias, 1961). It is 
affected by the rotation around the vertical axis and shows its 
effect as a change of the exterior orientation of the camera head 
during rotation. One of the main effects of the tumbling is the 
moving of the origin of the auxiliary coordinate system during 
rotation (Figure 5). For more detailed information on the 
mathematical modeling of the tumbling see Amiri Parian and 
Gruen, 2004a. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Additional parameters of the configuration of the 
camera on the turntable. (a) Eccentricity (ex, ey), (b) the tilt 
of the linear array (lx), (c) the inclination of the linear array 
with respect to the rotation axis (lz). 



 
Figure 5. The effect of tumbling: The movement of the 
origin of the auxiliary coordinate system. 

 
 

4. STRAIGHT LINE MODELING  
 
The straight line modeling for the case of concentric panoramic 
cameras is the same as the case of single-projection center 
cameras. This case has been already studied in Habib et al., 
2000. We used the same concept but applied another 
formulation with the advantage that we define a weight for each 
constraint. Each constraint can be treated as a stochastic 
condition equation. This gives ability to compensate any small 
deviation of the 3D straight line from straightness by adjusting 
the weights. 
 
A 3D straight line in object space is defined by two distinct 
points A and B (Figure 6). These points are the intersected rays 
of the corresponding points in different images. For example, 
the ray intersection of the image point a1 and a2 is an object 
point A. In the case of an ideal panoramic camera (concentric 
and with no systematic errors) the projected 3D straight line is 
cylindrical section (a part of circle or ellipse) and for the ideal 
single frame camera it is a straight line. The intermediate rays 
(V
r

) of the segment line AB should be coplanar with the plane 
defined by 1V

r
 and 2V

r
 (Figure 7). The coplanarity is formulated: 
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In which ×  and . are cross and inner (dot) products 
respectively. We give another formulation in form of equation 
(3), which formulates the distance of a point from a plane. 
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In which stands for the absolute value, 

dcba ,,, …. Parameters of the plane defined by 1V
r

 

and 2V
r

. The first three parameters are the 
elements of the normal to the plane. The 
plane equation is dcZbYaX =++ . 

ZYX ,, ….. Coordinates of V
r

. 

s ………….. Distance of the image point from the 
plane which is defined by 

1V
r  and 

2V
r . 

 
Equation (3) can be treated as an observation equation and in 
the optimization procedure s  should be minimized. The 
deviation of the 3D straight line from the straightness and the 
precision of the image line observations together can be defined 
as the precision of s . This will define the initial weight value 
and better weights can be estimated after adjustment by 
computing the cofactor matrix of the adjusted observations. 
 
These equations cannot be applied to multi-perspective center 
images, for example to a panoramic camera with large 
eccentricities of the projection center. In these cases the 
incoming rays of the 3D straight line span a surface which is not 
a plane. Figure 8 shows this surface. The projected 3D straight 
lines in image space in this case produce a modulated sine wave 
function. 
 

 
Figure 6. Defining a straight line by the intersection of rays 
of two distinct corresponding points in different images. 
The projection centers of the images are denoted by PC1 
and PC2. 

 

 
Figure 7. Coplanarity condition, the concept of the modeling 
3D straight line for single frame and concentric panoramic 
cameras.  



 

 
Figure 8. Multi-projection center images. Two different 
views of the projected 3D straight line in image space. The 
imaged line is a part of a modulated sine wave function. The 
surface created by the rays of the 3D straight line is not a 
plane. 

 
Figure 9. Defining a 3D straight line L by the intersection 
rays of two distinct corresponding points in different 
panoramic images. 

 
Similar to the previous definition of a 3D straight line, for the 
case of multi-projection center images a 3D straight line is 
defined based on the intersection rays of two distinct 
corresponding points in image space (Figure 9). 
 
The mathematical model of 3D straight line is based on the 
Euclidian distance, the same as equation (3). In this case the 
minimum distance of the lines Li and L (see Figure 10) defines 
the stochastical condition equation (4). Inclusion of the equation 
(4) with other observation equations in the Least Squares 
adjustment procedure gives the solution.  
 

s = minimum distance (L, Li)  (4) 

 
Figure 10. Minimum Euclidian distance of Li and L, the 
concept of modeling the 3D straight line for multi-
projection center images. The line Li is defined by O and c. 
O is the location of the projection center. C is a point on the 
3D straight line and c is the image of C (O, C and c are 
collinear). See Figure 9 for the definition of the 3D straight 
line L.  

 
For the formulation of equation (4) the weights can be defined 
based on the accuracy of the image line measurements and the 
deviations from a 3D perfect straight line.  
 
We examined both formulations for panoramic cameras and in 
the next section we report the result of the 3D straight line 
modeling based on equation (4). 
 
 

5. RESULTS 
 
We show the effects of mechanical errors, especially the 
tumbling. We also analyze the effect of tumbling modeling in 
object space by an accuracy test. Then we use 3D straight line 
constraints in addition to tie points for estimating all additional 
parameters including tumbling parameters, in a joint bundle 
adjustment procedure.  
 
5.1. Camera calibration for SpheroCam 
 
The camera calibration was performed using a testfield (Figure 
11) with specifications given in Table 1. We established a 
testfield with 96 circular targets at our Institute and used it for 
the calibration of the SpheroCam. The testfield was measured 
with a Theodolite with mean precision of 0.3, 0.3, 0.1 mm for 
the three coordinate axes (X, Y, Z). The camera calibration was 
performed by the additional parameters mentioned in chapter 3.  
 
For the analysis of the additional parameters (to find the most 
influential parameters and those which are stable under the 
given network condition) we added step by step each parameter 
to the previous stage of the calibration and used the correlations 
for the stability checking. Table 2 shows the results of the 
selfcalibration after step by step adding additional parameters to 
the model. 
 
In the last step, 3 parameters were used for tumbling modeling 
and 3 parameters for an uneven rotation modeling of the 
turntable (the tumbling and uneven rotation were modeled by 
sine curve functions with three parameters for each one: 
amplitude, period and phase). The a posteriori variance of unit 



weight at the final level is 0.65 pixel (5.2 microns). It shows an 
improvement of the model by a factor of 2 with respect to the 
previous step of selfcalibration (without mechanical errors 
modeling). 

 
Table 1. Specifications of the panoramic camera testfield  

Measurement instrument Theodolite (TC2002) 

Number of control points 96 

Dimension of the network 
(X, Y, Z) 15, 12, 3 (meters) 

Mean/Max STD of control 
points (X,Y,Z) 

0.3/0.9, 0.3/0.8, 0.1/0.3 
(mm) 

Depth and lateral precision 0.32, 0.22 (mm) 

 

Figure 11. A 3D testfield for the calibration of panoramic 
cameras. 

 

 
(a) 

 
(b) 

Figure 12. Image space residuals of image point 
observations. (a) Without tumbling modeling and (b) with 
tumbling modeling. 

 
Figure 12 shows the image point residuals in image space for 
the two last steps of selfcalibration. However, the systematic 
patterns of the residuals has not been completely removed in the 
last step, but the size of the residual vectors are significantly 
reduced. The remaining systematic errors are due to non-
modeled mechanical errors of the camera. 

Table 2. Effect of additional parameters to the sensor 
model. 

Parameters 0σ̂ [pixel] 

Exterior orientation (6 parameters) 184.4 
Resolution of rotation (1 parameter) 11.4 
Camera constant, the shift of principal point 
and radial lens distortion (4 parameters) 2.5 

Eccentricity of projection center 
(1 parameter) 2.0 

Configuration of linear array with respect to 
turntable (3 parameters) 1.3 

Tumbling and uneven rotation modeling 
(6 parameters)  0.65 

 
5.2. Accuracy test 

 
An accuracy test was performed for SpheroCam by block 
triangulation using 4 camera stations. The datum was defined by 
the inner constraints method using 87 control points using the 
same points as checkpoints.  
 
Figure 13 shows the fitting accuracy of checkpoints. The pattern 
of residuals in object space shows a systematic trend and an 
incomplete sensor modeling. The reason is that the 
mathematical model cannot interpret the physical behavior of 
the dynamic camera system. To show the effect of the 
mechanical errors modeling, the tumbling and uneven rotation 
of the turntable parameters were added to the sensor model and 
the accuracy test was performed under the same conditions. The 
tumbling parameters in this case were computed in advance by 
bundle adjustment and using all available control points. 
Comparison of these parameters from 4 different camera 
stations implies that none of the parameters is block-invariant. 
However, some of them are close to be block-invariant, 
especially the periods of sine curve functions. 
 
The summary of the adjustment results is in Table 3 for both 
mentioned cases. The RMS error from checkpoints before 
tumbling modeling are 9.9, 10.1 and 2.5 mm and with 
comparison to the standard deviations are too large. After 
tumbling modeling the RMS error of checkpoints are 1.7, 1.5 
and 0.8 mm for X, Y and Z coordinate axes, which are in good 
agreement with the standard deviations, and show the effect of 
the mechanical errors modeling. Compared to the case when 
mechanical errors were not modeled we see an improvement of 
the accuracy by a factor of more than 4, especially for the depth 
(X and Y) axes. 
 

Table 3. Results of accuracy test 

Number of control/checkpoints 87 

Before tumbling modeling 

RMSE from checkpoints (X,Y,Z) 
(mm) 9.9, 10.1, 2.5 

STD of checkpoints (X,Y,Z) (mm) 3.4, 2.7, 1.2 

After tumbling modeling 

RMSE from checkpoints (X,Y,Z) 
(mm) 1.7, 1.5, 0.8 

STD of checkpoints (X,Y,Z) (mm) 1.3, 1.1, 0.4 

 



 

 
Figure 13. Residuals of checkpoints in object space (fitting 
accuracy) without tumbling modeling. 

 

 
Figure 14. Residuals of checkpoints in object space (fitting 
accuracy) after tumbling modeling. 

 
Figure 14 shows the object space residuals for checkpoints 
along the depth (X and Y) axes. By comparison of this Figure 
with Figure 13, the effect of the mechanical error modeling on 
removing the systematic errors is obvious. However, some local 
systematic errors can still be seen in the object space residuals. 
 
5.3. Block adjustment and accuracy test using 3D straight 
line constraints 
  
Due to the instability of the normal equations system of the 
bundle block adjustment, the parameters of the mechanical 
errors of the turntable cannot be estimated based on minimal 
constraints datum. In this part we show how by adding extra 
constraints to the observation equations of the sensor model 
these parameters can be estimated with minimal constraints 
datum. For the accuracy test we defined the datum with inner 
constraints using all available control points. We use the same 
images as under section 5.3. 
 
The additional constraints that we use are 3D straight lines. The 
observations of the 3D straight lines were provided by existing 
features in the workspace area. In this investigation we used for 

example the borders of the existing desks to define 3D straight 
lines in object space (Figure 15). Assuming the ideal panoramic 
sensor, the projected straight lines should be a part of modulated 
sine curve function, since the geometry of the image is 
cylindrical. Any deviation of the projected straight line in the 
image space from the sine curve function should be modeled by 
additional parameters. The borders of the desks in the images 
were measured by subpixel precision after chaining the 
extracted edges by a Canny edge detector (Figure 16).  
 
The corresponding edge points in image space were recovered 
by intersecting the related straight line edge segments. These 
points were introduced as new points in the bundle block 
adjustment for defining the 3D straight line in the object space. 
 
The bundle block adjustment was performed with inner 
constraints datum. 87 checkpoints are available for accuracy 
analysis. 2 parameters (periods of sine curve functions) out of 6 
parameters which model the mechanical errors of the turntable 
were considered as block-invariant parameters. 8 straight lines 
in object space were defined to be used as constraints and 
measured in 4 panoramic images. The average length of the 
projected straight lines in the images is 400 pixels. 

 

 

Figure 15. Borders of the desks were used as 3D straight 
lines in object space. 

 

Figure 16. Extracted edges (subpixel) of borders of the 
desks after removing extra edges.  

 
Table 4 shows the summary of the bundle adjustment 
computation. The RMS error from checkpoints compared with 
respect to RMS errors of Table 3 shows that the estimation of 
additional parameters was done successfully. However, there 
are some differences between the RMS values in Table 3 (after 
the tumbling modeling) and Table 4. Because we assumed that 
2 parameters of the mechanical errors modeling (periods of sine 
curve functions) are block-invariant parameters whereas, as 
mentioned in the previous section they are not block-invariant. 
Due to the instability of the adjustment computation it was not 
possible to define those parameters as separate parameters for 
each image. Figure 17 shows the 3D straight lines which were 
used as constraints and the fitting accuracy of checkpoints in the 
object space. 
 



Table 4. Bundle adjustment using 3D straight lines in 
addition to tie points (datum via inner constraints) 

Number of checkpoints 87 
Number of 3D straight lines 8 
RMSE from checkpoints (X,Y,Z) (mm) 2.2, 1.6, 0.9 
STD of checkpoints (X,Y,Z) (mm) 1.0, 0.8, 0.3 

 

Figure 17. Residuals of checkpoints in object space (fitting 
accuracy). In this case the mechanical parameters of the 
turntable including tumbling parameters were estimated by 
bundle adjustment. 

 
6. CONCLUSIONS 

 
We gave a new formulation for the modeling of 3D straight 
lines as stochastic condition equations in bundle block 
adjustment for multi-projection center images. The formulation 
is in general form and can be applied to every camera of the 
same kind.  
 
According to our results, orientation, calibration and accuracy 
test were performed successfully. All the additional parameters, 
especially the mechanically induced parameters (tumbling) of 
the panoramic camera were estimated successfully with the 
exception that 2 parameters (period of sine curve functions) 
could not be determined separately for each image. This is a 
preliminary result of using 3D straight lines in bundle 
equations.  
 
With the proposed method, additional parameters can be 
estimated without using more control points than needed for 
defining a datum. It makes the use of the sensor more efficient 
in practice.  
 
Our further research will be on the problem of the First Order 
Design (FOD) for panoramic cameras. We are also interested in 
3D object reconstruction using panoramic cameras. 
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