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ABSTRACT

We consider calibration and structure-from-motion tasks for a previously introduced, highly general imaging model, where cameras
are modeled as possibly unconstrained sets of projection rays. This allows to describe most existing camera types (at least for those
operating in the visible domain), including pinhole cameras, sensors with radial or more general distortions, and especially panoramic
cameras (central or non-central). Generic algorithms for calibration and structure-from-motion tasks (absolute and relative orientation,
3D point triangulation) are outlined. The foundation for a multi-view geometry of non-central cameras is given, leading to the formula-
tion of multi-view matching tensors, analogous to the essential matrix, trifocal and quadrifocal tensors of perspective cameras. Besides
this, we also introduce a natural hierarchy of camera models: the most general model has unconstrained projection rays whereas the
most constrained model dealt with here is the central one, where all rays pass through a single point.

1 INTRODUCTION
Many different types of cameras including pinhole, stereo, cata-
dioptric, omnidirectional and non-central cameras have been used
in computer vision and photogrammetry. Most existing camera
models are parametric (i.e. defined by a few intrinsic parameters)
and address imaging systems with a single effective viewpoint
(all rays pass through one point). In addition, existing calibration
or structure-from-motion procedures are often taylor-made for
specific camera models, see examples e.g. in (Barreto & Araujo,
2003; Gruen & Huang, 2001; Hartley & Zisserman, 2000; Geyer
& Daniilidis, 2002).
The aim of this work is to relax these constraints: we want to pro-
pose and develop calibration and structure-from-motion methods
that should work for any type of camera model, and especially
also for cameras without a single effective viewpoint. To do so,
we first renounce on parametric models, and adopt the following
very general model: a camera acquires images consisting of pix-
els; each pixel captures light that travels along a ray in 3D. The
camera is fully described by (Grossberg & Nayar, 2001):

• the coordinates of these rays (in a local coordinate frame).
• the mapping between rays and pixels; this is basically a sim-

ple indexing.

This is of course an idealistic model; other aspects, e.g. pho-
tometry and point-spread function are described in (Grossberg &
Nayar, 2001). This general imaging model allows to describe vir-
tually any camera that captures light rays travelling along straight
lines. Examples are (cf. figure 1):

• a camera with any type of optical distortion, e.g. radial or
tangential.

• a camera looking at a reflective surface, e.g. as often used
in surveillance, a camera looking at a spherical or otherwise
curved mirror (Hicks & Bajcsy, 2000). Such systems, as op-
posed to central catadioptric devices using parabolic or hy-
perbolic mirrors (Baker & Nayar, 1999; Geyer & Daniilidis,
2000), do not usually have a single effective viewpoint.

• multi-camera stereo systems: put together the pixels of all
image planes; they “catch” light rays that do not travel along
lines that all pass through a single point. Nevertheless, in the
above general camera model, a stereo system (with rigidly
linked cameras) is considered as a single camera.

Figure 1: Examples of imaging systems. (a) Catadioptric system.
Note that camera rays do not pass through their associated pix-
els. (b) Central camera (e.g. perspective, with or without radial
distortion). (c) Camera looking at reflective sphere. This is a non-
central device (camera rays are not intersecting in a single point).
(d) Omnivergent imaging system (Peleg 2001; Shum 1999). (e)
Stereo system (non-central) consisting of two central cameras.

• other acquisition systems, many of them being non-central,
see e.g. (Bakstein, 2001; Bakstein & Pajdla, 2001; Neuman
et al., 2003; Pajdla, 2002b; Peleg et al., 2001; Shum et al.,
1999; Swaminathan et al., 2003; Yu & McMillan, 2004),
insect eyes, etc.

In this article, we first review some recent work on calibration
and structure-from-motion for this general camera model. Con-
cretely, we outline basics for calibration, pose and motion esti-
mation, as well as 3D point triangulation. We then describe the
foundations for a mult-view geometry of the general, non-central
camera model, leading to the formulation of multi-view match-
ing tensors, analogous to the fundamental matrices, trifocal and
quadrifocal tensors of perspective cameras. Besides this, we also
introduce a natural hierarchy of camera models: the most gen-
eral model has unconstrained projection rays whereas the most
constrained model dealt with here is the central model, where all
rays pass through a single point. An intermediate model is what
we term axial cameras: cameras for which there exists a 3D line
that cuts all projection rays. This encompasses for example x-
slit projections, linear pushbroom cameras and some non-central
catadioptric systems. Hints will be given how to adopt the multi-
view geometry proposed for the general imaging model, to such
axial cameras.



The paper is organized as follows. A hierarchy of camera models
is proposed in section 2. Sections 3 to 5 deal with calibration,
pose estimation, motion estimation, as well as 3D point triangu-
lation. The multi-view geometry for the general camera model
is given in section 6. A few experimental results are shown in
section 7.

2 CAMERA MODELS
A non-central camera may have completely unconstrained pro-
jection rays, whereas for a central camera, there exists a point
– the optical center – that lies on all projection rays. An inter-
mediate case is what we call axial cameras, where there exists
a line that cuts all projection rays – the camera axis (not to be
confounded with optical axis). Examples of cameras falling into
this class are:
• x-slit cameras (Pajdla, 2002a; Zomet et al., 2003) (also called

two-slit or crossed-slits cameras), and their special case of
linear pushbroom cameras (Hartley & Gupta, 1994). Note
that these form a sub-class of axial cameras, see below.

• stereo systems consisting of 2 central cameras or 3 or more
central cameras with collinear optical centers.

• non-central catadioptric cameras of the following construc-
tion: the mirror is any surface of revolution and the optical
center of the central camera (can be any central camera, i.e.
not necessarily a pinhole) looking at the mirror lies on its
axis of revolution. It is easy to verify that in this case, all
projection rays cut the mirror’s axis of revolution, i.e. the
camera is an axial camera, with the mirror’s axis of revolu-
tion as camera axis. Note that catadioptric cameras with a
spherical mirror and a central camera looking at it, are al-
ways non-central, and are actually always axial cameras.

These three classes of camera models may also be defined as:
existence of a linear space of d dimensions that has an intersec-
tion with all projection rays. In this sense, d = 0 defines central
cameras, d = 1 axial cameras and d = 2 general non-central
cameras.
Intermediate classes do exist. X-slit cameras are a special case of
axial cameras: there actually exist 2 lines in space that both cut
all projection rays. Similarly, central 1D cameras (cameras with
a single row of pixels) can be defined by a point and a line in
3D. Camera models, some of which do not have much practical
importance, are summarized in table 1. A similar way of defining
camera types was suggested in (Pajdla, 2002a).
It is worthwhile to consider different classes due to the following
observation: the usual calibration and motion estimation algo-
rithms proceed by first estimating a matrix or tensor by solving
linear equation systems (e.g. the calibration tensors in (Sturm &
Ramalingam, 2004) or the essential matrix (Pless, 2003)). Then,
the parameters that are searched for (usually, motion parameters),
are extracted from these. However, when estimating for example
the 6×6 essential matrix of non-central cameras based on image
correspondences obtained from central or axial cameras, then the
associated linear equation system does not give a unique solution.
Consequently, the algorithms for extracting the actual motion pa-
rameters, can not be applied without modification.

3 CALIBRATION
3.1 Basic Approach
We briefly review a generic calibration approach developed in
(Sturm & Ramalingam, 2004), an extension of (Champleboux
et al., 1992; Gremban et al, 1988; Grossberg & Nayar, 2001),
to calibrate different camera systems. As mentioned, calibration
consists in determining, for every pixel, the 3D projection ray as-
sociated with it. In (Grossberg & Nayar, 2001), this is done as
follows: two images of a calibration object with known structure

Points/lines cutting rays Description
None Non-central camera
1 point Central camera
2 points Camera with a single

projection ray
1 line Axial camera
1 point, 1 line Central 1D camera
2 skew lines X-slit camera
2 coplanar lines Union of a non-central 1D

camera and a central camera
3 coplanar lines without Non-central 1D camera
a common point

Table 1: Camera models, defined by 3D points and lines that have
an intersection with all projection rays of a camera.

are taken. We suppose that for every pixel, we can determine the
point on the calibration object, that is seen by that pixel1. For each
pixel in the image, we thus obtain two 3D points. Their coordi-
nates are usually only known in a coordinate frame attached to the
calibration object; however, if one knows the motion between the
two object positions, one can align the coordinate frames. Then,
every pixel’s projection ray can be computed by simply joining
the two observed 3D points.
In (Sturm & Ramalingam, 2004), we propose a more general ap-
proach, that does not require knowledge of the calibration ob-
ject’s displacement. In that case, three images need to be taken
at least. The fact that all 3D points observed by a pixel in differ-
ent views, are on a line in 3D, gives a constraint that allows to
recover both the motion and the camera’s calibration. The con-
straint is formulated via a set of trifocal tensors, that can be esti-
mated linearly, and from which motion, and then calibration, can
be extracted. In (Sturm & Ramalingam, 2004), this approach is
first formulated for the use of 3D calibration objects, and for the
general imaging model, i.e. for non-central cameras. We also
propose variants of the approach, that may be important in prac-
tice: first, due to the usefulness of planar calibration patterns, we
specialized the approach appropriately. Second, we propose a
variant that works specifically for central cameras (pinhole, cen-
tral catadioptric, or any other central camera). More details are
given in (Sturm & Ramalingam, 2003).
This basic approach only handles the minimum number of im-
ages (two respectively three, for central respectively non-central
cameras). Also, it only allows to calibrate the pixels that are
matched to the calibration object in all images. Especially for
panoramic cameras, complete calibration with this approach is
thus very hard (unless an “omnidirectional” calibration object is
available). Recently, we have thus developed an approach that
deals with these drawbacks; it handles any number of images and
also allows to calibrate image regions that are not covered by the
calibration object in all images. This approach is described in the
next paragraph.

3.2 General Approach
We propose two ideas to overcome the above mentioned limita-
tions of our basic calibration approach. First, we have recently
developed a method along the lines of (Sturm & Ramalingam,
2004) that can use more than the minimum number of images.
This method can not be described in full detail here; it will be
given in a future publication. This method nevertheless has the
drawback of only allowing to calibrate image regions that are
covered by the calibration object in all images used.
Our second idea is relatively straightforward. We first perform

1This can be achieved for example by using a flat screen as calibration
“grid” and taking images of several black & white patterns that together
uniquely encode the position of pixels on the screen.



Figure 2: Examples of image regions corresponding to different
images of calibration objects. Left: 23 images of calibration ob-
jects with a fisheye camera. Right: 24 images with a spherical
catadioptric camera.

an initial calibration using our basic approach. This only allows
to calibrate an image region that is covered by the calibration ob-
ject in all images used. We then extend the calibration to the rest
of the image, as follows. For each image in which the calibra-
tion object covers a sufficiently large already calibrated region,
we can compute the object’s pose relative to the camera (see sec-
tion 4.1). Then, for each as yet uncalibrated pixel, we check if it
is matched to the calibration object in sufficiently many images
(one for central cameras, two for non-central ones); if so, we can
compute the coordinates of its projection ray. For a non-central
camera, we simply fit a straight line to the matching 3D points on
the calibration object for different positions/images. As for the
central model, we compute a straight line that is constrained to
pass through the optical center.
These two procedures – computation of pose and projection rays
– are repeated in alternation, until all available images have been
used. Figure 2 gives examples of image regions covered by cal-
ibration objects in different images, for panoramic cameras that
have been calibrated using our approach.
We also have developed a bundle adjustment that can be used
between iterations, or only at the end of the above process, to
refine calibration and pose. Our bundle adjustment minimizes
ray–point distance, i.e. the distance in 3D, between projection
rays and matching points on calibration objects. This is not the
optimal measure, but reprojection-based bundle adjustment is not
trivial to formulate for the generic imaging model (some ideas on
this are given in (Ramalingam et al., 2004)). The minimization
is done for the optical center position (only for central cameras),
the pose of calibration objects, and of course the coordinates of
projection rays. The ray–point distance is computed as

E =
rX

i=1

nX

j=1

‖Ci + λijDi − RjPij − tj‖
2

with:

• n is the number of calibration objects and r the number of
rays.

• Ci is a point on the ith ray (in the non-central case) or the
optical center (in a central model).

• Di is the direction of the ith ray.
• λij parameterizes the point on the ith ray that should corre-

spond to its intersection with the jth calibration object.
• Pij is the point on the jth calibration object that is matched

to the pixel associated with the ith ray.
• Rj and tj represent the pose of the jth calibration object.

4 ORIENTATION
4.1 Pose Estimation
Pose estimation is the problem of computing the relative posi-
tion and orientation between an object of known structure, and a
calibrated camera. A literature review on algorithms for pinhole
cameras is given in (Haralick et al., 1994). Here, we briefly show

how the minimal case can be solved for general cameras. For
pinhole cameras, pose can be estimated, up to a finite number of
solutions, from 3 point correspondences (3D-2D) already. The
same holds for general cameras. Consider 3 image points and the
associated projection rays, computed using the calibration infor-
mation. We parameterize generic points on the rays as follows:
Ai + λiBi.
We know the structure of the observed object, meaning that we
know the mutual distances dij between the 3D points. We can
thus write equations on the unknowns λi, that parameterize the
object’s pose:

‖Ai + λiBi − Aj − λjBj‖
2 = d2

ij

for (i, j) = (1, 2), (1, 3), (2, 3)

This gives a total of 3 equations that are quadratic in 3 unknowns.
Many methods exist for solving this problem, e.g. symbolic com-
putation packages such as MAPLE allow to compute a resultant
polynomial of degree 8 in a single unknown, that can be numeri-
cally solved using any root finding method.
Like for pinhole cameras, there are up to 8 theoretical solutions.
For pinhole cameras, at least 4 of them can be eliminated because
they would correspond to points lying behind the camera (Haral-
ick et al., 1994). As for general cameras, determining the maxi-
mum number of feasible solutions requires further investigation.
In any case, a unique solution can be obtained using one or two
additional points (Haralick et al., 1994). More details on pose
estimation for non-central cameras are given in (Chen & Chang,
2004; Nistér, 2004).

4.2 Motion Estimation
We outline how ego-motion, or, more generally, relative position
and orientation of two calibrated general cameras, can be esti-
mated. This is done via a generalization of the classical motion
estimation problem for pinhole cameras and its associated center-
piece, the essential matrix (Longuet-Higgins, 1981). We briefly
summarize how the classical problem is usually solved (Hartley
& Zisserman, 2000). Let R be the rotation matrix and t the trans-
lation vector describing the motion. The essential matrix is de-
fined as E = −[t]×R. It can be estimated using point correspon-
dences (x1,x2) across two views, using the epipolar constraint
xT

2Ex1 = 0. This can be done linearly using 8 correspondences
or more. In the minimal case of 5 correspondences, an efficient
non-linear minimal algorithm, which gives exactly the theoretical
maximum of 10 feasible solutions, was only recently introduced
(Nistér, 2003). Once the essential matrix is estimated, the motion
parameters R and t can be extracted relatively straightforwardly
(Nistér, 2003).
In the case of our general imaging model, motion estimation is
performed similarly, using pixel correspondences (x1,x2). Us-
ing the calibration information, the associated projection rays can
be computed. Let them be represented by their Plücker coordi-
nates (see section 6), i.e. 6-vectors L1 and L2. The epipolar con-
straint extends naturally to rays, and manifests itself by a 6 × 6
essential matrix (Pless, 2003):

E =

„
−[t]×R R

R 0

«

The epipolar constraint then writes: LT

2EL1 = 0 (Pless, 2003).
Once E is estimated, motion can again be extracted straightfor-
wardly (e.g., R can simply be read off E). Linear estimation of E

requires 17 correspondences.
There is an important difference between motion estimation for
central and non-central cameras: with central cameras, the trans-
lation component can only be recovered up to scale. Non-central



cameras however, allow to determine even the translation’s scale.
This is because a single calibrated non-central camera already
carries scale information (via the distance between mutually skew
projection rays). One consequence is that the theoretical mini-
mum number of required correspondences is 6 instead of 5. It
might be possible, though very involved, to derive a minimal 6-
point method along the lines of (Nistér, 2003).
More details on motion estimation for non-central cameras and
intermediate camera models, will be given in a forthcoming pub-
lication.

5 3D RECONSTRUCTION
We now describe an algorithm for 3D reconstruction from two or
more calibrated images with known relative position. Let C =
(X, Y, Z)T be a 3D point that is to be reconstructed, based on its
projections in n images. Using calibration information, we can
compute the n associated projection rays. Here, we represent the
ith ray using a starting point Ai and the direction, represented
by a unit vector Bi. We apply the mid-point method (Hartley
& Sturm, 1997; Pless, 2003), i.e. determine C that is closest in
average to the n rays. Let us represent generic points on rays
using position parameters λi, as in the previous section. Then,
C is determined by minimizing the following expression over
CT = (X, Y, Z) and the λi:

Pn

i=1
‖Ai + λiBi − C‖2.

This is a linear least squares problem, which can be solved e.g.
via the Pseudo-Inverse, leading to the following explicit equation
(derivations omitted):
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where I3 is the identity matrix of size 3 × 3. Due to its sparse
structure, the inversion of M can actually be performed in closed-
form. Overall, the triangulation of a 3D point using n rays, can
by carried out very efficiently, using only matrix multiplications
and the inversion of a symmetric 3 × 3 matrix.

6 MULTI-VIEW GEOMETRY
We establish the foundations of a multi-view geometry for gen-
eral (non-central) cameras. Its cornerstones are, as with perspec-
tive cameras, matching tensors. We show how to establish them,
analogously to the perspective case.
Here, we only talk about the calibrated case; the uncalibrated case
is nicely treated for perspective cameras, since calibrated and un-
calibrated cameras are linked by projective transformations. For
non-central cameras however, there is no such link: in the most
general case, every pair (pixel, camera ray) may be completely
independent of other pairs.

6.1 Reminder on Multi-View Geometry for Perspective Cam-
eras

We briefly review how to derive multi-view matching relations
for perspective cameras (Faugeras & Mourrain, 1995). Let Pi be
projection matrices and qi image points. A set of image points
are matching, if there exists a 3D point Q and scale factors λi

such that:
λiqi = PiQ

This may be formulated as the following matrix equation:
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The matrix M, of size 3n× (4 +n) has thus a null-vector, mean-
ing that its rank is less than 4 + n. Hence, the determinants of all
its submatrices of size (4+n)×(4+n) must vanish. These deter-
minants are multi-linear expressions in terms of the coordinates
of image points qi.
They have to be considered for every possible submatrix. Only
submatrices with 2 or more rows per view, give rise to constraints
linking all projection matrices. Hence, constraints can be ob-
tained for up to n views with 2n ≤ 4 + n, meaning that only
for up to 4 views, matching constraints linking all views can be
obtained.
The constraints for n views take the form:

3X

i1=1

3X

i2=1

· · ·
3X

in=1

q1,i1q2,i2 · · · qn,in
Ti1,i2,··· ,in

= 0 (1)

where the multi-view matching tensor T of dimension 3×· · ·×3
depends on and partially encodes the cameras’ projection matri-
ces Pi. Note that as soon as cameras are calibrated, this theory
applies to any central camera: for a camera with radial distortion
for example, the above formulation holds for distortion-corrected
image points.
6.2 Multi-View Geometry for Non-Central Cameras
Here, instead of projection matrices (depending on calibration
and pose), we deal with pose matrices:

Pi =

„
Ri ti

0T 1

«

These express the similarity transformations that map a point
from some global reference frame, into the cameras’ local co-
ordinate frames (since no optical center and no camera axis exist,
no assumptions about the local coordinate frames are made). As
for image points, they are now replaced by camera rays. Let the
ith ray be represented by two 3D points Ai and Bi. Eventually,
we will to obtain expressions in terms of the rays’ Plücker coor-
dinates. Plücker coordinates can be defined in various ways; the
definition we use is as follows. The line can be represented by
the skew-symmetric 4 × 4 so-called Plücker matrix

L = AB
T − BA

T

Note that the Plücker matrix is independent (up to scale) of which
pair of points on the line are chosen to represent it. An alterna-
tive representation for the line is its Plücker coordinate vector of
length 6:

L =

0

B
B
B
B
B
@

A4B1 − A1B4

A4B2 − A2B4

A4B3 − A3B4

A3B2 − A2B3

A1B3 − A3B1

A2B1 − A1B2

1

C
C
C
C
C
A

(2)

Our goal is to obtain matching tensors T and matching constraints
of the form (1), with the difference that tensors will have size
6 × · · · × 6 and act on Plücker line coordinates:

6X

i1=1

6X

i2=1

· · ·
6X

in=1

L1,i1L2,i2 · · ·Ln,in
Ti1,i2,··· ,in

= 0 (3)



In the following, we explain how to derive such matching con-
straints. Consider a set of n camera rays and let them be defined
by two points Ai and Bi each; the choice of points to represent
a ray is not important, since later we will fall back onto the ray’s
Plücker coordinates.
Now, a set of n camera rays are matching, if there exist a 3D point
Q and scale factors λi and µi associated with each ray such that:

λiAi + µiBi = PiQ

i.e. if the point PiQ lies on the line spanned by Ai and Bi. As for
perspective cameras, we group these equations in matrix form:
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with:
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As above, this equation shows that M must be rank-deficient.
However, the situation is different here since the Pi are of size
4×4 now, and M of size 4n×(4+2n). We thus have to consider
submatrices of M of size (4 + 2n) × (4 + 2n). Furthermore, in
the following we show that only submatrices with 3 rows or more
per view, give rise to constraints on all pose matrices. Hence,
3n ≤ 4 + 2n, and again, n ≤ 4, i.e. multi-view constraints are
only obtained for up to 4 views.
Let us first see what happens for a submatrix of M where some
view contributes only a single row. The two columns correspond-
ing to its base points A and B, are multiples of one another since
they consist of zeroes only, besides a single non-zero coefficient,
in the single row associated with the considered view. Hence, the
determinant of the considered submatrix of M is always zero, and
no constraint is available.
In the following, we exclude this case, i.e. we only consider sub-
matrices of M where each view contributes at least 2 rows. Let
N be such a matrix. Without loss of generality, we start to de-
velop its determinant with the columns containing A1 and B1.
The determinant is then given as a sum of terms of the form:

(A1,jB1,k − A1,kB1,j) det N̄jk

where j, k ∈ {1..4}, j 6= k, and N̄jk is obtained from N by
dropping the columns containing A1 and B1 as well as the rows
containing A1,j etc.
We observe several things:

• The term (A1,jB1,k − A1,kB1,j) is nothing else than one
of the Plücker coordinates of the ray of camera 1 (cf. (2)).
By continuing with the development of the determinant of
N̄jk , it becomes clear that the total determinant of N can be
written in the form:

6X

i1=1

6X

i2=1

· · ·

6X

in=1

L1,i1L2,i2 · · ·Ln,in
Ti1,i2,··· ,in

= 0

i.e. the coefficients of the Ai and Bi are “folded together”
into the Plücker coordinates of camera rays and T is a match-
ing tensor between the n cameras. Its coefficients depend
exactly on the cameras’ pose matrices.

central non-central
# views M useful M useful

2 6 × 6 3-3 8 × 8 4-4
3 9 × 7 3-2-2 12 × 10 4-3-3
4 12 × 8 2-2-2-2 16 × 12 3-3-3-3

Table 2: Cases of multi-view matching constraints for central and
non-central cameras. The columns entitled “useful” contain en-
tries of the form x − y − z etc. that correspond to sub-matrices
of M that give rise to matching constraints linking all views:
x − y − z etc. refers to submatrices of M containing x rows
from one camera, y from another etc.

• If camera 1 contributes only two rows to N, then the deter-
minant of N becomes of the form:

L1,x

 
6X

i2=1

· · ·

6X

in=1

L2,i2 · · ·Ln,in
Ti2,··· ,in

!

= 0

i.e. it only contains a single coordinate of the ray of camera
1, and the tensor T does not depend at all on the pose of
that camera. Hence, to obtain constraints between all cam-
eras, every camera has to contribute at least three rows to the
considered submatrix.

We are now ready to establish the different cases that lead to use-
ful multi-view constraints. As mentioned above, for more than 4
cameras, no constraints linking all of them are available: subma-
trices of size at least 3n × 3n would be needed, but M only has
4 + 2n columns. So, only for n ≤ 4, such submatrices exist.
Table 2 gives all useful cases, both for central and non-central
cameras. These lead to two-view, three-view and four-view match-
ing constraints, encoded by essential matrices, trifocal and quadri-
focal tensors. Deriving their forms is now mainly a mechanical
task.

6.3 Multi-View Geometry for Intermediate Camera Models
This multi-view geometry can be specialized to some of the inter-
mediate camera models described in section 2. We have derived
this for the axial and x-slit camera models. This will be reported
elsewhere in detail.

7 EXPERIMENTAL RESULTS
We have calibrated a wide variety of cameras (both central and
non-central) as shown in Table 3. Results are first discussed for
several “slightly non-central” cameras and for a multi-camera
system. We then report results for structure-from-motion algo-
rithms, applied to setups combining cameras of different types
(pinhole and panoramic).

Slightly non-central cameras: central vs. non-central models.
For three cameras (a fisheye, a hyperbolic and a spherical cata-
dioptric system, see sample images in Figure 3), we applied our
calibration approach with both, a central and a non-central model
assumption. Table 3 shows that the bundle adjustment’s resid-
ual errors for central and non-central calibration, are very close
to one another for the fisheye and hyperbolic catadioptric cam-
eras. This suggests that for the cameras used in the experiments,
the central model is appropriate. As for the spherical catadioptric
camera, the non-central model has a significantly lower residual,
which may suggest that a non-central model is better here.
To further investigate this issue we performed another evaluation.
A calibration grid was put on a turntable, and images were ac-
quired for different turntable positions. We are thus able to quan-
titatively evaluate the calibration, by measuring how close the
recovered grid pose corresponds to a turntable sequence. Individ-
ual grid points move on a circle in 3D; we thus compute a least
squares circle fit to the 3D positions given by the estimated grid



Camera Images Rays Points RMS
Pinhole (C) 3 217 651 0.04
Fisheye (C) 23 508 2314 0.12

(NC) 23 342 1712 0.10
Sphere (C) 24 380 1441 2.94

(NC) 24 447 1726 0.37
Hyperbolic (C) 24 293 1020 0.40

(NC) 24 190 821 0.34
Multi-Cam (NC) 3 1156 3468 0.69
Eye+Pinhole (C) 3 29 57 0.98

Table 3: Bundle adjustment statistics for different cameras. (C)
and (NC) refer to central and non-central calibration respectively,
and RMS is the root-mean-square residual error of the bundle
adjustment (ray-point distances). It is given in percent, relative
to the overall size of the scene (largest pairwise distance between
points on calibration grids).

Camera Grids Central Non-Central
Fisheye 14 0.64 0.49

Spherical 19 2.40 1.60
Hyperbolic 12 0.81 1.17

Table 4: RMS error for circle fits to grid points, for turntable
sequences (see text).

pose. At the bottom of Figure 3, recovered grid poses are shown,
as well as a circle fit to the positions of one grid point. Table 4
shows the RMS errors of circle fits (again, relative to scene size,
and given in percent). We note that the non-central model pro-
vides a significantly better reconstruction than the central one for
the spherical catadioptric camera, which thus confirms the above
observation. For the fisheye, the non-central calibration also per-
forms better, but not as significantly. As for the hyperbolic cata-
dioptric camera, the central model gives a better reconstruction
though. This can probably be explained as follows. Inspite po-
tential imprecisions in the camera setup, the camera seems to be
sufficiently close to a central one, so that the non-central model
leads to overfitting. Consequently, although the bundle adjust-
ment’s residual is lower than for the central model (which always
has to be the case), it gives “predictions” (here, pose or motion
estimation) which are unreliable.

Calibration of a multi-camera system. A multi-camera net-
work can be considered as a single generic imaging system. As
shown in Figure 4 (left), we used a system of three (approxi-
mately pinhole) cameras to capture three images each of a cali-
bration grid. We virtually concatenated the images from the in-
dividual cameras and computed all projection rays and the three
grid poses in a single reference frame (see Figure 4 (right)), using
the algorithm outlined in section 3.
In order to evaluate the calibration, we compared results with
those obtained by plane-based calibration (Sturm & Maybank,
1999; Zhang, 2000), that used the knowledge that the three cam-
eras are pinholes. In both, our multi-camera calibration, and
plane-based calibration, the first grid was used to fix the global
coordinate system. We can thus compare the estimated poses of
the other two grids for the two methods. This is done for both, the
rotational and translational parts of the pose. As for rotation, we
measure the angle (in radians) of the relative rotation between the
rotation matrices given by the two methods, see columns Ri in
Table 5). As for translation, we measure the distance between the
estimated 3D positions of the grids’ centers of gravity (columns ti

in Table 5) expressed in percent, relative to the scene size. Here,
plane-based calibration is done separately for each camera, lead-
ing to the three rows of Table 5.
From the non-central multi-camera calibration, we also estimate
the positions of the three optical centers, by clustering the pro-

Figure 3: Top: sample images for hyperbolic and spherical cata-
dioptric cameras. Middle: two images taken with a fisheye. Bot-
tom: pose of calibration grids used to calibrate the fisheye (left)
and a least squares circle fit to the estimated positions of one grid
point (right).

jection rays and computing least squares point fits to them. The
column “Center” of Table 5 shows the distances between opti-
cal centers (expressed in percent and relative to the scene size)
computed using this approach and plane-based calibration. The
discrepancies are low, suggesting that the non-central calibration
of a multi-camera setup is indeed feasible.

Figure 4: Multi-camera setup consisting of 3 cameras (left). Re-
covered projection rays and grid poses (right).

Camera R2 R3 t2 t3 Center
1 0.0117 0.0359 0.56 3.04 2.78
2 0.0149 0.0085 0.44 2.80 2.17
3 0.0088 0.0249 0.53 2.59 1.16

Table 5: Evaluation of non-central multi-camera calibration rela-
tive to plane-based calibration. See text for more details.

Structure-from-motion with hybrid camera setups. We cre-
ated hybrid camera setups by taking images with both, pinhole
and fisheye cameras. Each camera was first calibrated individ-
ually using our approach of section 3. We then estimated the
relative pose of two cameras (or, motion), using the approach



Figure 5: Combination of a pinhole and a fisheye camera. Top:
input images and matching points. Bottom: estimated relative
pose and 3D model.

Figure 6: Combination of a stereo system and a fisheye camera.
Top: input images and matching points. Bottom: estimated rela-
tive pose and 3D model.

outlined in section 4.2 and manually defined matches. Then, 3D
structure was computed by reconstructing 3D points associated
with the given matches.
Figure 5 shows this for a combination of a pinhole and a fish-
eye camera, and figure 6 for a combination of a stereo system
and a fisheye. Here, the stereo system is handled as a single,
non-central camera. Note that the same scene point usually ap-
pears more than once in the stereo camera. Therefore in the ray-
intersection approach of section 5, we intersect three rays to find
one 3D point here.
These results are preliminary: at the time we obtained them, we
had not developed our full calibration approach of section 3.2,
hence only the central region of the fisheye camera was calibrated
and used. Nevertheless, the qualitatively correct results demon-
strate that our generic structure-from-motion algorithms work,
and actually are applicable to different cameras, or combinations
thereof.

8 CONCLUSIONS
We have reviewed calibration and structure-from-motion tasks
for the general non-central camera model. We also proposed a
multi-view geometry for non-central cameras. A natural hier-
archy of camera models has been introduced, grouping cameras
into classes depending on, loosely speaking, the spatial distribu-
tion of their projection rays. We hope that the theoretical work
presented here allows to define some common ground for recent
efforts in characterizing the geometry of non-classical cameras.
The feasibility of our generic calibration and structure-from-motion
approaches has been demonstrated on several examples. Of course,
more investigations are required to evaluate the potential of these
methods and the underlying models.
Among ongoing and future works, there is the adaptation of our
calibration approach to axial and other camera models as well
as first ideas on self-calibration for the general imaging model.
We also continue our work on bundle adjustment for the general
imaging model, cf. (Ramalingam et al. 2004), and the exploration
of hybrid systems, combining cameras of different types (Sturm,
2002; Ramalingam et al. 2004).
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