
USE OF SVG AND ECMASCRIPT TECHNOLOGY FOR E-LEARNING PURPOSES

A. Neumann a

a Institute of Cartography, ETH Zurich, CH-8093 Zurich, Switzerland
neumann@karto.baug.ethz.ch

ISPRS Workshop Commissions VI/1 – VI/2
Tools and Techniques for E-Learning, Potsdam, Germany, June 1-3, 2005

KEY WORDS: Web Technologies, Content Development, Standardization, Future Trends

ABSTRACT:

SVG (Scalable Vector Graphics) is a XML based markup language used to describe and integrate vector graphics, raster graphics
and text. SVG is developed by the W3C web consortium as an official web standard, with the support of major computer graphics
and mobile phone companies, such as Adobe, Canon, Corel, IBM, Kodak, Nokia, Opera, Sun, etc. SVG Mobile was furthermore
adopted by the 3GPP consortium as a part of the 3GPP mobile phone standard. SVG graphics can be animated and enriched with
interactivity. Scripting languages and network interfaces help build interactive applications. SVG's rich visualization options and
the support of interactivity make it a natural candidate for providing graphics and interactive examples in e-learning environments.
The ability to access the SVG source code and have a glance "under the hood" to see how things are made, is especially useful for
learning and sharing purposes. SVG also provides a fun way to introduce programming and illustrate the functionality of
algorithms. Students are usually motivated if they can graphically visualize what they program. The paper first summarizes SVG's
capabilities. The second part will discuss strengths and weaknesses of the SVG approach and explain why SVG is a useful
technology for e-learning purposes. The following section describes usage scenarios and gives a number of e-learning examples.
Domains will include mathematics, geometry, electronics, programming and GIS. Development tools and authoring systems will be
mentioned. The last part will discuss and outline current developments regarding the upcoming SVG 1.2 version.

1. INTRODUCTION

1.1 What is SVG?

SVG (abbreviation for Scalable Vector Graphics) is a
webstandard for describing two dimensional vector graphics. It
integrates vector graphics, raster graphics and text. SVG
graphics can be interactive and animated. Bindings for
scripting languages and network interfaces enable developers
to build rich interactive graphics applications. Like many other
W3C webstandards, SVG is based on XML and can therefore
benefit from other neighbor technologies in the XML world
and the ever increasing number of XML development tools.
The open nature of SVG and the rich visualization options
make it an ideal technology for visualizing scientific results or
explaining and communicating complex learning topics.
Interactivity in SVG applications, if implemented correctly,
can stimulate intellectual curiosity and be an invitation to
explore complex phenomena.

1.2 Current Status

SVG 1.0 became a W3C recommendation in September 2001.
The W3C (World Wide Web Consortium) combines and
coordinates the interests of research institutes, companies and
universities and develops interoperable technologies, such as
specifications, guidelines or software, with the overall goal to
make the information on the web more accessible to both
humans and machines. SVG 1.1 is the current recommended
SVG version and became a recommendation in January 2003.
The main goal of SVG 1.1 was to introduce profiles for mobile
devices: SVG Tiny for very constrained devices, such as
mobile phones, and SVG Basic for stronger mobile devices,
such as PDAs and Smartphones. Version 1.2 is currently under
development, a major upgrade that will help SVG to be a better
foundation for interactive applications. Improvements include

multimedia (audio, video), streaming, text-wrapping support,
better network interfaces, vector effects, better compositing
and blending and a new binding language (sXBL) that will
allow content developers to share SVG building blocks more
easily. The new SVG 1.2 features will be discussed in more
detail in the last part of this paper. The development of SVG
specifications is an open process. Anyone can give feedback on
the public mailing lists and can read the current status of the
working drafts at the SVG W3C homepage (Lilley et al, 2005).

1.3 SVG viewer implementations

Although SVG has been existing as a W3C recommendation
for a while, native SVG support in webbrowsers is still in its
infancy. At the time of writing, SVG content is best deployed
using the Adobe SVG plugin, available for all major platforms
and browsers (Linux, MacOSX, Solaris, Windows) which can
be downloaded from the Adobe SVG homepage (Adobe,
2005a) or for developers at the beta viewer download area
(Adobe, 2005b). Adobe will release a new version of its plugin
after the SVG 1.2 specification is finalized.

Fortunately, three major browser projects are currently
introducing native SVG support. Mozilla SVG (Mozilla, 2005)
already has a rather stable SVG implementation that supports
scripting but no SMIL animation. Mozilla SVG will be enabled
by default in the next major Mozilla/Firefox upgrade. Opera
introduced SVG Tiny support in their latest brower (version 8)
which supports animation but still lacks CSS and scripting
support (Opera, 2005). The Unix KDE browser Konqueror
already introduced SVG support last year and includes
scripting and basic animation support (KDE, 2005). At the time
of writing, it is not yet clear if the other browser projects
(Apples Safari and Microsoft Internet Explorer) will follow the
trend to native SVG support.

A very good standalone SVG viewer based on Java is the
Apache Batik viewer, which consists of a viewer, a rasterizer
and converter, a pretty printer, a serverside framework and a
font-converter. The Batik SVG viewer can be embedded as a
rendering component into other Java Applications. Batik can
also convert SVG files to PDF format for printing. (Apache
Batik, 2005) SVG mobile viewers are available from Bitflash,
Zoomon and Nokia. The SVG mobile specifications are now
also part of the 3GPP mobile phone standard.

2. SVG CAPABILITIES

2.1 Document Structure and Rendering Model

SVG documents are built upon a regular XML document tree,
consisting primarily of a header, processing instructions,
comments, XML elements and attributes. Elements that appear
first in the document tree are rendered first, subsequent
elements are drawn on top of the previous elements, taking into
account opacity, blending, filters, clipping and masking. As in
any other XML file, elements may have unique ids that can be
used to reference other elements. Element instances (<use />
elements) can reference other elements and override their
attributes. The <defs /> section serves as a repository.
Elements in this section are not rendered, but may be
referenced elsewhere in the file. Typically, the <defs /> section
contains gradient and pattern definitions, symbols and markers.
Elements may also be grouped, which is particularly useful
when several elements form a logical group or share common
attributes. Elements or groups may be temporarily hidden from
the document tree, a mechanism that helps simulate map
layers. Description and title elements help describe the content
of elements, groups or files in a verbal form, a technique that
helps make SVG files more accessible to disabled persons or
search engines. Switch elements help conditionally process the
document tree, e.g. based on the system language or available
SVG features.

2.2 Coordinate Systems and Transformations

The origin of the coordinate system in the SVG canvas is in the
upper left corner with the positive x-axis pointing right and the
positive y-axis pointing downwards. This implicates that in
order to represent map coordinate systems one either has to
multiply the y-axis by a factor of -1 or has to transform all
elements within the map group. The latter approach has
disadvantages when using text labels within the map, as they
would appear upside down. Supported units are em, ex, px, pt,
pc, cm, mm, in and percentages. Of particular interest to
cartography and GIS is the viewBox attribute that allows to
establish a new coordinate system inside the existing
coordinate system. This way one can have nested coordinate
systems, e.g. a device oriented coordinate system in screen
pixels in the SVG root element and one or more nested map
oriented coordinate systems. Itt is therefore possible to
introduce real world coordinates, such as meters or kilometers,
which helps if one has to merge different data sources.
Geographic coordinate systems are not directly supported. If
one has to reproject data one has to do it in a GIS or spatial
database system prior to conversion to SVG. However, it is
possible to include metadata about the projection system.

2.3 Basic Geometry Elements

SVG knows the following basic shapes:

• Rectangle (<rect />)
• Circle (<circle />)

• Ellipse (<ellipse />)
• Line (<line />)
• Polyline (<polyline />)
• Polygon (<polygon />)
• Path (<path />)

The above listed geometry types are more or less self
explaining. The most powerful and interesting geometry type is
the <path /> element. Path elements can describe all other basic
shapes. Path elements can contain quadratic and cubic spline
curves and arc segments. Geometry can be described in either
absolute or relative coordinates (relative in the sense that a
subsequent coordinate is related to its previous coordinate
pair). Path elements can contain holes, and several disjunct
paths can be combined to one single path. Paths can be open or
closed. The symbol element can contain any SVG code. A
symbol can be made of basic shapes and may also contain
animations.

2.4 Text and Fonts

Text support in SVG is very sophisticated. Almost any text
feature available in DTP or graphics software is also available
in SVG. Like any other basic shape, text can also have fillings,
strokes and can be clipped or masked or can serve as a clipping
path. Individiual glyphs or groups of glyphs can be shifted or
rotated and text can also be aligned on path elements. It is even
possible to animate a text along a path. The <tspan /> element
allows the attachment of common attributes to a group of
glyphs. SVG fully supports internationalization, including
Unicode support, left to right text, bidirectional text or text that

Figure 1: Some of the Text options in
SVG, Source:

http://www.carto.net/papers/svg/samples/t
ext.shtml, © André Winter

runs from top to bottom. Together with the <switch /> element
one can also deploy multilingual content in one single SVG
file. To ensure that the SVG file displays the correct font, one
can include the fonts in the SVG file, using the SVG font
format. Glyphs in SVG fonts can basically contain any
geometry and they can also contain animations. The individiual
glyphs usually contain SVG path geometry. SVG fonts also
support kerning tables, although not all SVG renderers do.
SVG fonts can be converted from other font formats (e.g.
truetype, opentype and type1) using the Apache Batik project
(Batik, 2005) or the Fontforge application.

One major problem with text in SVG up to version 1.1 was the
missing text wrapping feature. Until now, one had to manually
introduce linebreaks, using <tspan /> elements nested in the
text-element. SVG 1.2 introduces this missing feature by
supporting text wrapping in arbitrary shapes.

2.5 Filling, Stroking, Opacity

SVG elements can be filled with uniform color, linear and
radial gradients and patterns. Pattern tile definitions can
contain raster data, vector elements and animations and are
repeatedly drawn to fill the polygon. Gradient parameters can
be animated as well. As to stroking, one can define the color,
stroke width, linecaps and linejoins, miter angles, dash arrays
and dash offsets. Opacity can be separately defined for strokes,
filling or both. Group opacity treats elements as a group as
opposed to treating each group element individiually. Of
particular interest to cartography and GIS are the markers.
Markers are symbols that are placed at each vertex of a shape
or path. One distinguishes start-, end- and mid-markers.
Markers can be automatically oriented to adapt to the bisector
angle or tangent vector of two adjacent line or curve segments.
Markers can be used to attach arrows to shapes or to represent
objects at vertices, such as poles along a power supply line.

2.6 Styling

There are alternative ways to style elements in SVG. One can
use CSS styles (internal and external) as in XHTML, XML
presentation attributes or XSLT. However, not all of them are
implemented in every user agent. XML presentation attributes
are supported by any SVG user agent, while CSS are only
implemented in some (Adobe, Batik and Mozilla SVG) and
XSLT support is still in its infancy. It is also possible to define
media dependent styles. This is potentially useful to hide user
interface elements when printing SVG graphics or to provide
different styling options for handhelds or projection systems.

2.7 Filters

Filter features are unique to SVG. They aren't currently present
in competing formats, such as Flash or CGM. Filters can be
attached to both raster and vector elements. Vector elements
are rasterized during the rendering pipeline, hence there is an
opportunity to include filters. Typical applications for filters
are color corrections, brightness and contrast adaptions,
blurring and sharpening, illumination filters, generation of drop
shadows and halo effects, convolution filters, displacement and
morphology filters, generating turbulence, etc. Filters may be
combined in any order and the output of one filter may be
piped to the input of the next filter. Every filter parameter can
be animated which can lead to very interesting effects. Filters
are very powerful visualization options, but may require a fair
amount of computing power.

For examples on SVG filters have a look at the excellent
examples and tutorials by Michel Hirtzler (Hirtzler, 2002;
Hirtzler 2005a) and Kevin Lindsey (Lindsey, 2003).

2.8 Interactivity and Scripting

Interactivity and scripting are key parts when it comes to
making SVG appealing for e-learning applications. SVG
graphics are by default zoomable and pannable. Many SVG
viewers support additional interactions, such as search for text,
or start/pause animations. SVG supports hyperlinks and custom
cursors.

Various event types enable script or SMIL operations to react
to user or system events. Supported events are the following:

Status Events
SVGLoad
SVGUnload
SVGAbort
SVGError

Zoom and Scroll Events
SVGResize
SVGScroll
SVGZoom

UI Events
focusin
focusout
activate

Mouse Events
click
mousedown
mouseup
mouseover
mousemove
mouseout

Keyboard Events
keydown
keyup
keypress

Animation Events
beginEvent
endEvent
repeatEvent

Mutation Events
DOMSubtreeModified
DOMNodeInserted
DOMNodeRemoved
DOMNodeRemovedFromDocument
DOMNodeInsertedIntoDocument
DOMAttrModified
DOMCharacterDataModified

Figure 2: Filter example: combination of a gaussian blur,
offset, specular lighting and composite filter, Source:

http://www.w3.org/TR/SVG11/images/filters/filters01.svg
© W3C consortium

Any of the events listed above can trigger either a script
function or a SMIL interaction. Mutation events listen to
changes within a particular node in the XML document tree.
Currently, they aren't implemented in the Adobe SVG viewer
version 3. SMIL is a declarative way of specifiying interactions
or animations. SMIL constructs generally contain a trigger
(either time based or event based), the target, the attribute to
change, duration and interpolation parameters. SMIL can be
regarded as a simple, declarative scripting language.

The other, more flexible, way of modifying SVG documents is
to use a clientside scripting language. Scripts can either be
embedded in the SVG files or referenced (external files). SVG
defines a language independent API to access and manipulate
the SVG DOM. The most widely used and implemented
scripting language in conjunction with SVG is ECMAScript
(the standardized version of Javascript). One reads or changes
attributes, creates, moves or deletes elements and loops over
the document tree as it is the case with any XML or XHTML
document. (Neumann et al, 2005a) is a tutorial about
manipulating SVG documents using ECMAScript and the
DOM. SVG also provides network interfaces to directly talk to
serverside applications. .getURL() and .postURL() are methods
which allow transfering and retrieving of data from and to the
server without having to reload the SVG file. SVG 1.2 will add
more network options for client-server communication.

A very useful attribute regarding interactivity is the “pointer-
events” attribute. This attribute controls the sensitivity of
graphic elements regarding the reaction to mouse events. One
can either set the attribute to “none” (no reaction to mouse
events), “fill” or “stroke” (and a few more options). Using this
attribute one can forward the events to the underlying elements
or even receive events from invisible elements. This is useful
for receiving events from invisible layers or to avoid “flicker
effects”, which is the case when smaller elements “steal” the
event-sensitivity from the underlying larger elements. This is
often the case with text elements above a polygon layer.

2.9 Animation

Almost any element and attribute can be animated in SVG.
There are currently two ways to implement animations in SVG:
the first way is to use Javascript and a timer that repeatedly
changes attributes in elements. This approach requires
programming know-how but guarantees maximum flexibility
when it comes to interpolation methods and logic. The second

way is again SMIL, a descriptive way to define animation
parameters. SMIL animations can trigger script execution and
vice versa. Both, script based and SMIL animations can be
triggered by the events listed above.

SMIL offers five elements for descriptive animations:
<animate />, the most general element for animating numeric,
interpolateable attributes, <set /> for setting non interpolateable
attributes, such as string-based values, <animateMotion /> for
moving elements along a motion path, <animateColor /> for
animating color values and finally <animateTransform /> for
animating transform attributes. Common attributes of the five
animation elements are “begin”, “end”, “dur” (duration),
“from”, “to”, “by”, “repeatCount”, “repeatDur”, “fill”,
“calcMode”, “keyTimes”, “values”, “keySplines”.

Of particular interest are the latter attributes: “calcMode”
allows to specify the interpolation method (discrete, linear,
paced and spline), “keyTimes” and “values” allow the setting
of timestamps (in percentage of the full duration) and
corresponding values, fixpoints that the interpolation has to
respect, and “keySplines” define acceleration or deceleration
effects. Two very useful tools for defining keySplines and
keyTimes are available at (Hirtzler, 2005b) and (Hirtzler,
2005c). (Neumann, 2003) shows an example where keySplines
and keyTimes are combined with progressive line drawing.

Following is an example, with source code and the
corresponding graphics, where a text-string is animated along a
bezier curve. First, a path is defined with a unique id. Next, a
text-element is created with a <textPath /> element as a child.
The <textPath /> references the path with the id “curve”.
Nested within the <textPath /> element are a <tspan />
element, containing the actual text and a negative delta-y
offset to place the text above the line, and an <animate />
element that animates the “startOffset” attribute from 0 to 50%.
The animation is started if the user clicks on the text with the id
“go”. Finally, a text element needs to be placed with the id
“go” which starts the animation.

<path id="curve" d="M100 200Q200,100 300,200
 T500,200 M100 200Q200,100 300,200 T500,200"
 style="stroke:blue;fill:none"/>
<text style="font-size:25;fill:red;">
 <textPath startOffset="0%" xlink:href="#curve">
 <tspan dy="-10">Textpath on Bezier's curve
 </tspan>
 <animate begin="go.click" dur="5s"
 repeatCount="1" attributeName="startOffset"
 values="0%;50%"/>
 </textPath>
</text>
<text id=”go” x="550" y="380" style="font-
 size:25;">GO</text>

2.10 Extensibility and Metadata

As a XML based language, SVG supports foreign namespaces.
It is possible to define new elements or add new attributes to

Figure 3: Yosemite National Park Hiking Map - Example of a
highly interactive mapping application that makes extensive

use of SMIL and scripting, Source:
http://www.carto.net/williams/yosemite/, © Juliana Williams

Figure 4: Animated Text along path – © M. Hirtzler, Source:
http://pilat.free.fr/english/animer/text_bezier.htm

existing SVG elements. Elements and attributes in a foreign
namespace have a prefix and a colon before the element or
attribute name. Elements and attributes in foreign namespaces
that the SVG viewer does not know, are ignored. However,
they can be read and written by script. Foreign namespaces are
used to introduce new elements (e.g. GUI elements, scalebars)
and for the attachment of non-graphical attributes to SVG
graphic elements (e.g. GIS non-graphical attributes). Those
attributes can be analyzed and used to create thematic maps or
charts. Additionally, one can display those attributes upon
mouse-over. This is not only useful for maps and drawings, but
also for user-interfaces, technical drawings, charts, etc.

Following is an example that includes GIS attributes in map
data. Within the doctype the attribute lists for the <svg /> and
<path /> elements are extended:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
 "http://www.w3.org/Graphics/SVG/1.1/DTD/
 svg11.dtd" [
<!ATTLIST svg xmlns:attrib CDATA #IMPLIED>
<!ATTLIST path

attrib:ctry_code CDATA #IMPLIED
attrib:ctry_name CDATA #IMPLIED

>
]>
<svg width="100%" height="100%"
viewBox="-2726130 -5330377 6272480 5460306"
xmlns="http://www.w3.org/2000/svg"
xmlns:attrib="http://www.carto.net/attrib/">
 <g id="countries" style="fill:none;">
 <g id="countries_AD">
 <path id="ctry_336" attrib:ctry_code="AD"
 attrib:ctry_name="Principality of Andorra"
 d="M-679572 -1398092l-464 “ />
 ...
 </g>
 </g>
</svg>

For the inclusion of metadata, the W3C consortium
recommends the use of the RDF (resource description
framework) or the Dublin core standard. The RDF fragments
should be included in a <metadata /> tag and should be defined
in a foreign namespace (e.g. Rdf). Hier Referenz auf RDF
geben.

3. WHY USE SVG FOR E-LEARNING?

3.1 Strengths of the SVG approach

SVG is well suited to play a major role in E-Learning
environments. The visualization options available in SVG
graphics go beyond competing file formats. Any attribute can
be animated and the available interactivity options and script
bindings allow the building of fully interactive applications
that do not need to hide from stand-alone offline multimedia
applications. It is important to note that SVG should be used as
a complementary technology and in conjunction with other
established web-technologies, such as XML, XHTML, static
raster graphics and movies. SVG is primarily a presentation
and exchange format that can and should be generated out of
other storage formats, databases and XML sources.
Specifically, it is recommended that one uses SVG in
connection with other XML based e-learning markup
languages, such as ELML (Bleisch, Fisler, 2005). SVG should
be used for static illustrations, animations and interactive
applications.

It is a fact that interactive applications can motivate students.
Interactivity can involve and immerse students compared to a
dry verbal and static presentation. Benjamin Franklin said "Tell
me and I forget. Teach me and I remember. Involve me and I

learn". One can let the student solve the problem himself,
directly with an interactive SVG application. Specific learning
goals can be isolated and students can concentrate on the
essential tasks rather than first having to learn complex GIS
applications.

When using SVG to teach or illustrate phenomena, one can
involve students in different levels of integration. In a first
level one can introduce and explain the subject in movie-like
animations with a low level of interactivity. The student could
still determine the speed of the progress by letting him choose
the speed of the animations or by letting him step forward and
backwards whenever he wants. In a next level one could guide
the student through a workflow and support him with wizard-
like interfaces where the student is confronted only with simple
decisions within the current context of the workflow. In the
highest level of interactivity and complexity, one could leave
all decisions open to the student without forcing him into
certain chronologic sequences. Finally, after a student worked
through an e-learning lesson, he can take self assesments or
exams, to test whether the student understood the topic and can
correctly use and apply the newly acquired knowledge, both in
theory and practice.

The extensibility features of SVG allow to introduce domain
specific extensions and share components with other SVG
content developers. Metadata can be included in a text-based
format that can be equally well read and/or understood by
humans and machines. Its text-based nature and the option to
embed semantics and context directly in the file format make
SVG substantially more accessible than any other graphics
format. Search engines can easily analyze the context and
semantics of SVG files and applications. They can index title
and description tags.

A feature that made HTML successful in the early days of the
web is the ability to view the source code of webpages. This
way, web developers can learn from other websites and "look
under the hood" of Javascript and DHTML applications.
Learning (D)HTML and Javascript does not require expensive
courses or certifications but can be learnt by anybody who is
willing to invest some time for "learning by coding" and is
open to learning from other developer's source codes. Unlike
many proprietary technologies, such as Flash or already
compiled Java applets, which are usually like black boxes, the
source code of SVG applications can always be analyzed.
Additionally, discussion boards and mailinglists exist where
developers can share ideas, code and support new developers.
These mailinglists are available for almost any open
webstandard and are often faster and better than commercial
support. Many examples, tutorial and demo sites exist for SVG
where people can learn from each other. Good starting points
are (Meinike, 2005), (Hirtzler, 2005d), (Lindsey, 2005) and
(Held/Neumann/Williams/Winter, 2005).

The "learning by coding" approach is especially interesting
with SVG, since students can directly manipulate graphics and
visualizations by changing elements and attributes in the
source code. That way, students can learn complex subjects,
such as geometry, mathematics and programming in a fun and
intuitive way. Teaching experience has shown that students are
usually highly motivated if they can immediately see feedback
of their programming efforts, even if the courses are more
difficult and time-consuming than the average course in their
curriculum. Good SVG editing environments allow
simultaneous work in the source-code or document tree and
graphically in the SVG canvas, with the support of GUI based
drawing tools. Updating the canvas graphically, automatically
adjusts the source code and vice versa.

One significant advantage of SVG is its XML base. Web
developers that are already familiar with (X)HTML, Javascript,
XML, CSS and XSLT can immediately use their existing
knowledge when learning SVG. The XML base means that
SVG content can be created by any text or XML-editor. While
it is generally useful to use graphics software or specialized
SVG editors for creating or editing SVG content, it is possible
to edit content with free text-editors. That means that one can
also quickly adopt existing SVG files over low-bandwidth
terminal sessions, directly on a webserver.

SVG is also particularly useful for data driven visualization of
business data, charts, maps and technical drawings, as it can be
generated using XSLT conversion or any scripting or
programming language the developer is familiar with.
Developers are therefore not limited to a specific serverside
framework and there aren't any vendor lock-ins. Furthermore,
many GIS or spatial databases already support SVG
generation. Having defined conversion rules, updating the SVG
presentation is easy and can be automated.

For deploying SVG files and applications, there is usually no
license fee necessary. Last but not least, it is important to
mention that the development of the SVG specification is open
to everyone. Everyone is invited to give feedback on the public
W3C SVG mailinglist (W3C, 2005). Members of the SVG
working groups, however, need to be either W3C members or
"invited experts" due to their valuable contributions. The
current members of the W3C SVG working group represent a
good average of the graphics and mobile hard and software
industry as well as private persons and research institutions. In
contrast, proprietary graphics formats, although sometimes
documented, are usually under complete control of one
company and are often patented. Quite often, if a company
goes bankrupt, continuous support is not guaranteed.

3.2 Weaknesses of the SVG approach

Apart from all the positive aspects of SVG there are
unfortunately also weak aspects. One issue is that it takes
longer for SVG to penetrate the web developer market than
initially expected, mainly because important software
companies, such as Microsoft and former Macromedia did not
actively support SVG. So far, the Adobe SVG viewer plugin is
needed to view SVG content. Currently, that viewer has around
30% market penetration. It was only recently, that Opera and
Mozilla announced native SVG support for their browsers.
Even Adobe had temporarily slowed down SVG support for a
while, because some Adobe managers saw it as a threat to
PDF, the current number one money maker of Adobe. Luckily,
that attitude changed and Adobe is again more actively
supporting SVG. SVG meanwhile also enjoys widespread
support in the Open Source scene. The SVG file format is
supported by the two major Unix desktops (KDE and Gnome).
Many OS vector graphics or layout software projects support
SVG for import and export. Some of them even use it as their
native file format.

The situation is much better with mobile phones. SVG was
from the beginning part of the 3GPP standard, and mobile SVG
viewers are already widespread available in many 3rd

generation mobile phones. SVG is now also natively supported
by the Opera and Mozilla mobile versions. Finally, most of the
mobile phone vendors, such as Nokia, Motorola, etc. actively
support SVG.

One major drawback of the SVG approach is that good tools
for content creation are still in their infancy. While it is trivial
to create static and animated SVG graphics, tools for scripting

development are not yet mature. Hence, the content creation of
highly interactive content is still reserved to the more computer
literate developers who are used to directly working in the
source code. However, that situation is going to change in the
long run, esp. with the native integration of SVG in the
Mozillla browsers. Several existing ECMAScript debugging
tools support professional ECMAScript and SVG development.
Debuggers are currently integrated in the Apache Batik project,
the eSVG product and the Mozilla and Firefox webbrowsers.

Finally, there is the problem of not being able to hide the
source code effectively. This can be a positive feature, but
quite a few content creators are hesitant to use open standards
where they cannot use code protection. While methods exist to
obfuscate Javascript or disable the "View Source" function in
the Adobe SVG viewer, it is usually trivial for computer
literate people to still have access to the source code. This is
also possible for documented binary formats, such as Flash.
Quite a few programs exist to decompose swf files and extract
the individual media elements, such as graphics, movies and
text. To be able to hide the source code in the future, Adobe is
looking into the so-called digital rights management.

4. USAGE SCENARIOS AND EXAMPLES FOR SVG
IN E-LEARNING ENVIRONMENTS

As already mentioned in section 3.1 it is recommended to not
use SVG exclusively, but in collaboration with other
webstandards such as XHTML, CSS, XML and XSLT. XML
should be used to store the content, while XHTML and SVG
can be used for presentation. This strict separation of content
and presentation ensures that one can easily generate various
versions or deliver content for several output devices by simply
applying different stylesheets or conversion rules. The
following list of usage scenarios and examples is only
exemplary and by no means complete – good starting points
for finding additional SVG examples are http://www.svgx.org/,
http://www.svg.org/ and http://www.carto.net/papers/svg/links/

4.1 Geometry, Mathematics and Computer Graphics

SVG offers all the basic shapes needed to visualize geometric
and mathematical problems. Animation and interactivity can be
used to show solutions. Interactivity can also be used to let
students demonstrate solutions in self assesments and exams.
Examples for SVG in mathematics and geometry can be seen
in (Hirtzler, 2005d), (Dagan, 2005) and (Crocodile Software,
2005). The latter citation points to an offline commercial e-
learning software that uses the Mozilla webbrowser with SVG

Figure 5: Animated visualization of the "Folium of Descartes"
curve, © Samuel Dagan

support for the rendering part. Kevin Lindsey (Lindsey, 2003a)
provides a good tutorial on how to recursively draw bezier
curves with SVG illustrations.

4.2 Engineering, Simulations and Technical
Documentation

SVG is well suited for teaching engineering subjects,
presenting technical drawings and explaining, visualizing or
simulating instruments. Animations can visualize the operation
of machines, technical devices or circuit diagrams. In technical
drawings one can display non-graphical attributes (such as
article numbers or part names) on mouse-over. Tooltips or
infopanels can be used for that purpose. In simulations, the
user can interactively manage control panels, control flows or
change environmental parameters.

Examples include electrical troubleshooting diagrams from
Hyundai (Hyundai, 2003), an animation of the principle of the
Wankel engine (Bottoni, 2005), an animation of the
functionality of a micro controller (Kollhof, 2005a), animations
and graphics on control systems and real-time metering (Nick,
2005) and SVG-based instruments visualization (Wade
Johnson, 2005).

4.3 GIS and Cartography

The rich visualization and interactivity options of SVG make it
particularly useful for mapping and GIS. The available fill and
stroke options, symbols and markers enable higher quality map
graphics and complex symbolizations. Interactivity helps
display additional non-graphical data and enables analysis
functions. Basic GIS functionality can be directly implemented
in SVG, while more complex GIS analysis functions can be
delegated to serverside GIS or spatial databases. In the latter
case, SVG is only used as a presentation tool. Data acquisition
and analysis functions can be directly practiced in interactive
SVG applications. Complex workflows can be explained and
split up into smaller exercises.

An example for using SVG in mapping applications is the
Tirolatlas (Förster/Winter, 2005 – currently requires Internet-
Explorer on Windows), an innovative online atlas containing
maps, charts, text and tables. An online digitizing tool
(Neumann, 2004) demonstrates GIS data acquisition through
digitizing where the output can be directly saved into a spatial

Figure 6: Crocodile Mathematics - a Mozilla and SVG based
offline e-learning application, © Crocodile Software

Figure 7: Animated visualization of a microcontroller layout,
© Jan Kollhof, Source: (Kollhof, 2004a)

Figure 8: Animated visualization of the Wankel engine,
© G. Bottoni, Source: (Bottoni, 2005)

Figure 9: Interactive and animated visualization of a co-
generation facility, © Jay Nick, Source: (Nick, 2005)

database. Additional examples include an illustration of a line
simplification algorithm (Lindsey, 2003) and a demonstration
of the Dijkstra shortest path algorithm (McCormack, 2004).

4.4 Programming and Visualization of Algorithms

Students are usually highly motivated if they can program
graphical applications, because they can immediately see
feedback and the results are less abstract than with other
programming exercises. SVG can also be used for illustrating
the functionality of algorithms. The algorithm source code or
pseudo code can be displayed next to the graphical result and
the program code can be stepped through. This way, the
relation between a line in the source code and the influence on
the graphical representation is made obvious.

Examples include Jan Kollhofs demonstration of a sorting
algorithm (Kollhof, 2004b) and Thomas Meinikes SVG
demonstrations "SVG - Learning by Coding" (Meinike, 2005),
an extensive collection of SVG code examples.

4.5 Games and Kids

Many examples show the usefulness of SVG for smaller games
and animations. Games can have a high pedagogical value if
they are carefully authored and transport learning subjects
adequate to the age of the intended audience. Useful games are
crossword puzzles, quizzes in any subjects, finding locations in
maps, ordering and structuring geographic phenomena or
solving geometrical or mathematical problems.

Examples include the "Tirol for Kids" section in the Tirolatlas,
containing various geography or cartography related
animations and games for learning and testing the geography
knowledge of kids and students (Förster/Winter, 2004). A
website dedicated to SVG and gaming (Ellis, 2005) lists a
number of SVG based games.

5. SVG CONTENT GENERATION

Although easy and user friendly SVG development tools are
still in their infancy, there are already more options to generate
SVG content than for any other graphics format. Following is a
non-exhaustive list of SVG generation options. In many cases a
combination of different generation or conversion options lead
to a satisfying result.

Figure 10: SVG based interactive digitizing tool,
© A. Neumann, Source: (Neumann, 2004)

Figure 11: Interactive visualization of the Dijkstra shortest path
algorithm, © C. McCormack, Source: (McCormack, 2004)

Figure 12: Animated visualization of a sorting
algorithm, © Jan Kollhof, Source: (Kollhof, 2004b)

Figure 13: "Nah dran", an SVG game for testing geographic
knowledge, © Tirolatlas, Source: (Winter/Förster, 2004)

5.1 Text Editors and XML Editors

The text or XML base of SVG is probably one of the largest
advantages. It allows the creation of content in any simple text
editor, even across small bandwidth network connections.
XML editors are more comfortable and allow validation of
SVG syntax. Many XML editors also support code folding and
typing support. Some editors feature an internal preview of the
graphical rendering of the SVG content.

5.2 Graphics Format Converters

Many general purpose graphic converters nowadays support
SVG for reading and writing. Specific converters, such as the
Docsoft QuickSVG CGM to SVG converter (Docsoft, 2005),
even support the conversion of interactivity functions or the
inclusion of non-graphical data.

5.3 Graphics Software

Most companies developing graphics or CAD software also
support SVG, among them Adobe (with Illustrator) and Corel
(with CorelDRAW). Almost all open source graphics software
supports SVG for import and/or export.

5.4 Specialized SVG Editors

Specialized SVG editors usually use SVG as their native file
format. They are specifically tailored towards the features of
SVG. While the creation of SVG static geometry and simple
animations is currently covered well enough, most editors still
lack professional scripting and interactivity support. Creating
complex interactive SVG applications still requires good
programming skills. In this category there are SVG editors
such as the Open Source Inkscape (Inkscape, 2005) project, an
animation editor from Ikivo and Adobe (Ikivo, 2005), and
RapidSVG (Xstream, 2005), a tool specifically tailored
towards e-learning, with support for simple GUI widgets.

5.5 SVG printer drivers

SVGMaker provides a SVG printer driver for the Windows
platform, which enables SVG printing support for any
Windows application. The program works similar to the Adobe
Distiller software and also provides a control for page
navigation in multipage documents.

5.6 XSLT Conversion

SVG developers can benefit from the fact that SVG is XML
based and can easily convert SVG content from any XML data
utilizing XSLT conversion. This method is particularly useful
for data-driven applications and documents that need
automated conversion workflows.

5.7 Scripting and Programming Languages

Again, developers can benefit from the text-base of SVG. Any
programming language provides text file output. Many
programming or scripting languages even provide libraries for
reading and/or writing SVG content.

5.8 Export from Databases

Many (spatial) databases already provide SVG export support
for maps and charts. Examples include Postgis/PostgreSQL
and Oracle. Given the fact that most DBMS provide procedural
language extensions and APIs to most popular programming

languages it is relatively easy to extend other DBMS for that
purpose.

5.9 Export from GIS or Mapping Servers

Most of the current GIS software vendors already support SVG
either as an export format or as part of their webmapping
server products. Companies that support SVG include ESRI,
Intergraph, Microimages, Smallworld, Safe Software (FME)
and many third party vendors that enhance existing GIS with
more sophisticated SVG export functions. Examples of third
party products are MapViewSVG (UISMedia, 2005) for ESRI
and SVGMapMaker from DBXGeomatics (DBXGeomatics,
2005) for Mapinfo.

6. NEW DEVELOPMENTS IN THE UPCOMING SVG
1.2 SPECIFICATION

Compared to the SVG 1.1 specification, in which the W3C
introduced sub profiles, the SVG 1.2 specification is a major
upgrade. Numerous new features potentially enhance the
multimedia experience, add new graphics, visualization and
networking options, and improve and facilitate interactivity
and application development. The new features listed below
are only a very brief summary of the upcoming SVG 1.2
additions and improvements. For a full list of new features,
please consult (W3C, 2005). The introduction of the SVG 1.2
specification is not without controversy, as it partially overlaps
with the scope of other webstandards and is becoming
increasingly complex.

6.1 XBL Support (XML Binding Language)

sXBL will allow custom markup extensibility via pre-packaged
components. Developers can create re-usable higher level
components in a custom XML vocabulary. It builds on the
concept of a shadow tree containing lower level SVG elements
that will be rendered instead of the original custom markup.
The shadow tree will be generated using templates and
scripting. Applications for XBL are widgets, visual effects and
domain specific extensions with common markup.
Cartographers could e.g. define a XBL version of north arrows
or scalebars. It is beyond the scope of this article to explain the
functionality of the XBL technology.

6.2 Text Wrapping

SVG 1.2 finally adds text wrapping support. Text can flow in
arbitrary shapes and is constantly updated if the connected
shape changes size and shape. Exclude shapes can define
obstacles a text has to wrap around. FlowText can have a
different coordinate system than the linked flowRegion. This
means if a flowRegion is rotated, the text lines can stay
horizontally aligned. Hourglass example, Pilat Example.

6.3 Editable Text and Text Selection Events

Implementing editable text (e.g. text input form elements) in
SVG up to version 1.1 was complicated. One had to write
relatively complex script constructs to simulate text input
boxes or implement simple text editors. SVG 1.2 will add an
"editable" attribute that allows the editing of single text
elements or flowtext. A text selection interface will allow
script access to the text selection mechanism and add events
that fire if a text was selected.

6.4 Official Audio and Video Support

While the Adobe SVG viewer supports audio with a
proprietary extension since version 3, SVG 1.2 now officially
adds support for audio and video media. At the time of writing
it has not officially been decided what video formats and
codecs are mandatory and which are optional. The SVG viewer
should, however, at least support the royalty free ogg vorbis
audio format. Next to the usual SMIL attributes and
synchronization options, the <audio /> and <video /> elements
support an "audio-level" (volume) attribute. Video content can
be transformed, clipped and masked and may be overlayed by
transparent elements or can be transparent by itself. SMIL
elements or script interfaces can control the playback of the
media.

6.5 Transition Effects

SVG 1.2 supports the transition effects (e.g. checkerboard,
dissolve, blending, etc.) defined in SMIL 2.0. These effects are
useful for multipage documents, presentations or slideshows.
The effects are already implemented in the Adobe SVG viewer
version 6.

6.6 Multipage Support

New <pageset /> and <page /> elements will enable multipage
support. This feature should be useful for presentations,
multipage publications, books, cartoons, etc. Until now, one
had to simulate this feature by changing the visibility or
display attribute on groups simultaneously. Page navigation
should be possible by SMIL, script or page keys.

6.7 Streaming Support and Progressive Rendering

Streaming support allows viewers to start displaying content or
start animations while the file is still downloading. For that
purpose, authors can specify that the timeline starts "onStart",
after an elements opening tag is fully parsed, or "onLoad" (the
default) which is fired after a tag is fully processed. Authors
can also define whether content can be discarded after using it,
or if the viewer needs to keep it because other elements still
need to reference it. The new specification also defines how
progressive rendering should be implemented. A "prefetch"
attribute controls when external resources need to be loaded.

6.8 Better Time Control

In SVG 1.2 it will be possible to control the playback speed of
animations. Values are relative to the parent time container.
Negative values cause elements to play backwards. In SVG 1.2
the author can introduce multiple independent time containers.
Additional time containers may be nested. In that case, the
"speed" attribute accumulates. Until now, animation playback
could only be controlled globally. It will also be possible to
"jump" directly to a snapshot in time. In the future, animations
and media elements can also be started using access keys.

6.9 Multiresolution Images

SVG 1.2 will support multiresolution images. Threshold values
("min-pixel" size and "max-pixel" size) control what content
("subImage") will be displayed. SubImages can contain both
raster and vector graphics and have the usual "x", "y", "width"
and "height" attributes that can be used to determine which
parts of the subImages need to be displayed.

6.10 Vector Effects

Vector Effects are particularly interesting for GIS and
cartography, but also for interactive drawing applications. They
serve several purposes: multistroking and multifilling allow the
combination of various fill and stroke options, e.g. a gradient
can be applied in combination with a pattern or uniform color
to the same geometry, or a multistroke freeway line signature
can be made up of several stroking options. A setBack effect
can interrupt stroking before and after a vertex. Reverse allows
to reverse a path, thus affecting animations and markers. Join
and "vePathRef" allow the buildin of a new path out of other
paths. This method can be used to build simple topological
structures by building polygons out of edges. Union, intersect
and exclude allow the combining, intersection and substraction
of paths.

6.11 Additions to the Rendering Model and Enhanced
Compositing

SVG 1.2 introduces a background element and new options for
alpha compositing, such as clip-to-self, knock-out and "comp-
op". Comp-op specifies composition operators, such as "xor",
"multiply", "difference", "exclusion", "lighten", "darken".

6.12 Extended Links

Extended links allow links to multiple targets where the user is
presented with a choice (e.g. menu or popup list). This is useful
for many interactive applications, e.g technical drawings. A
switch may even provide text in different languages.

6.13 Application Development, Scripting and DOM
enhancements

One goal of this specification section is to finally standardize
existing proprietary extensions, such as the network interfaces
".getURL()" and ".postURL()" or the "window" object.
Furthermore, there will be support for focus and navigation and
tooltips. DOM enhancements will introduce better support for
coordinate system translations and a new "wheel" event for
mouse wheels or "jog dials". There will also be better network
interfaces (e.g. URL Request or sockets, including the option
to abort a request), a progress event that allows the monitoring
of download progress, and a better timer interface. A file
upload dialog and the possibility for persistent client side
storage support (similar to cookies) further facilitate SVG
application development.

7. SVG BOOKS AND WEBSITE REFERENCES

7.1 Selected SVG Books:

Bader, H., 2004, SVG Reporting, Software und Support
Verlag.

Cagle, K., 2002, SVG Programming, The Graphical Web,
APress.

Campesato, O., 2003, Fundamentals of SVG Programming:
Concepts to Source Code (Graphic Series), Charles River
Media.

Eisenberg D., 2002, SVG Essentials, O'Reilly.

Fibinger, I., 2002, SVG - Scalable Vector Graphics,
Praxiswegweiser und Referenz für den neuen
Vektorgraphikstandard, Markt und Technik.

Frost, J., Goessner S. and M. Hirtzler, 2003, Learn SVG, Self
Publishing (http://www.learnsvg.com/). Also available as an e-
book, in french language and with online tutorials.

Laaker, M., 2002, Sams Teach Yourself SVG in 24 Hours,
Sams Publishing.

Watt, A. and Lilley C., et.al, 2002, SVG Unleashed, Sams
Publishing.

7.2 References from websites:

Adobe, 2005a, Adobe SVG Viewer Download Area,
http://www.adobe.com/svg/viewer/install/ (accessed 26 Apr.
2005)

Adobe, 2005b, Adobe SVG Viewer Pre-Release Download
Area, http://www.adobe.com/svg/viewer/install/beta.html
(accessed 26 Apr. 2005)

Apache Batik, 2005, Batik SVG toolkit,
http://xml.apache.org/batik/ (accessed 26 Apr. 2005)

Bleisch S. and J. Fisler, 2005,
https://sourceforge.net/projects/elml/ (accessed 29 Apr. 2005)

Bottoni G., 2005, Motore Wankel,
http://mail.cilea.it/~bottoni/wankel/wnkl.htm (accessed 29 Apr.
2005)

Crocodile Software, 2005, Crocodile Mathematics,
http://www.crocodile-
clips.com/crocodile/mathematics/index.htm (accessed 29 Apr.
2005)

Dagan S., 2005, Math Animated,
http://www.mathanimated.com/ (accessed 29 Apr. 2005)

DbxGeomatics, 2005, SVGMapMaker,
http://www.dbxgeomatics.com/products/svgmapmaker/SVGM
apMaker.aspx (accessed 29 Apr. 2005)

Docsoft, 2005, Quick.SVG 2005, http://www.quicksvg.com/
(accessed 29 Apr. 2005)

Ellis D., 2005, SVG Games, http://a.1asphost.com/svggames/
(accessed 29 Apr. 2005)

FontForge, 2005, FontForge, http://fontforge.sourceforge.net/
(accessed 27 Apr. 2005)

Förster K. and A. Winter, 2005, Tirolatlas,
http://tirolatlas.uibk.ac.at/ (accessed 29 Apr. 2005)

Held G., Neumann A., Williams J. and A. Winter, 1999-2005,
Scalable Vector Graphics Examples and Articles,
http://www.carto.net/papers/svg/samples/ (accessed 26 Apr.
2005)

Hirtzler M., 2002, SVG Filters,
http://pilat.free.fr/svgopen/paper.htm (accessed 27 Apr. 2005)

Hirtzler M., 2005a, Using SVG filters,
http://pilat.free.fr/english/filters/index.htm (accessed 27 Apr.
2005)

Hirtzler M., 2005b, keyspline,
http://pilat.free.fr/english/animer/keysplines.htm (accessed 28
Apr. 2005)

Hirtzler M., 2005c, keytimes,
http://pilat.free.fr/english/animer/keytimes.htm (accessed 28
Apr. 2005)

Hirtzler M., 2005d, Pilat Informatique Educative,
http://pilat.free.fr/ (accessed 29 Apr. 2005)

Hyundai, 2003, Hyundai 2003 Tiburon Sample ETM,
http://www.hmaservice.com/svgdemo/ (accessed 29 Apr. 2005)

Ikivo, 2005, Ikivo Animator,
http://www.ikivo.com/animator/index.html (accessed 29 Apr.
2005)

Inkscape, 2005, Inkscape - Open Source Scalable Vector
Graphics Editor, http://www.inkscape.org/ (accessed 29 Apr.
2005)

KDE developers, 2005, KSVG, http://svg.kde.org/ (accessed
26 Apr. 2005)

Kollhof J., 2004a, Microspatz – Micro Controller Simulation,
http://jan.kollhof.net/projects/svg/examples/microspatz/micros
patz.svg (accessed 29 Apr. 2005)

Kollhof, J., 2004b, A sorting algorithm visualization,
http://jan.kollhof.net/projects/svg/examples/sort.svg (accessed
29 Apr. 2005)

Lilley C., Jackson D., J. Ferraiolo et al, 2005, Scalable Vector
Graphics – XML Graphics for the Web,
http://www.w3.org/Graphics/SVG/ (accessed 26 Apr. 2005)

Lindsey K., 2001-2005, SVG Examples,
http://www.kevlindev.com/ (accessed 26 Apr. 2005)

Lindsey K., 2003a, Drawing Bezier Curves,
http://www.kevlindev.com/tutorials/geometry/bezier/index.htm
(accessed 29 Apr. 2005)

Lindsey K., 2003b, Simplifying a Polyline,
http://www.kevlindev.com/tutorials/geometry/simplify_polylin
e/index.htm (accessed 29 Apr. 2005)

Lindsey K., 2005, Filters,
http://www.kevlindev.com/tutorials/basics/filters/feComponent
Transfer/index.htm (accessed 27 Apr. 2005)

McCormack C., 2004, Demonstration of Dijkstra's shortest
path algorithm, http://mcc.id.au/2004/12/shortest-path.svg
(accessed 29 Apr. 2005)

Meinike Th., 2005, Daten verdrahten, SVG - Learning by
Coding, http://www.datenverdrahten.de/svglbc/, (accessed 29
Apr. 2005)

Mozilla, 2005, Mozilla SVG Project,
http://www.mozilla.org/projects/svg/ (accessed 26 Apr. 2005)

Neumann A., 2003, Example for an animated bus track,
http://www.carto.net/papers/svg/samples/animated_bustrack.sh
tml (accessed 29 Apr. 2005)

Neumann A., 2004, Digitizing Tool,
http://www.carto.net/papers/svg/digi/ (accessed 29 Apr. 2005)

Neumann A. and J. Williams, 2005a, Manipulating SVG
Documents Using ECMAScript and the DOM,
http://www.carto.net/papers/svg/manipulating_svg_with_dom_
ecmascript/ (accessed 27 Apr. 2005)

Nick J., 2005, SVG Demos of Control Systems and Real-Time
Metering Systems,
http://www.wpsenergy.com/JayNick/default.asp (accessed 29
Apr. 2005)

Opera, 2005, Ahead of the game: Opera introduces Native
SVG support in Desktop Release,
http://www.opera.com/pressreleases/en/2005/03/16/ (accessed
26 Apr. 2005)

UISMedia, 2005, MapViewSVG, http://www.mapview.de/eng
(accessed 29 Apr. 2005)

Wade Johnson, G., 2005, SVG based Instruments Demo,
http://www.anomaly.org/wade/projects/instruments/Instrument
s.svg (accessed 29 Apr. 2005)

Winter A. and K. Förster, 2004, Tirol for Kids,
http://tirolatlas.uibk.ac.at/ (accessed 29 Apr. 2005)

W3C, 2005, Scalable Vector Graphics (SVG) Full 1.2
Specification, http://www.w3.org/TR/SVG12/ (accessed 29
Apr. 2005)

Xstream, 2005, Xstream RapidSVG, http://xstreamsvg.com/
(accessed 29 Apr. 2005)

7.3 Acknowledgements

I'd like to thank the SVG community and W3C SVG working
group for providing numerous examples and their continuous
support with SVG and programming problems. The open
source community provides various SVG authoring and
viewing software for free. Specifically, I'd like to thank the
Batik, Inkscape, KSVG, librSVG and Mozilla team.
Furthermore, I'd like to thank the Adobe SVG team for their
feedback and fruitful discussions which helped solving SVG
development problems or introducing new features in the SVG
specification. My girlfriend Juliana Williams helped correcting
my typos and disentangling complicated sentences.

