
INTRODUCTION INTO SECOND GENERATION WEB APPLICATIONS
APPLYING XML

Guenter Pomaska

 University of Applied Sciences Bielefeld, Faculty of Architecture and Civil Engineering,

Laboratory for Visual and Virtual Reality, Artilleriestr. 9, D-32427 Minden
gp@imagefact.de

Commission VII/2

KEY WORDS: Mark-up Language XML, Scalable Vector Graphics, Extensible 3D, PHP

ABSTRACT:

Second generation Web applications, are based on Extensible Mark-up Language (XML) and related technologies. HTML based
applications are directed towards publication. In future, XML will be focus on structured information storage, interaction and
distributed processing of data.

XML is a meta language for structuring data. XML uses tags, keywords in angle brackets, and attributes, followed by values
embedded in double quotation. Comparing to HTML, the meaning of the tags and attributes is not defined in XML. Interpretation
follows the application. XML files are plain text files, readable with simple text editors. Applying XSL (Extensible Style Sheet
Language) provides translation into formats for Web browsers or print media.

SVG (scalable vector graphics) stands as a Web standard for two-dimensional graphics, formulated in XML. Vector graphics need
less storage memory and display as enlargement better quality as raster graphics can do.

VRML (Virtual Reality Modelling Language), the former Web standard for three-dimensional graphics, is now redeemed by the
standard document type definition for extensible 3D (X3D).

Members of the XML family of languages will become in a short time period substantial impact in the field of E-learning. XML
documents can be downloaded from a server and published on any client sided platform. Dynamic Web applications provide
documents upon user requests with access to a XML database. Software vendors take advantage from XML files because of the
powerful support by object oriented programming languages, like Java or PHP. In addition, the open standard of XML makes it an
ideal tool for E-learning communication.

1. STATIC AND DYNAMIC WEB SITES

1.1 Client-Server Architecture

Applying a client-server architecture does not require a
computer network configuration. One can install a Web server
and a Web browser on the same computer. The client (here the
browser) sends a request to the server, addressed by localhost.
The server is looking for the requested document, transfers the
document to the client and the browser is rendering the file
information into a readable format. The language, a browser
understands, is HTML Hypertext Mark-up Language.
Communication between server and client is agreed via a
protocol, the Hypertext Transfer Protocol. The process is
known under the term static Web application. Major software
components of the Web are the Web browser, the http-protocol,
the description language HTML and the Web server. static Web
publication. Some of the software enhancements are mentioned
later in this contribution.

1.2 Client Sided Dynamic

While a Web site is changing its appearance or content by user
interaction without loading a new document, we talk about
client sided dynamic. The document object model DOM
enables access to any object (element) and its attributes, that is

included in a Web document. The DOM is implemented in
JavaScript, an extension to Web browsers. We focus here to a
small application calculating control points by spatial
intersection.

JavaScript has a hierarchical structure of application objects.
Under the document level there are form objects existing. A
form itself, is followed by elements. Forms and elements can be
identified by names. If we want to set the value of one of the
input fields in the sample shown in figure 1, we have to code
document.vws.xctrlpt.value = “100.00”; vws stands for the
name of the form, xctrlpt is the name of an input field, value is
the attribut for the content. The HTML coding, applying the
input-tag, reads as follows:

<form name="vws">
<input name="xctrlpt" value=" "
 type ="text" >
</input>
</form>

Inside the angle brackets more attribute definitions can occur.
This short explanation will help understanding the data
exchange between a Web site and PHP programs.

Figure 1. Calculating control points

1.3 Server Sided Dynamic Applying PHP

PHP Hypertext Pre-Processor is a server extension. The
language is embedded in HTML documents. If the server
detects PHP commands, the code will be carried forward to the
PHP interpreter where the HTML code will first generated and
after processing submitted to the client. The PHP code is not
visible for the client. The browser receives the resulting HTML
code only. The PHP interpreter supports amongst others XML
processing, SQL data base functions, graphics and file access.

2. DESIGN OF A XML STRUCTURE

2.1 XML Extensible Mark-up Language

XML Extensible Mark-up Language is a meta language to
structure information. XML uses tags, keywords in angle
brackets with additional attributes, to enclose content.
Compared with HTML, the denotation of the tags are defined
not and will be interpreted first by the application.

XML files are plain text files. Rendering XML files require
other technologies. XML documents are starting with a
prologue, followed by the root element. The prologue basically
displays details for the (DTD Document Type Definition) as
stated below. The data used in the following examples are taken
from a close-range photogrammetric Application.

<?xml version="1.0" encoding= "ISO-8859-1"
standalone="yes" ?>
<!DOCTYPE imageBundle SYSTEM
"imageBundle.dtd">
<imageBundle>
 <!--Inhalt des Dokuments -->
</imageBundle>

The root element imageBundel instances a document class, that
is defined in the !DOCTYPE statement. An element and its
subelements are represented by nodes in the tree structure. The
element itself consists of a start-tag, the content and an end-tag.
Attributes can be found in the start-tag. A photogrammetric
camera definition may look as follows:

<cameraData>
 <camera>
 <type>nikon_28</type>
 <ck>-18.23718</ck>
 <xh>-0.09973</xh>

 <yh>-0.01304</yh>
 <a1>-3.03846E-004</a1>
 <a2>6.43569E-007</a2>
 <formX>23.462</formX>
 <formY>15.600</formY>
 </camera>
</cameraData>

A Web browser displays the tree structure of that document. By
simply clicking the symbols, the nodes can be closed or opened,
as shown in figure 2.

Figure 2. Tree structure of an XML document

2.2 XSL Extensible Stylesheet Language

Translation into another format is provided by the XSL
Extensible Style Sheet Language. A XSL processor can be
applied by the Web browser or server sided by the application.
An off-line translation results in a HTML document to be stored
on the server. Another important tool is XPATH. XPATH
provides search patterns and enables extractions form XML
documents. An external XSL file has to be referenced in the
prologue by the statement:

<?xml-stylesheet version="1.0"
href="template.xsl" type="text/ xsl" ?>

We do not discuss the details of XSL here. An application of
the for-each and value-of select statement may be give an idea
how a XSL document is parsed by an XSL processor:

<xsl:for-each
 select="the search pattern">
 <tr>
 <td class = "tab_value"
 <xsl:value-of select="type"/>
 </td>
 </tr>
</xsl:for-each>

HTML tags are combined with XSL statements. The prefix xsl:
defines the namespace, the class definition defines the
appearance of the element in the browser.

2.3 DTD Document Type Definition

XML documents can be well formed or guilty. A well formed
document becomes a guilty document by adding a DTD. A
DTD defines the grammar for information processing of the
XML file. All elements, attributes entities and specifications
about quantity, content and nesting of elements must be
predefined in a DTD. An extract of the DTD applied in the
example is shown partly as follows:

<!DOCTYPE imageBundle [
 <!ELEMENT imageBundle (controlPoints*,
 cameraData* ,
 photoPositions*,
 orientationPoints*,
 graphicElements*)>
 <!ELEMENT controlPoints (point*)>
 <!ELEMENT point (pnr*, code*, x+, y+,
 <!ELEMENT pnr (#PCDATA)>

z+)>

function inhalt($parser,$data){
 global $curr_tag,$index,$camera
 switch ($curr_tag){
 case "type": $index=$data;break;
 case "ck": $camera[$index][ck]=$data;break;
 case "xh": $camera[$index][xh]=$data;break;
 case "yh": $camera[$index][yh]=$data;break;
 case "a1": $camera[$index][a1]=$data;break;
 case "a2": $camera[$index][a2]=$data;break;
 case "formX": $camera[$index][formX]=

 ...
 <!ELEMENT cameraData (camera+)>
 <!ELEMENT camera
 (type+, ck+, xh+, yh+, a1+, a2+,
 formX+, formY+)>
 <!ELEMENT type (#PCDATA)>
 <!ELEMENT ck (#PCDATA)>
 <!ELEMENT xh (#PCDATA)>
 <!ELEMENT yh (#PCDATA)>
 <!ELEMENT a1 (#PCDATA)>
 <!ELEMENT a2 (#PCDATA)>
 <!ELEMENT formX(#PCDATA)>
 <!ELEMENT formY(#PCDATA)

Details can not be discussed here. It must be annotated, that the
DTD will be replaced by the more powerful Xschema in future.

With XML, XSL and DTD structured information is separated
from processing and prepared for further processing with
object-oriented programming languages in client-server
environments.

3. PARSING XML FILES WITH PHP

3.1 The Parser

We try to explain parsing and processing XML-documents by
using the photogrammetric example from above. Requested are
the camera values for the camera referenced by the description
nikon_28. The client’s request typed in the address line of the
browser:

http://www.imagefact.de/zitadelle-wesel/
 parse_camera.php?camera=nikon_28

will be submitted to the server.

A parser will be needed for going through the file until the
requested camera is found. The parser analyses and validates
the file structure. Expat is an event driven parser and provided
by PHP. Events are the occurrence of tags and content. An
instance of the parser is created with the statement
$parser = xml_parser_create();

It is necessary to set parameter for the parser and handler for the
elements, for example:

xml_set_element_handler($parser,
 "start_element", "end_element");
or
xml_set_character_data_handler(
 $parser, "inhalt");

start_element , end_element and inhalt are functions called by
the parser, if it meets one of the defined events.

3.2 Processing Data

The function inhalt will be processed, if the content of a tag
was camera. The camera data will be stored in arrays.

 $data;break;
 case "formY": $camera[$index][formY]=
 $data;break;
 }
}
After getting the camera data, the arrays must be evaluated and
the requested data, embedded in HTML-tags, has to be
generated and must be passed to the client. PHP uses the echo-
function for writing HTML commands. Figure 3 shows a
request including image data as rendered by the browser. The
complete examples can be found on the Web under
www.programmierpraktikum.de, follow the navigation to the
readers section (leserbereich), select there PHP&XML.

Figure 3. Parsing XML-Information and displaying
the result on a Web page

4. PROCESSING GRAPHIC DATA

4.1 SVG Scalable Vector Graphics

Scalable Vector Graphics SVG is the XML formulation of 2D
vector graphics. It includes drawing of vector data, displaying
of image data, interaction and animation. Structure and
appearance of graphic elements is separated by using style
sheets

Applying a SVG viewer as a plug-in for the Web browser
enables zooming and panning in the graphic area.

Here is a small sample including raster and vector graphics and
interaction. Embedded is a script using ECMA (JavaScript),
style sheet definition, mouse over events and referencing of
external files. The displayed code is a fragment for
documenting the integration of Web tools. Visit the a.m. Web
site and click into the SVG area with the right mouse button.
You have access to the complete code via the context menu.

Figure 4. Interaction with SVG

<svg width="640" height="480">
<title>SVG Interaction</title>
<script type="text/ecmascript">
<![CDATA[
function objekt_sichtbar(
 evt,sichtbarkeit){
 var svgDokument;
 svgDokument=
 evt.getTarget().getOwnerDocument();
 ...
 </script>
<style type="text/css">
<![CDATA[
 path.sp {
 fill :rgb(192,192,192);
 stroke : #0000ff;
 stroke-width:2px;
 opacity:0.2;
 }
]]>
</style>

<g id="guide"transform="translate(50,50)">
<g id="fritz">
<image xlink:href="fritz.gif" x="0"
 y="112" width="138" height ="263"
 onmouseover="objekt_sichtbar(evt,'1')"
 onmouseout ="objekt_sichtbar(evt,'0')"
></image>
</g>
...
 </g></svg>

The bubble in figure 4 at first is hidden. Moving the mouse over
the image displays the bubble. The text inside the bubble
references links to external files.

4.2 X3D Extensible 3D

3D graphics data for the Web is well known as a VRML Virtual
Reality Modeling Language description. That format is updated
to the XML-version and named as X3D. The OCTAGA viewer
can be applied for VRML and X3D in stand-alone mode or as a
plug-in.

5. CONCLUSION

XML as a meta language is designed for structuring information
and separating information from processing. The family of
XML-languages and tools, like XSL, XPATH, SVG or X3D,
provide device and platform independent processing. XML
structured information can be prepared for displaying on
monitors and PDAs or printing. The above given examples,
taken from a photogrammetric project, stay for a variety of
application potentials. The sketched code here, is printed to
give an impression of the need for teaching and learning XML
based Web technology.

References from Books:
Pomaska, G., 2005. Grundkurs Web-Programmierung.
Vieweg-Verlag, Wiesbaden.

References from Other Literature:

Pomaska, G., 2003. Introduction of SVG as a data interchange
format for architectural documentations. CIPA International
Symposium, Antalya, Turkey.

Pomaska, G., Dementiev, N. XML basierte Datenformulierung
zur Web-konformen Dokumentation photogrammetrischer
Bauaufnahmen. PFG Zeitschrift für Photogrammetrie,
Fernerkundung und GeoInformation, DGPF 2005, in
Vorbereitung

References from Web sites:

http://www.programmierpraktikum.de

http://www.imagefact.de/zitadelle-wesel

http://www.adobe.com/svg

http://www.octaga.com

http://www.imagefact.de/zitadelle-wesel

	STATIC AND DYNAMIC WEB SITES
	Client-Server Architecture
	Client Sided Dynamic
	Server Sided Dynamic Applying PHP

	DESIGN OF A XML STRUCTURE
	XML Extensible Mark-up Language
	XSL Extensible Stylesheet Language
	DTD Document Type Definition

	PARSING XML FILES WITH PHP
	The Parser
	Processing Data

	PROCESSING GRAPHIC DATA
	SVG Scalable Vector Graphics
	X3D Extensible 3D

	CONCLUSION

