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ABSTRACT: 
 
Sun and sensor geometry cause directional effects in remotely sensed reflectance data which can influence the estimation of 
biophysical and biochemical variables. Previous studies have indicated that bidirectional measurements contain added information 
with which the accuracy of derived plant structural parameters can be increased. Because accurate biochemistry mapping is linked to 
vegetation structure, nitrogen concentration (CN) estimates might be indirectly improved with multiangular information. We 
analyzed data of the spaceborne ESA-mission CHRIS on-board PROBA-1, which provides hyperspectral and multiangular data. The 
images were acquired in July 2006 over a forest study site in Switzerland and were subsequently preprocessed. From each of the five 
CHRIS images (five different viewing zenith angles) we extracted 60 crown spectra, which correspond to field-sampled trees. Then 
we developed four-term models by regressing lab-measured CN on four datasets either consisting of original reflectance values 
(SPEC) or continuum-removed data.  The wavebands used in the regression models were determined with a subset selection 
algorithm. For the data of all view angle combinations particular models were generated, in total 31 equations were evaluated per 
spectral dataset by comparing the coefficients of determination (R2) and cross-validated root mean square errors. The results of this 
study indicate that added information contained in multiangular data improved regression models for CN estimation and lowered 
RMS errors. Considerable contribution can be achieved with data of a second and third viewing zenith angle. Models based on 
combinations of off-nadir data performed best. These findings support the potential of multiangular Earth observations for ecological 
monitoring and modeling studies. 
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1. INTRODUCTION 

Sun and sensor geometry cause directional effects in remotely 
sensed reflectance data which can influence the estimation of 
biophysical and biochemical variables. The anisotropic 
reflectance behavior for instance of plant canopies implies that 
remotely sensed data can vary without a change in the physical 
or chemical properties of the material observed. This makes it 
difficult to interpret remotely sensed data of the same 
geographic location collected with different instruments, spatial 
scales or times (Asner, 2004). The bidirectional variability is 
often considered as noise and its impact on the estimation of 
plant biochemical and structural variables remains unknown in 
many cases. However, numerous studies have shown that 
bidirectional measurements contain added information about 
vegetation structure (Asner et al., 1998; Barnsley et al., 1997; 
Meyer et al., 1995), such as leaf area index (Diner et al., 1999), 
gap fraction and leaf orientation (Chen et al., 2003; Ustin et al., 
2004). 
  
The complex vertical and horizontal structure of vegetation 
communities limits the ability to accurately derive biochemical 
estimates from remotely sensed data without accounting for 
canopy structure (Ustin et al., 2004). It has been shown that leaf 
area index (LAI) and leaf orientation have a strong effect on the 
expression of leaf optical properties, and thus the biochemistry 
of foliar material, at canopy scales (Asner, 1998). For canopies 
with small LAI foliar biochemistry is generally 
underrepresented. In particular the NIR region, which exhibits 
the strongest multiple-scattering in green foliage canopies has 

the best potential for enhancement of the leaf-level signal 
(Asner, 1998). So far, there has been little discussion about 
using directional information to assess biochemical properties 
such as nitrogen concentration.  
 
The objective of this study was to investigate the influence of 
anisotropic reflectance effects on the estimation of CN by 
evaluating regression models generated on various 
combinations of CHRIS view angles. We investigated a) if the 
added information in remotely sensed multiangular data can 
improve CN estimates, b) if this information is still present after 
continuum removal and normalization have been applied to 
reflectance values and c) if certain sensor view angles or 
combinations thereof emerge to be beneficial for estimating CN.  
 
 

2. DATA AND METHODS 

2.1 Study Site 

The study site is a mixed forest located in the Swiss Plateau 
(7°53’ E, 47°16’ N) at an altitude of about 400–600 meters 
above see level. The forest canopy is composed of a mixture of 
needle-leaf and broadleaf species, dominated by European 
beech (Fagus sylvatica L.), European ash (Fraxinus excelsior 
L.), black alder (Alnus glutinosa), silver fir (Abies alba) and 
Norway spruce (Picea abies L.). In total nine different species 
were sampled belonging to two plant functional groups (needle-
leaf (evergreen) and broadleaf (deciduous) species). 

 



At the study site we determined 15 subplots where field 
sampling took place. We selected the subplots according to 
their species composition to allow the collection of a broad 
variety of species. At each subplot 3–10 tree crowns were 
chosen for foliar sampling. The trees selected for leaf collection 
were chosen regarding crown dimension and species, in order to 
minimize soil background effects and to gain a broad range of 
CN. The species were sampled more or less according to their 
proportion in the forest.  
 
2.2 Field Data 

We collected field data during a two-week field-campaign in 
July 2004. Foliar material was sampled from the top of tree 
canopies to determine biochemistry in the laboratory and 
additional structural and positional tree properties were 
measured. At the subplots of the study site, a tree climber 
excised leaf samples of three different upper sunlit canopy 
branches from a total of 60 trees, whereof 33 were conifers and 
27 broadleaves. To obtain representative samples, we collected 
15 leaves from all selected deciduous trees and 50–60 needles 
from the first three needle years from all needle-leaf trees. For 
each sampled tree the collected leaf material was pooled, sealed 
in bags and stored in cool environment for transportation. Tree 
crown dimensions were assessed with a Hypsometer (Haglöf, 
Sweden). The mean radius of a broadleaf and a needle-leaf tree 
crown were found to be 5.1 m and 3.2 m, respectively (Huber et 
al., 2006a). Leaf area index (LAI) was determined with 
hemispherical photography and ranged from 2.7 to 4.7 m.  
 
In order to geo-locate the sampled tree crowns later in remotely 
sensed images, the trunk position of each tree was measured 
during the field campaign with a Trimble GeoXT GPS receiver, 
which corrects for multipath biases. We improved the positional 
accuracy by recording 20 to 40 GPS measurements per trunk 
and applying a post processing differential correction using the 
Pathfinder Office software (Trimble, 2005). The GPS 
horizontal precision among all trees ranged from 1.4 to 5.0 m 
with a mean value of 2.5 m. CHRIS data acquisition took place 
three years after field data collection but during the same 
phenological period (July). We assumed a stable CN level 
during July (Martin and Aber, 1997) and only small inter-
annual variability (Grassi et al., 2005)  due to similar climatic 
conditions in the years of data sampling.  
 
2.3 Laboratory Analyses 

In the laboratory, the leaf area, the fresh and dry weight, and the 
biochemical composition for all 60 collected leaf samples were 
determined. We used an LI-3100 Area Meter (LI-COR, 1987) 
to obtain the single-sided leaf area of the samples. Fresh and 
dry mass were determined by weighing the samples before and 
after being oven dried at 85° C until a constant weight was 
achieved. From the difference between the fresh and dry masses 
divided by the area we calculated water content per cm2. For 
C:N analyses the samples were dried at 65 °C until a constant 
weight was achieved, then ground to powder and finally 
injected into an elemental analyzer (NA 2500; CE Instruments, 
Milan, Italy). Each sample was analyzed twice and checked for 
within-sample variation. None of the samples exceeded the 
threshold of 3 % variation of the mean between the two 
measurements. The measured CN ranged from 1.00 to 2.97 with 
a mean of 1.68 and a standard deviation of 0.58 percent by dry 
weight (Huber et al., 2006b). 
 

2.4 CHRIS Data Acquisition and Processing 

In this study we used the data of the spaceborne ESA-mission 
CHRIS (Compact High Resolution Imaging Spectrometer) on-
board PROBA-1 (Barnsley et al., 2004), which provides in 
mode 5 multiangular data in the range from 447 nm to 1035 nm 
in 37 bands with a spatial resolution of 18 m. CHRIS supplies 
five view angles with the nominal fly-by zenith angles (FZA’s) 
at +/-36°, +/-55° and 0° (nadir). The images covered an area of 
6.5x13 km and were acquired in July 2006 over the study site 
Vordemwald.  

The FZA’s of CHRIS data acquisitions do rarely represent the 
actual viewing geometry for the date under investigation. The 
actual view angle for the nadir image was for instance -7.3° in 
the backward scattering viewing direction (Figure 1). 

 
 
 

 

Figure 1. Acquisition geometries and illumination angles for the 
five CHRIS images acquired on July 1, 2006. The nominal fly-
by zenith angles are listed in brackets. 

 
The five CHRIS images were orthorectified and radiometrically 
corrected (Huber et al., 2006a). Geometric correction was based 
on a 3D physical model (Toutin, 2004), which is implemented 
in the commercially available image processing software 
PCI/OrthoEngine (PCI Geomatics, 2006). High positional 
accuracy of the respective multiangular products after 
geometric correction was a prerequisite for a reliable extraction 
of spectral information from the five images. To achieve a high 
geometric accuracy, georegistration based on a digital surface 
model (DSM) (Schläpfer et al., 2003). The resulting RMS 
errors derived from GCP’s were at 0.46–0.79 pixel along track 
and 0.39–0.73 pixel across track. Subsequent atmospheric 
correction of the CHRIS radiance data was performed using 
ATCOR-3 (Richter, 1998), which is based on MODTRAN-4. 
ATCOR-3 enables the processing of data from tilted sensors by 
accounting for varying path lengths through the atmosphere, 
varying transmittance and for terrain effects by incorporating 
digital terrain models (DTM) data and their derivatives such as 
slope and aspect, sky view factor and cast shadow. For the 
atmospheric processing a laser-based DTM with 2 m spatial 
resolution was resampled to 18 m using bilinear interpolation 
(Schläpfer et al., 2007).  
 



2.5 Tree Crowns Spectra Extraction and Processing 

After geometric and atmospheric correction, tree spectra of the 
60 field-sampled crowns were extracted from each of the five 
CHRIS images. We used the geographical trunk positions 
(vector data) of the sampled trees to locate the crown pixels in 
the images (Gorodetzky, 2005) and extracted spectral data with 
the Region of Interest (ROI) Tool in the ENVI image 
processing package (Research Systems, 2004). Figure 2 
illustrates the different spectral signatures of a Norway spruce 
obtained from five CHRIS view angles.  
 
 

 
Figure 2. Spectral signatures of Norway spruce from processed 
CHRIS data of the nominal viewing zenith angles at -/+36°, -
/+55° and 0°. Negative viewing zenith angles correspond to 

backward scattering, positive viewing zenith angles represent 
forward scattering. 

 
For further analyses, four datasets were generated. They either 
consisted of original reflectance or of continuum-removed data 
of the five FZA’s. The datasets were termed as follows: SPEC 
included original reflectance values; BNC included band depths 
normalized to the waveband at the center of the absorption 
feature, as proposed by Kokaly and Clark (1999); CRDR 
included continuum-removed derivative reflectance and NBDI 
included normalized band depth index values, as proposed by 
Mutanga et al. (2004). Table 1 shows the equations used for the 
calculation of the datasets.  
 
Continuum removal is a normalization technique and was 
developed to enhance the spectral features of interest and to 
minimize extraneous factors, such as atmospheric absorptions, 
anisotropic effectes or soil background effects (Kokaly and 
Clark, 1999). The observed spectral continuum is considered as 
an estimate of the other absorptions present in the spectrum, not 
including the one of interest (Clark and Roush, 1984). To 
approximate the continuum lines, straight-line segments were 
used that connect local spectra maxima between 550 and 750 
nm. The continuum-removed reflectance (R’) is the ratio of the 
original reflectance values (R) and the corresponding values of 
the continuum line (Rc) (Kokaly and Clark, 1999). From the 
continuum-removed reflectance, the band depth (BD) of each 
point in the absorption feature was computed by subtracting the 
continuum-removed reflectance (R’) from 1.  
 
We applied continuum removal for CN to the absorption feature 
located between 550 and 750 nm where the leaf water effect is 
minimal. Studies have shown a strong nitrogen-pigment 
relationship because the chlorophyll content in foliage is highly 

correlated with total protein and, hence , total nitrogen content 
(Evans, 1989; Field and Mooney, 1986; Johnson and Billow, 
1996; Yoder and Pettigrew-Crosby, 1995). The reason for this 
is that proteins are the major nitrogen bearing leaf constituents, 
typically holding 70–80% of all nitrogen. An additional 5–10% 
of nitrogen is allocated to chlorophyll and lipoproteins (Chapin 
and Kedrowski, 1983). 
 
 

Dataset Equation Reference 

SPEC R - 

BNC BD/Dc 
(Kokaly and Clark, 
1999) 

CRDR (R’(j+1)-R’(j)) / Δλ  
(Mutanga et al., 2004; 
Tsai and Philpot, 1998) 

NBDI BD-Dc / BD + Dc (Mutanga et al., 2004) 
where Dc is the maximum band depth, R’(j) is the continuum-
removed reflectance at waveband j, R’λ(j+1) is the continuum-
removed reflectance at waveband j + 1, and Δλ  is the 
difference in wavelengths between j and j + 1. 

 

Table 1. Equations used for the calculations of spectral datasets 
and corresponding references. 

 
2.6 Statistical Analyses 

Multiple linear regression analysis was applied to fit models 
between CN (dependent variable) and all possible view angle 
combinations of the four spectral datasets (SPEC, BNC, CRDR, 
NBDI). To limit the number of spectral wavebands used in the 
regression models, this study employed a statistical variable 
selection method, namely an enumerative branch-and-bound 
(B&B) search procedure (Miller, 2002). Branch-and-bound 
algorithms are efficient because they avoid exhaustive 
enumeration by rejecting suboptimal subsets without direct 
evaluation (Narendra and Fukunaga, 1977). As a result, a 
number of wavelengths were selected that best explained CN. 
We limited the number of selected wavebands to four to avoid 
overfitting of the models. All models were tested for 
significance with the F-test at the 5 % significance level. 
 
An objective of this experiment was to determine whether 
assessing canopy CN could be improved with additional 
directional information. Therefore, we started fitting models on 
data extracted from one view angle (e.g., nadir). Next, we 
developed models for all possible combinations of two view 
angles (e.g., nadir & -36°) and continued the analysis with three 
and four view angles to finally introduce all view angles as 
independent variables. In total, 31 view angle combinations were 
evaluated for each dataset. The findings were evaluated by 
comparing the mean R2 for each dataset yielded from models 
with the same number of view angles involved. The contribution 
of individual angles was evaluated by considering R2 values for 
the correlations between CN and the spectral data for all angular 
combinations.  
 
In order to assess the predictive capability of the SPEC based 
models, cross-validated mean RMS (CV-RMSE) and percentage 
relative errors (% error) were calculated for each model. We 
used 10-fold cross-validation with random splitting order of the 
data (Hastie et al., 2001; Huber et al., 2006b). 
 
We implemented all analyses within the R statistical package, a 
free software environment for statistical computing and graphics 



(R Development Core Team, 2005) under the GNU public 
license. 
 
 

3. RESULTS 

3.1 Contribution of Angular Information  

The contribution of angular information to regression models 
for estimating CN is apparent from Figure 3. The coefficient of 
determination (R2) increased and CV-RMSEs decreased with 
additional angular information for all four datasets (SPEC, 
BNC, CRDR, NBDI). Adding the data of a second angle as 
independent variables to the regression analyses is contributing 
most to R2, thereafter as more directional information is added 
as smaller becomes the increase of R2. For instance R2 
augmented for the dataset SPEC by 15 %, 8 % and 5 % by 
adding data of a second, third and fourth view angle, 
respectively.  

 
 

 
 

Figure 3. The coefficient of determination (R2) augmented as 
more CHRIS view angles were involved in regression analyses. 

All models consisted of four independent variables. 
 
Evaluating the contribution of directional information by 
spectral datasets (SPEC, BNC, CRDR, NBDI) revealed 
interesting differences. Models generated from untransformed 
reflectance values (SPEC) performed best in terms of R2. Only 
with data of all angles CRDR models performed better (R2 = 
0.59). 
 
3.2 View Angle Combinations 

R2 values, CV-RMSEs and percentage relative errors from 
models developed on data of all possible view angle 
combinations (n = 31) were compared to discover which view 
angle combinations are promising to improve CN estimates. 
This was done for all four datasets. We start reporting the 
results of monodirectional and continue then with multiangular 
models.  
 
Best results were achieved with single-angle models based on 
data of the nominal -36° angle for all datasets except for CRDR, 
where the -55° angle performed best. Apart from SPEC, models 
developed on +36° data resulted in the lowest R2 values (Figure 
4). For multi-angle models the combination of off-nadir angles 
yielded the highest training R2 values. We obtained maximum 
R2 values with data of two viewing zenith angles (-/+36°) for 
BNC (training R2 = 0.55) and NBDI (0.54), whereas SPEC 
(0.57) and CRDR (0.59) needed data of three viewing zenith 
angles. The three angles for SPEC were at -/+36° and +55° and 
for CRDR at +36° and -/+55°. Adding data of more than three 
angles as independent variables to subset selection did not 
augment the coefficients of variation any further. Thus, the 

subset selection algorithm selected the same CHRIS wavebands 
as for the two or three-angle models. 
 
We used four different reflectance datasets (SPEC, BNC, 
CRDR and NBDI) to assess whether bidirectional effects are 
still present after continuum removal. In all continuum-removed 
datasets R2 varied considerably for one-angle models. In Figure 
4 the variation can be seen for BNC. Additionally, we observed 
that SPEC performed particularly well for models developed on 
data of one and two view angles compared to the transformed 
datasets. 
 
 

 

 

Figure 4. Coefficients of determination R2 values of CN 
regressed on 31 view angle combinations of SPEC (upper) and 
BNC (lower figure). On the x-axis is the number of view angles 

provided as independent variables to the regression analyses 
listed. 

Cross-validation revealed that CV-RMSEs and percentage 
relative errors tend to be smaller with increasing number of 
view angles involved (Figure 5). For the dataset SPEC, CV- 
RMSEs ranged from 0.414 to 0.527 % dry weight CN and 
relative errors varied between 20.3 and 26.5 %. If we consider 
both cross-validated measures (CV-RMSE and relative errors) 
the models based on the angles at -36° and -55° performed best.  

 

 



 
Figure 5. Bars show percentage relative errors (% error) of 

cross-validated four-term models based on SPEC (upper) and 
BNC (lower). Root mean square errors (CV-RMSE) are plotted 
as lines. The x-axis indicates the evaluated 31 models, as higher 

the number as more view angles were used for regressions. 

 
The CV-RMSE is around 20 % lower compared to the 
monodirectional nadir model. However, for transformed 
datasets (BNC, CRDR, NBDI) the combination of backward 
and forward scattering viewing directions achieved lowest 
RMSEs. For BNC and NBDI the combination of -/+36° data 
(CV-RMSE 0.414–0.419) was most promising, for CRDR the 
combination of -/+55° and +36° data (0.404). We observed 
larger range of CV-RMSEs for transformed datasets than for 
SPEC. For all datasets CV-RMSEs of the best model dropped 
more than 20 % compared to the nadir model. 
 
 

4. DISCUSSION AND CONCLUSIONS 

The study showed that multiangular data improved CN 
estimates; R2 values of regression models increased, for 
instance from 0.18 (nadir) to 0.57 (three angles) for SPEC, and 
CV-RMSEs decreased with directional information. In general, 
CV-RMSEs dropped more than 20 % compared to 
monodirectional nadir models. This demonstrates that not only 
the assessment of structural vegetation parameters profit from 
added information contained in directional reflectance data but 
also biochemical constituents. These findings support the 
potential of multiangular Earth observations for ecological 
monitoring and modeling studies. Further, it points out that 
biochemistry estimation with wide field of view or sensors with 
off-nadir viewing capabilities should be interpreted with care. 
 
With four different reflectance datasets (SPEC, BNC, CRDR 
and NBDI) we assessed whether bidirectional effects are still 
present after continuum removal. For one-angle models R2 
values varied considerably between view angles for all datasets, 
indicating that the normalization procedure did not remove all 
extraneous effects. However, we observed that SPEC 
performed particularly well for models developed on data of 
one and two viewing zenith angles. This indicates that 
untransformed spectral data contains more additional 
information, for instance about tree structure that possibly 
improved the regression models. Only starting from four view 
angles, models developed on continuum-removed datasets 
improved due to contributing information from additional view 
angles so that they yielded finally higher R2 values than SPEC.  
 
In general, monodirectional models trained on data of the -36° 
viewing zenith angle achieved higher R2 values than these 
developed on data of the forward scattering direction. The 
finding that most information is contained in backward 
scattering viewing direction reflectance is consistent with other 
research which found in boreal forests an increase in 

bidirectional reflectance in the backward scattering direction 
but lower reflectance in forward scattering direction, due to a 
combination of gap and backshadow effects (Deering et al., 
1999; Sandmeier et al., 1998). These effects are more 
pronounced at large source zenith angles and are emphasized in 
highly absorbing spectral ranges such as the red band due to the 
lack of multiple scattering in this wavelength range (Deering et 
al., 1999).  It was also shown that the canopy hotspot effect has 
rich information content for vegetation characterization, 
especially indications of canopy structure (i.e., a shadow is not 
visible) (Gerstl, 1999). The viewing zenith angle of -36° is 
located closest to the images hotspot. The minimum reflectance 
corresponds to the forward scatter direction because the sensor 
views the unilluminated, shadowed leaf surfaces (Sandmeier et 
al., 1998). 
 
For SPEC the model which is solely based on the two angles in 
the backward scattering direction (-36°/-55°) yielded an R2 
(0.55) close to the maximum of 0.57 obtained with at least three 
view angles and was characterized by low CV-RMSE and % 
error. On the other hand, two-angle models developed on 
continuum-removed datasets reached best results by combining 
reflectance of the forward and backward scattering directions. 
With three view angles involved no such distinction was 
observed among datasets. Nadir view direction played a minor 
role possibly owing to shaded background that is strongest for 
viewing zenith angles close to nadir (Ni et al., 1999). The large 
portion of gaps observed in this direction decreases the portion 
of leaf material seen from the sensor and thus the reflectance 
values. 
 
This study has investigated the contribution of directional 
CHRIS data to the estimation of nitrogen concentration by 
assessing R2 values and cross-validated RMSEs of regression 
models fit between the chemical constituent and 31 angular 
combinations of four spectral datasets. The results of this 
research show that (1) added information contained in 
multiangular data improved regression models for CN 
estimation and lowered RMS errors (-20 %), (2) considerable 
contribution to R2 values can be achieved with a second and 
third viewing zenith angle and (3) models based on 
combinations of off-nadir data performed best. 
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