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ABSTRACT: 
 
This work modelled the spatial distribution of the rodent species that act as hosts in the transmission cycle of the parasitic tapeworm 
Echinococcus multilocularis. The rodent distribution was modelled in relation to landscape characteristics in four ways, using (1) a 
Landsat ETM+ derived hard classification, (2) single-image Landsat ETM+ derived NDVI, (3) single-image MODIS 16-day 
composite NDVI, and (4) time-series MODIS 16-day composite NDVI imagery. The MODIS time-series imagery produced the 
strongest relationships and explained the highest percentage deviance of the relationships present (up to 41.4%), whereas the hard 
classification method only explained up to 21.2% of deviance. Single-image NDVI datasets produced poor results, with Landsat 
ETM+ derived  NDVI explaining only up to 11.9% of deviance, and MODIS derived NDVI up to only 8.78%. These results confirm 
that using time-series NDVI data to model rodent distributions is a valid method, and can offer improved results over single date 
NDVI and hard classification methods. 
 
 

1. INTRODUCTION AND BACKGROUND 

The fox tapeworm Echinococcus multilocularis (Em) is one of 
the World’s most dangerous human parasites causing fatalities 
in 95% of infected patients. The tapeworm exists in a 
transmission cycle between small mammals and foxes, and the 
parasite is increasingly infecting domestic dogs that predate 
infected rodents, leading to increased transmission to dog 
owners via dog faeces contaminated with Em eggs. In central 
China, where the parasite is endemic, there is currently an 
urgent need to develop spatial models to predict the location 
and extent of Em transmission foci so that limited medical 
resources can be effectively targeted and appropriate control 
programmes implemented. 

 
This study aims to assess the relationship between small 
mammal distributions and spatio-temporal landscape variables, 
and develop a model to accurately predict the spatial 
distribution of locations where the parasite hosts are likely to be 
present. Field observations have indicated that there are spatial 
relationships between heavily grazed areas with low biomass 
that are the optimal habitat of rodent species (Ochotona sp.) 
known to be involved in the Em transmission cycle, and small 
mammal distributions in our study region in Shiqu county, 
western Sichuan Province, China. 

 
Knowledge of land cover and land cover change is an important 
input in modelling ecological processes from the regional to the 
global scale (Schwarz et al, 2005), and Geographical 
Information Systems now facilitate the incorporation of these 
spatio-temporal land-cover relationships into epidemiological 
investigations of wildlife diseases (Pfeiffer et al, 2002). Several 
previous investigations have related satellite-derived land cover 
and Digital Elevation Model data to rodent populations that act 
as disease transmission vectors of Hantavirus, with studies by 
Goodin et al (2006), Suzan et al (2006) and Glass et al (2000) 
showing that direct relationships exist between landscape 
structure and topographical variables, and the distribution of 

rodents. Studies by Boone et al (2000) also successfully utilised 
satellite-derived vegetation and topographical data to predict 
the infection status of Deer mice with the Sin Nombre Virus 
with up to 80% accuracy in the USA. 

 
These successful studies show that modelling rodent population 
distributions through landscape characteristics is a viable 
methodology, however, previous work using remotely sensed 
data to assess landscape-rodent relationships have concentrated 
on hard classification methods using single date medium spatial 
resolution imagery. Limitations result from attempting to 
classify continuous variables such as vegetation gradients into 
discrete classes. This may result in information on sub-class 
variation being lost, when this variation may be integral in the 
observed relationships. Continuous measurements such as a 
vegetation index, for example the Normalised Difference 
Vegetation Index (NDVI), the most widely used vegetation 
index for retrieval of vegetation canopy biophysical 
characteristics (Jiang et al, 2006), may be better suited to 
define, characterise and quantify landscape characteristics. This 
NDVI data could then be modelled with rodent presence; as 
rodent distribution is often related to the spatial distribution of 
areas of differing vegetation characteristics, this could be a 
viable alternative to using a hard classification method.  
 
Furthermore, as vegetation experiences a seasonal growth and 
senescence cycle, resulting in seasonal landscape change, time-
series NDVI data offers the potential to better quantify the 
spatio-temporal characteristics of this seasonal vegetation cycle 
rather than measuring NDVI at only one point in time. Time-
series NDVI data has previously been used successfully for 
various applications, including quantifying vegetation cycles, 
assessing land cover change and to map the spatial distribution 
of habitats by Beck et al (2006), Xiao et al (2006), Lunetta et al 
2006) and Jin et al (2005), and could offer significant 
advantages over single-date vegetation index data. 
 



 

The research described in this paper develops a multi-temporal 
model of landscape change over large areas using time-series 
MODIS NDVI 16-day composite 250m resolution imagery. The 
main advantage of these datasets is that the regular repeat 
coverage of the MODIS NDVI data product allows assessment 
of temporal variability in the landscape which is expected to 
better describe small mammal distributions. 
 
 

2.   STUDY SITE AND DATA COLLECTION 
 
The study area for this investigation is located near the town of 
Serxu, Shiqu county, Sichuan Province, China (Figure 1). This 
site is located on the eastern Tibetan plateau at high altitude 
between 4000 and 4300m above sea level. Although this area is 
above the tree line, variation in the herb and shrub layers of 
vegetation produces a variety of habitats across the study area. 
 
Rodent transects totalling approximately 35km in total length 
were surveyed in summer 2001, with presence or absence of 
three species and groups of rodents being recorded at 10 metre 
intervals, giving a total of 3485 transect points. Visual sightings 
of rodents, presence of rodent droppings or rodent holes (both 
identifiable to species or group of species level) were used to 
determine rodent presence. These rodent groups were Ochotona 
curzoniae or black-lipped pika (Occu), Ochotona cansus or 
gansu pika (Occa), and a generically described group of rodents 
consisting of Arvicola terrestris and Microtus arvalis 
(Smallsm). Each of these has different habitat requirements, and 
will therefore exhibit different relationships with the spatial 
landscape and habitat arrangement. 
 
Map and habitat data was not available for this area, therefore it 
was necessary to generate the required datasets. Shuttle Radar 
Topography Mission Digital Elevation Model data was acquired 
and used to produce a 3D topographical model of the study 
area, enabling topographical variables such as altitude, slope 
and aspect to be calculated. A Landsat ETM+ image 
(acquisition date 3rd July 2001) was also obtained and subjected 
to a supervised classification using training areas of known 
habitats visited during fieldwork. This Landsat ETM+ image 
was atmospherically corrected and used to derive a NDVI 
dataset for the study area. Also, multiple MODIS 16-day 
composite vegetation index data at 250m spatial resolution were 
acquired for the period between 6th April 2000 and 24th May 
2006, 138 images in total, to allow the spatio-temporal 
modelling of vegetation change.  
 

 
 

Figure 1. Study site location, Shiqu county, China. 
 

 
3.   METHODOLOGY 

 
The rodent transect data were overlaid on the supervised 
classification derived from the Landsat ETM+ image using 
ArcView 9.1. A buffer of 500m was created around each of the 
3485 rodent transect points. Within these buffers the proportion 
(%) of each habitat type was calculated. This proportional land 
cover data was combined with the rodent transect data was 
analysed using a Generalised Additive Model (GAM). 
 
To explore whether a continuous NDVI dataset better 
characterised the landscape and its relationship with rodent 
distribution, a NDVI dataset was generated from the Landsat 
ETM+ image using Erdas Imagine 8.6. This NDVI image was 
then overlaid with the rodent index data, and a spatial join was 
performed to extract the NDVI value for the location of each 
rodent transect point. 
 
Analysis of the 250m resolution MODIS 16-day composite 
vegetation index data imagery that had been acquired was also 
performed. The NDVI datasets were extracted from this data 
product, and were then reprojected to the UTM WGS84 
projection to ensure compatibility with the other datasets 
utilised in this investigation, and subset to the region of the 
study site to reduce storage demands and reduce processing 
time. Initially a single NDVI image corresponding to the same 
period as the Landsat ETM+ image was acquired (3-11 July 
2001), was overlaid with the rodent transect data, and again, a 
spatial join was performed extracting a MODIS NDVI value for 
each rodent transect point. 
 
Next, the relationship between rodent distribution and time-
series NDVI data was analysed. All 138 time-series NDVI 
composite images were stacked in acquisition date order which 
enabled the extraction of seasonal NDVI profiles over a six-
year period for any location within the extent of the image. 
These seasonal NDVI profiles were extracted for each MODIS 
pixel containing rodent transect points. As MODIS 16-day 
composite images are produced for the same calendar periods 
each year (for instance the first image in each year covers the 
period 1-16 January), it is possible to collapse the six-year 
NDVI profile down into a single ‘standardised’ annual NDVI 
profile for that location. This was initially performed using the 
mean NDVI value for each 16-day period, and also the median 
and maximum NDVI values. This should have the effect of 
‘smoothing’ the profile and removing noise. On examination, 
the ‘standardised’ profiles using the mean and maximum NDVI 
values were susceptible to the effects of outlying values, and 
were therefore disregarded. 
 
Data quantifying the characteristics of the median standardised 
annual NDVI profile was then extracted, including maximum 
NDVI, minimum NDVI, mean NDVI, NDVI range, growing 
season (length of period when NDVI > 0.3), and greening 
period (when NDVI value rises above 0.3) allowing quantitative 
analysis methods to characterise spatial and temporal variation 
in the NDVI to be performed. This data was then combined 
with the rodent index data, and Landsat NDVI, MODIS single 
date NDVI and standardised time-series profile data were all 
analysed using a GAM. 

 
 
 
 
 



 

4.   RESULTS 
 
The rodent index data, each landscape variable, and the 
topographical variables of slope, altitude and aspect were 
entered individually into a Generalized Additive Model. The 
results, showing % deviance explained, are displayed in Table 
1. Although many of the land cover class and topographical 
variables gave poor results, the disturbed class for Occu 
(21.2%), Wet Grassland for Occa (18.1%) and Bog for Smallsm 
(18.1%) showed the highest single class degree of explanation, 
and indicated that relationships between the rodent presence 
and proportion of these land cover classes. The strongest 
relationship existed between Occu and the disturbed land cover 
class, and when plotted graphically it was obvious that the 
probability of Occu being present as the proportion of disturbed 
land increased within the buffered areas (Figure 2), which was 
supported by field observations. 

 
 

Variable Occu Occa Smallsm 
Village 2.86% 2.86% 2.86% 
Road 10.20% 14.00% 8.65% 
Bog 3.62% 3.52% 18.10% 
Water 1.54% 10.80% 6.24% 
Grass 7.24% 5.64% 9.84% 
Broadleaf 5.18% 11.30% 11.60% 
Bare 4.79% 5.64% 8.89% 
Disturbed 21.20% 14.10% 13.30% 
Yellowbrush 1.34% 1.58% 4.66% 
Wet Grassland 16.10% 18.10% 4.34% 
Slope 4.50% 3.00% 3.82% 
Altitude 2.92% 8.26% 12.70% 
Aspect 6.69% 9.70% 5.09% 

 
Table.1. Deviance explained (%) of rodent distribution related 

to proportion of each land cover class and topographical 
variables. 

 
Figure 2. Occu distribution related to proportion of ‘Disturbed’ 

land cover class. 
 
  
 

  
The characteristics of this disturbed class are very low biomass 
levels, and often bare soil, therefore it could be expected that a 
similar relationship may be observed between rodent 
distribution and NDVI as was observed with the ‘Disturbed’ 
land cover class. However, as Table 2 shows, attempts to model 
the relationships between rodent distribution and NDVI datasets 
derived from both the Landsat ETM+ and MODIS imagery did 
not explain as much deviance as the hard classification model. 
 
The results of the single-date GAM analysis of rodent 
distribution and the Landsat ETM+ and MODIS NDVI datasets 
produced poor results for all three rodent groups, with the 
maximum deviance explained being 11.9% for Occu related to 
Landsat ETM+ NDVI. This was disappointing as the 
relationships between the disturbed (low biomass) land cover 
class and rodent distribution that had previously been confirmed 
using the hard classification were not repeated when related to a 
continuous vegetation dataset. The relationship between rodent 
distribution and MODIS NDVI was even lower, although this 
may be a result of the coarse 250m spatial resolution of the 
MODIS imagery. 

 
 

Variable Occu Occa Smallsm 
Landsat ETM+ NDVI 11.9% 3.17% 4.86% 
MODIS NDVI 5.03% 4.83% 8.78% 

 
Table.2. Deviance explained (%) of rodent distribution related 
to single date Landsat ETM+ and MODIS derived NDVI data. 

 
The results of the GAM analysis of rodent distribution and 
time-series MODIS NDVI data produced improved results over 
the single-data NDVI data. When each individual variable of 
the NDVI cycle was analysed in relation to the rodent 
distribution data the results were poor, accounting for between 
3.47% and 15.6% of deviance explained. However, when a 
combination of all these variables were modelled with rodent 
distribution results improved significantly, with 41.4% deviance 
explained for Occu, 37.6% for Occa and 34.7% for Smallsm. 
Therefore, it can be assumed that modelling several variables 
relating to the seasonal spatio-temporal NDVI profile produces 
improved results, and is a more appropriate methodology than 
using single-date NDVI imagery. The differences in deviance 
explained values between Occu, Occa and Smallsm may result 
from Occu being present at a larger number of transect points 
than Occa or Smallsm, and therefore having more data items to 
model.  

 
 

Variable Occu Occa Smallsm 
Maximum NDVI 13.7% 9.06% 15.6% 
Minimum NDVI 7.06% 9.87% 4.55% 
Mean NDVI 13.0% 6.91% 10.2% 
NDVI range 3.47% 6.92% 9.04% 
Greening period 12.3% 7.45% 9.84% 
Growing season length 9.59% 9.54% 6.88% 
All variables combined 41.4% 37.6% 34.7% 

 
Table.3. Deviance explained (%) of rodent distribution related 
to quantified measurements of the standardised annual NDVI 

profile. 
 
 



 

Another limitation of the MODIS time-series data is the 250m 
spatial resolution. It is likely that sub-pixel landscape and 
ecological features exist which influence rodent distributions, 
and cannot be identified using this coarse-resolution imagery. 
Higher spatial resolution time-series data could overcome this 
limitation, improving the rodent-landscape models. Other 
unidentified ecological processes could also influence the 
accuracy of the time-series model that were not quantified in 
this investigation. Also fieldwork observations identified areas 
of ideal rodent habitat that had no rodents present, further 
complicating the situation. Although the results of this study 
have shown the advantages and potential of using time-series 
NDVI datasets to model rodent distributions over single-time 
NDVI datasets, further research is required to better understand 
this relationship. 
 
 

5.   CONCLUSION 
 
This investigation modelled rodent distribution in relation to 
landscape characteristics using four separate landscape-
quantifying datasets, (1) a Landsat ETM+ hard classification, 
(2) single-image Landsat ETM+ derived NDVI, (3) single-
image MODIS 16-day composite NDVI, and (4) time-series 
MODIS 16-day composite NDVI imagery. The success of these 
methods was variable, with the hard classification method 
displaying a relationship between Occu distribution and the 
‘Disturbed’ land cover class, but showing poor relationships 
between the other landscape variables and rodent distribution. 
Both the Landsat ETM+ and MODIS derived NDVI single-
image datasets gave poor results when modelled against rodent 
distribution, however the MODIS time-series NDVI data gave 
much improved results over the hard classification and the 
single-date NDVI datasets: for Occu, time series data explained 
41.4% of deviance as opposed to 11.9% (single-image Landsat 
ETM+ NDVI) or 5.03% (single-image MODIS NDVI). For 
Occa it was 37.6% as opposed to 3.17% and 4.83%, and for 
Smallsm it explained 34.7% of deviation as opposed to 4.86% 
and 8.78%. It is likely that these figures could be improved 
further should higher spatial resolution time-series imagery 
become available, if additional ecological data is introduced 
into the models, and if methods of dealing with the effects of 
spatial autocorrelation are developed. Even with these 
limitations, these results show that rodent distributions can be 
successfully modelled using time-series NDVI data, and that 
this method is a viable alternative to using both single-image 
NDVI and hard classification data methods. It is hoped, in turn, 
that this method will significantly contribute to the regional 
scale prediction of Em rodent host distribution, and therefore 
also to the regional scale prediction of Em transmission foci. 
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