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ABSTRACT: 

Ecosystem models are valuable tools for understanding the growth of vegetation, its response to climatic change and its role in the 
cycling of greenhouse gasses. Data Assimilation (DA) of synoptic coverage Earth Observation (EO) data into ecosystem models 
provides a statistically optimal mechanism for constraining the model state vector trajectory both spatially and temporally. EO 
“products” such as leaf area index (LAI) are attractive candidates for assimilation, but it is difficult to assign accurate uncertainty 
estimates to such products (a critical requirement of DA) and, more importantly, they are derived on the basis of assumptions that 
may be contradictory to those in the ecosystem model. An attractive alternative, therefore, is to assimilate reflectance data; the 
uncertainty in which is more easily understood. The assumptions made in generating the reflectance data are independent of 
assumptions in the ecosystem model and may consequently be treated as additional sources of uncertainty. To achieve this it is 
necessary to build a canopy reflectance model into the assimilation scheme. This paper describes the coupling of a canopy 
reflectance model to a simple ecosystem model. Reflectance data are assimilated over a boreal forest and improvements in predicted 
carbon fluxes are shown with comparison to field data. Previous work has highlighted problems of lost samples due to snow cover, 
resulting in poorly constrained flux estimates during winter months. This issue is addressed by incorporating a snow reflectance 
model. Results utilising the EnKF as a parameter estimator are also discussed.

                                                                
* Corresponding author.  

1. INTRODUCTION

1.1 Background

Understanding and quantifying of the role of terrestrial 
vegetation in the carbon cycle is critical for climate change 
studies because of the feedbacks that exist with atmospheric 
CO2 (Schimel et al., 2001). This in turn has major relevance for 
national and international policy (IPCC, 2001). Ecosystem 
models are an attractive tool for studying the terrestrial carbon 
cycle because they are based on process understanding. 
However, large uncertainties exist between models of terrestrial 
carbon dynamics (Churkina et al., 2005) despite advances in 
process based modelling (Law et al., 2001a; Rastetter, 2003) 
and improved networks of C flux measurements at the field 
scale (Valentini et al., 2000). 

An issue when scaling such models up to regional or global 
levels is that they are not well constrained away from the field 
sites for which they are parameterised. An attractive option to 
tackle this problem is the use of Earth Observation (EO) data, 
which provides spatially and temporally synoptic data, to adjust 
model trajectories within a data assimilation scheme. Data 
assimilation methods have been used successfully for 
integrating EO data in numerical weather prediction models for
some years but are only just gaining widespread attention in the 
terrestrial vegetation EO community. These techniques give a 
statistically optimal analysis of a model’s state vector and/or 
parameters against observations and allow for explicit 
representation of model and data errors.

  
This paper follows directly on from the work of Williams et al 
(2005) and Quaife et al. (2007). Williams et al (2005) present a 
simple ecosystem model (outlined below) and assimilate field 
observations using data assimilation techniques. The paper 
shows that the model is able to reproduce observed carbon 
fluxes well despite its simplicity by utilising large numbers of 
observations. Quaife et al. (2007) take this model and assimilate 
MODIS surface reflectance data into it as a demonstration of 
the potential use of EO data in such schemes. The authors argue 
for the use of reflectance over “high” level EO products (such 
as leaf area index, LAI) on the basis that it is easier to 
characterise errors in reflectance data and that high level 
products are typically generated using assumptions that 
contradict those in the ecosystem model itself. This latter point 
may be overcome by using surface reflectance products, as 
assumptions in its generation will be independent of those in the 
ecosystem model. Furthermore the required observation 
operator may be built to be entirely consistent with the 
ecosystem model itself.

Two issues in this approach highlighted by Quaife et al. (2007) 
are the lack of MODIS samples in winter months owing to 
snow/cloud contamination (resulting in a poorly constrained 
model) and the need for spatialised model parameters to allow 
for scaling to and beyond the regional scales. These issues are 
addressed in this paper.
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2. METHOD

2.1 Field data

The field data for this study were acquired at the Metolius forest 
site (44° 26' N, 121° 34' W) in Oregon that has been extensively 
characterised (Law, 2001a) and is part of the AmeriFlux 
network. It is dominated by Pinus Ponderosa and is 
regenerating since being clearfelled in 1978. The understory is 
mixed bitterbush (Purshia tridentata) and manzanita 
(Arctostaphylos patula).

Extensive ecological measurement campaigns have been carried 
out at this site and the collected data have been used to calibrate 
the DALEC model (Williams et al. 2005). These data include 
CO2 flux measurements from an eddy covariance system 
(Anthoni et al., 2002), leaf area index (LAI; Law, 2001b), 
specific leaf area, soil respiration (Irvine et al., 2002) and 
above- and belowground biomass. Meteorological data
(incident PAR, temperature and vapour pressure deficit) were 
also collected. These are used here to drive the ACM and 
DALEC models.

2.2 MODIS data

Level 2, collection 4 TERRA-MODIS 500m surface reflectance 
data (MOD09) were used as the observations in this study. Only 
bands 1 (red) and 2 (near infra red), centred at 646 nm and 848 
nm were considered, although this work could easily be 
extended to include any number of optical wavebands. 
Uncertainties in the reflectance data were set as 0.004 and 0.015 
for bands 1 and 2 respectively (Roy et al., 2005).

In total there were 316 acquisitions, over the 3 years (200-2002) 
of this study that contained no snow or cloud. Within this set 
there were no observations during winter months however. 
Extracting pixels flagged in the MODIS QA data as being snow 
contaminated provided an additional 18 observations spread 
roughly evenly over the winter months of the time period.

2.3 DALEC

Carbon pools and fluxes for were modelled over the three year 
period using the Data Assimilation Linked Ecosystem model, 
DALEC (Williams et al., 2005).  

Figure 1. Schematic representation of the DALEC model.

Fig 1. Shows a diagrammatic representation of the DALEC 
model. The carbon pools are Cf, Cr, Cw, Clit, and Csom/cwd which 
represent foliar, root, woody, litter, and soil organic matter and 

woody debris carbon, respectively. In addition there is a pseudo 
pool that represents the gross primary productivity (GPP). This 
is the uptake of carbon from photosynthesis. Fluxes are denoted 
Ra and Rh (autotrophic and heterotrophic respiration), where 
heterotrophic respiration is divided into D (decomposition from 
litter to soil organic matter), and Lf, Lr and Lw (the rate of loss 
of foliar, fine root and woody carbon respectively). Dotted lines 
indicate a temperature dependant transform.
GPP was calculated using the Aggregated Canopy Model 
(ACM) of Williams et al. (1997) calibrated for a Ponderosa pine 
ecosystem. The net ecosystem productivity (NEP) is given by 
the difference of the GPP and the Ra and Rh modelled by 
DALEC. This provides a quantification of the strength of the 
ecosystem as either a source (-ve NEP) or a sink (+ve NEP) of 
CO2.

2.4 Ensemble Kalman Filter (EnKF)

The EnKF is a variant of the Kalman Filter designed to work 
with non-linear models due to Evensen (1994, 2003). It uses an 
ensemble of model states to represent error statistics in the 
model, as opposed to the explicit covariance matrix 
representation used by the Kalman Filter. It has the form:

)()( TTTTa HADRHAAHHAAAA 1
e     (1)

where, A is the model ensemble; A  is the ensemble 
perturbation; Re is the covariance observation error; D is the 
observation ensemble and H is the observation operator. The 
superscript a denotes the analysed ensemble and the superscript 
T denotes a matrix transpose. 

In this form it is not possible to assimilate canopy reflectance 
into an ecosystem model as top of canopy BRF is not a linear 
transform of a typical ecosystem model state vector (as required 
by the observation operator matrix H). Evensen, (2003) 
suggests an augmented state vector approach to handle non 
linear observations:

)ˆˆ()ˆˆˆˆ(ˆˆ TTTTa AHDRHAAHHAAAA 1
e     (2)

Where Â  and Aˆ are the model ensemble and perturbation 
matrices augmented with predictions of BRF. In effect the BRFs 
become part of the model during analysis. The augmented 
ensemble is formed by:

Â = h( A )    (3)

where h, in this case, is a canopy reflectance model. 

2.5 Canopy reflectance model

The hybrid Geometric Optic Radiative Transfer (GORT) model 
of Ni et al. (1999) was coupled with DALEC to provide 
estimates of the top-of-canopy reflectance for MODIS channels 
1 and 2. The leaf area index (LAI) required to drive GORT is 
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provided by the DALEC model by assuming it to be a constant 
proportion of the foliar biomass. Leaf reflectance was 
determined by the PROSPECT model (Jacquemoud and Baret, 
1990) and soil reflectance was modelled by the empirical 
spectral functions of Price (1990).

The “ancillary” parameters of the GORT model (i.e. those that 
are not provided by the ecosystem model) are taken from the 
Quaife et al. (2007) paper. These are derived by a look up table 
inversion of the GORT model for the field site in question.

2.6 Snow reflectance model

To enable the use of snow contaminated MODIS data in the 
EnKF scheme; a model of the spectral albedo of snow was used 
to modify the lower boundary condition of GORT. The 
refractive index (Kou et al., 1993) and Mie scattering 
coefficients (Wiscombe, 1980) of ice particles were calculated 
using routines available from the NASA GSFC FTP site. 

Figure 2. Snow spectral albedo as a function of wavelength and 
grain size (indicated by colour scale).

Integrated fluxes, taking into account multiple scattering were 
calculated using the DISORT code (Stamnes et al., 1988) 
available from the same site. This approach has been shown to 
provide reasonable predictions of the spectral albedo of snow 
by Green et al. (2002). For the purpose of extending the GORT 
model, the snow was assumed to be optically deep and only 
affect the lower boundary – no snow was taken to be resting in 
the tree crowns. Fig. 2 shows the spectral albedo for a range of 
wavelengths and grain sizes predicted by this model. Given the 
relative lack of sensitivity of albedo to grain size in the spectral 
regions of MODIS bands 1 and 2, an arbitrary grain size of 
100µm was selected.

3. RESULTS

The DALEC model was run for the field site using 
meteorological drivers from the years 2000, 2001 and 2002. 
MODIS band 1 and 2 surface reflectance data were assimilated 
into the model using the EnKF. When the MODIS QA flags 
indicated snow in the retrieval the lower boundary of the GORT 

model was covered with 50% snow, otherwise the GORT model 
was run without snow. Integrated values of GPP and NEP for 
the 3 years of the model run are given in Table 1 for the case 
where there is no assimilation, assimilation of reflectance 
excluding snow (previously reported in Quaife et al. 2007), 
assimilation of reflectance data including snow and the results 
of Williams et al. (2005) where large amounts of field data were 
assimilated.

Flux Assimilated data
Total carbon 
uptake (g/m2)

Standard 
deviation

No data 
assimilation

240.2 212.2

MODIS excluding 
snow

373.0 151.3

MODIS including 
snow

404.8 129.6
NEP

Williams et al. 
(2005)

406.0 27.8

No data 
assimilation

1646.4 834.5

MODIS excluding 
snow

2620.3 96.8

MODIS including 
snow

2525.6 42.7
GPP

Williams et al. 
(2005)

2170.3 18.1

Table 1. Integrated C fluxes for 3 years.

3.1 Foliar Biomass

Fig. 3 shows the results of assimilating MODIS surface 
reflectance data into the DALEC model. Without the 
incorporation of snow contaminated pixels into the assimilation 
there is a clear period where the model is allowed to run without 
constraint and the ensemble spread increases monotonically. 
When the snow samples are added to the observations the 
model is adjusted accordingly, pulling the foliar biomass down 
during the winter months. The induced seasonality is quite 
large; in the order of 120 grams of carbon per m2 over the 
course of a year. Pinus Ponderosa is evergreen and so seasonal 
cycles of this magnitude are unlikely. Some of the understory 
components are deciduous which will account, in part, for this 
effect but it is unlikely to explain all the variation.

3.2 Gross Primary Productivity

Without data in the winter months DALEC overestimates the 
GPP. The high, unconstrained, foliar biomass leads to an 
increase in light interception and thus greater uptake of 
atmospheric CO2 by photosynthesis. This is rectified by the 
inclusion of the snow contaminated reflectance data, which 
pulls the foliar biomass down (Fig. 4). The integrated flux data 
(Table 1) only shows a slight improvement in the GPP however. 
This is because meteorological conditions (less incident PAR 
and lower temperatures) mean that GPP in the winter is low and 
so the correction at this time only has limited impact on the 
integrated quantity.
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3.3 Net Ecosystem Productivity

The correction made to GPP is only small as a proportion of its 
integral. This amount of carbon as a proportion of NEP is much 
greater however, and so the correction to the results for NEP 
induced by inclusion of the winter reflectance values is 
significant. Fig. 5. shows that by assimilating the snow 
reflectance data the model predicts a stronger source of carbon 
during the winter months, which is in agreement with the 
observations taken at the field site. The values in Table 1. show 
a remarkable agreement with the values published by Williams 
et al (2005).  Given that the GPP is overestimated this means 
that the total respiration from the system (autotrophic and 
heterotrophic) must also be overestimated to balance this out.

3.4 Parameter estimation

To use the techniques described above over wider areas it is 
important to be able to re-parameterise the DALEC model 
appropriately for the ecosystem in question. One option for 
determining the DALEC parameters is to use the EnKF itself. In 
this approach the parameters that are to be adjusted are placed 
in the model state vector and allowed to evolve with time under 
the influence of available observations. Fig. 7 show results of 
such an experiment assimilating MODIS reflectance data to 
adjust the rate of the carbon allocation to foliar biomass 
parameter.

Figure 7. Parameter values derived using the EnKF and MODIS 
reflectance data. The “tower” site refers to the field 
site used elsewhere in this paper.

In these experiments a single year of meteorological data and 
MODIS observations were fed repeatedly into the model. When 
the reflectance data for the Metolius site was used the value of 
the parameter settles so that its mean is almost equal to that 
determined by Williams et al. (2005) using a quasi Newton 
minimisation method. When the reflectance data for a nearby 
site to the northwest is used the parameter takes on a higher 
mean value. This site has been more recently felled than the 
Metolius site and the younger trees are likely to be allocating 
more carbon to leaf material.

In these results the allocation parameter has been heavily 
damped by giving it a very small uncertainty and the same year 
of data was assimilated many times in repetition. Without 
damping, the parameter did not to converge toward a constant 
mean. This suggests that it is not possible to use such 
techniques at the same time as a normal assimilation run, but 

instead they need to be performed off-line, much like a 
traditional calibration.

4. DISCUSSION AND CONCLUSION

This paper highlights some of the issues of using simple models 
in an EnKF scheme when there are long gaps between 
observation times. The DALEC model was designed to be used 
with a large number of observations, i.e. it gives reasonable, 
unbiased forecasts over some days or weeks, but not over 
several months. This is addressed here by building a modified 
version of an observation operator to permit assimilation of 
observations that had previous been disregarded (i.e. those 
contaminated by snow).  Estimates of gross and net carbon 
fluxes were improved by the inclusion of these data. 

Inclusion of winter observations induced a much higher 
variability in foliar biomass than expected. This is quite likely 
due to the assumption of a static 50% snow coverage for winter 
observations. A mechanism for determining this proportion is 
required to improve the observation operator for such cases. 
Ideally a snow hydrology model would be incorporated within 
the scheme and the EnKF used to adjust its parameters.

In addition, the problem of selecting an appropriate snow grain 
size has been ignored in these experiments. The variability of 
the spectral albedo as a function of grain size is small at the 
wavelengths being considered and so this is justified. It will 
certainly be a minor effect in comparison to the assumptions of 
a constant proportion of ground covered by snow. To bring in 
observations from other regions of the optical spectrum some 
mechanism will be required to take grain size into account.

With comparison to the field data the modelled foliar biomass is 
high. The GPP, in turn, is overestimated because of this. The 
foliar biomass field measurements are acquired using an 
LAI2000 probe and scaled to biomass by taking the product of 
the LAI and specific leaf area. The plot size for these 
measurements is 100×100m and so the discrepancy may be 
attributable to the difference in scale with the 500×500m 
MODIS pixels. The reference GPP data are generated from 
these LAI data also and so may be subject to similar scale 
problems. Work is currently underway to address this issue 
using high resolution ASTER data over the same region.

 Initial results of parameter estimation exercises show the 
potential of EO data to provide partial model calibration for 
wide areas: the method appears to retrieve reasonable values for 
the test cases. The parameters seem unable to settle to a single 
value however. This may reflect inadequacies in the simple 
model parameterisation but will almost certainly be partly due 
to noise in the reflectance data. In the results shown heavy 
damping has been introduced to allow the parameter to settle. 
An implication of this is parameter estimation may need to be 
carried out prior to the main run of the model-EnKF scheme.  

An issue that is not explored in this paper is the determination 
of the ancillary parameters for the observation operator. The 
numerical procedures currently being used are probably too 
slow to be used for large amounts of data. The ideal situation 
would be that the ecosystem model itself described as many of 
them as possible, but failing that an approach similar to the 
parameter estimation may prove useful.
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Figure 3. Foliar biomass predicted with 
DALEC assimilating observations of 
MODIS reflectance data. The top panel 
shows the case where snow 
contaminated pixels are exclude and the 
bottom panel show the results where 
snow contaminated data is used in the 
assimilation. The mean of the ensemble 
is shown with a black line and the 
spread about the line indicates one 
standard deviation of the ensemble. 
Field observations of canopy foliage 
(LAI scaled by specific leaf area) are 
plotted as single points with error bars.

Figure 4. Gross primary productivity 
predicted with DALEC assimilating 
observations of MODIS reflectance 
data. The top panel shows the case 
where snow contaminated pixels are 
exclude and the bottom panel show the 
results where snow contaminated data is 
used in the assimilation. The mean of 
the ensemble is shown with a black line 
and the spread about the line indicates 
one standard deviation of the ensemble. 
Estimates of GPP modelled using the 
SPA model of Williams et al. (1996) are 
shown as small black squares.

Figure 5. Net ecosystem productivity 
predicted with DALEC assimilating 
observations of MODIS reflectance 
data. The top panel shows the case 
where snow contaminated pixels are 
exclude and the bottom panel show the 
results where snow contaminated data is 
used in the assimilation. The mean of 
the ensemble is shown with a black line 
and the spread about the line indicates 
one standard deviation of the ensemble. 
Flux tower observations of NEP from 
the field site are shown as small black 
squares.
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