

HYRESSA 🎢	Objective Value						
Who was asked? 47 % University, 38 % Research Institute, 15 % Government							
Out of the 150 "only" 74		Country of Origin	Number of Replie				
researchers filled out the		Belgium	14				
QUN completely:		Czech Republic	2				
		Estonia	1				
Application area	Number of	Finland	2				
	Replies	France	4				
Atmosphere	3	Germany	13				
Limnology /Coastal Waters	10	Great Britain	5				
Geology and Landuse	19	Italy	2				
Vegetation (incl. Agriculture and	42	Netherlands	9				
Forestry)		Norway	3				
		Poland	4				
		Slovakia	1				
HYRESSA V	Vorkshop, Davo	Snain	5				
HYRESSA - HYperspe	ctral REmote Se	Switzerland	9				

HYRESSA 🏏	Objective Value			6			
What makes HSI data attractive?							
Objective (2 nd level)	Vegetation	Land	Water	Atmosphere			
A - Best Image based Properties	0.35	0.35	0.28	0.30			
B - Best Ergonomic Properties	0.21	0.23	0.24	0.21			
C - Lowest Costs	0.23	0.23	0.23	0.24			
D - Best Service	0.21	0.19	0.25	0.25			
D - Best Service 0.21 0.19 0.25 0.25 Relative values for the main application areas vegetation, land, water, and atmosphere for 1 st objective level! HYRESSA Workshop, Davos, Switzerland, 14-15 Mar 2007							
	tral REmote Sensi	ing in Europe sp	ecific Support	Actions			

HYRESSA 🏏	Objectiv	e Value		6				
What makes the best HSI <i>image</i> ?								
Objective	Vegetation	Atmosphere	Land	Water				
A1 – Spectral Parameters	0.29	0.28	0.29	0.29				
A2 – Geometric Parameters	0.25	0.22	0.25	0.23				
A3 – Radiometric Parameters	0.27	0.24	0.28	0.27				
A4 – Temporal Parameters	0.19	0.26	0.18	0.21				
Relative values for the main application areas vegetation, land, water, and atmosphere for 2 nd objective level: image-based properties								
HYRESSA W	orkshop, Davos,	Switzerland, 14-1	5 Mar 2007					
HYRESSA - HYperspect	ral REmote Sens	ing in Europe spe	cific Support Act	tions				

HYRESSA 🏏	Objective	e Value		6				
What makes the best spectral parameters of a HSI image?								
Objective	Vegetation	Atmosphere	Land	Water				
A11 – No. Of Spectral Bands	0.31	0.35	0.30	0.33				
A12 – Spectral Resolution	0.32	0.35	0.32	0.33				
A13 – Spec. Calibration Quality	0.37	0.30	0.38	0.33				
A13 – Spec. Calibration Quality 0.37 0.30 0.38 0.33 Relative values for the main application areas vegetation, land, water, and atmosphere for 3 rd objective level: spectral parameters 0.37 0.30 0.38 0.33								
HYRESSA Wo	rkshop, Davos, S	Switzerland, 14-15	Mar 2007					
HYRESSA - HYperspectr	al REmote Sensi	ng in Europe spec	ific Support Ac	tions				

	Atmos-	Geology	Land-use	Limnology	Vegetation ¹⁵
	phere ¹⁴				Group-1
					Group-2
No. of bands in total (VNIR-TIR)	3000	300	200	200	200
					100
Spectral resolution VNIR [nm]	0.05 - 0.5	6-10	8 - 15	4 - 8	6 - 12
					15 - 30
Spectral resolution SWIR [nm]	0.2 - 0.5	2 - 8	10 - 12	10 - 40	8 - 12
					25 - 40
Spectral resolution MIR/TIR [nm]	NA	10	40 - 220	40 - 200	300
Spatial resolution VNIR/SWIR [m]	2500	5	4	5 - 20	4 - 5
					10 - 30
Spatial resolution MIR/TIR [m]	NA	20 - 30	15	10 - 15	15
					30
Swath width VNIR/SWIR [km]	1200	15 - 30	15	25 - 30	20
					70
Swath width MIR/TIR [km]	0	15	15 - 20	30 - 40	20
					200
SNR VNIR	1500	400	400	700	450
Preferred observation repetition rate	daily-weekly	yearly	monthly-	daily-	weekly-
			yearly	weekly	yearly
Preferred data product?	Level 1	Level 1-2	Level 1-2	Level 2	Level 1-2
Preferred observation time?	mid day	mid day or	daytime	mid day	mid day
	-	night		-	-
What implies an improved service?	add-on SW	add-on SW	add-on SW	add-on SW	add-on SW
Preferred data delivery time?	day-week	month	week	day-week	week

HYRESSA 🛩 Objective Return								
What is the performance of the H	SI data provid	ded?						
Spaceborne:								
	HYPERION	CHRIS						
No. of bands in total	240	18-62						
Spectral resolution VNIR [nm]	10	6-33						
Spectral resolution SWIR [nm]	10	NA						
Spectral resolution MIR/TIR [nm]	NA	NA						
Spatial resolution VNIR/SWIR [m]	30	17-33						
Spatial resolution MIR/TIR [m]	NA	NA						
Swath width VNIR/SWIR [km]	7.5	14						
Swath width MIR/TIR [km]	NA	NA						
SNR VNIR	200	200						
Data Provider	USGS	ESA						
Airborne:								
AHS-160, AISA Dual, APEX, ARES, A	AVIRIS, CASI-3, HY	SPEX						
HYRESSA Workshop, Davos, S	witzerland, 14-15 Ma	r 2007						
HYRESSA - HYperspectral REmote Sensi	ng in Europe specific	Support Actions						

HYRESSA	*	Syı	nthesis	5		6		
What is the best data for all applications?								
	Atmosphere ¹²	Geology	Landuse	Limnology	Vegetation	Mean		
AHS	0.62	0.68	0.66	0.66	0.70	0.66		
AISA (DUAL)	0.56	0.55	0.54	0.55	0.56	0.55		
APEX	0.70	0.74	0.72	0.78	0.76	0.74		
ARES	0.67	0.75	0.72	0.74	0.75	0.73		
AVIRIS	0.57	0.62	0.59	0.61	0.62	0.60		
CASI	0.58	0.60	0.57	0.59	0.60	0.59		
CHRIS	0.70	0.71	0.72	0.74	0.72	0.72		
HYPERION	0.75	0.77	0.78	0.78	0.78	0.77		
HYSPEX	0.69	0.72	0.68	0.72	0.72	0.71		

HYRESSA 🎽	6)							
What is the best data for vegetation research?									
	A	B	C	D	Total				
AHS	0.23	0.19	0.15	0.13	0.70				
AISA - DUAL	0.19	0.10	0.15	0.13	0.56				
APEX	0.22	0.21	0.15	0.18	0.76				
ARES	0.23	0.20	0.15	0.17	0.75				
AVIRIS	0.22	0.17	0.15	0.09	0.62				
CASI	0.17	0.16	0.15	0.13	0.60				
CHRIS	0.17	0.16	0.23	0.16	0.72				
HYPERION	0.20	0.19	0.23	0.16	0.78				
HYSPEX	0.22	0.21	0.15	0.15	0.72				
Image-based Properties (A), Best ergonomic Properties (B), Lowest Costs (C) and Best Service (D)									
Ч	RESSA Wor	kshop, Davos	, Switzerland,	14-15 Mar 20	07				
HYRESSA - I	Hyperspectra	I REmote Ser	nsing in Europ	e specific Su	pport Actions				

USER NEEDS OF THE EUROPEAN HYPERSPECTRAL REMOTE SENSING COMMUNITY

Jens Nieke¹ and Klaus I. Itten ¹

IIs Reusen² and Stefan Adriaensen²

and the HYRESSA team: www.hyressa.net

- 1) University of Zürich, Department of Geography, RSL, Zurich, Switzerland; nieke@geo.unizh.ch
- 2) VITO TAP, Boeretang 200, B-2400 Mol, Belgium

ABSTRACT

While there is a strong need for hyperspectral imagery, the user-driven requirements are not well defined in view of protocols for calibration, acquisition, processing and in-situ measurements in compliance with existing standards. Therefore an analysis was performed in the frame of the EC project HYRESSA, regarding the question "What are the individual user requirements on hyper-spectral imagery and the related data products?". For this analysis a questionnaire and a subsequent benefit-value analysis helped to retrieve users needs and evaluate open items accordingly.

The EC funded HYRESSA project /1/ aims at investigating the user needs of the European hyperspectral research community with respect to access to and accuracy, quality and conformity of hyperspectral images - especially with the advent of next-generation European hyperspectral sensors - in order to refine protocols related to calibration, acquisition, processing and in-situ measurements in compliance with standards. This knowledge was gathered through a SWOT and User Needs workshop (at DLR in July 2006) and an on-line questionnaire (released in Nov. 2006).

The purpose of the paper is to answer the question "What makes hyperspectral data attractive?". Following the methodology of the benefit-value analysis (BVA) /2/, the answer can be described in hierarchical ordered multidimensional objective model.

The BVA serves as well-known tool for systematic problem solving process as a possibility of comparing projects or solutions. It enables the evaluation on the basis of a multidimensional objective model and can be extended by expert's preferences. Therefore the scaling method (Law of Comparative Judgment) was applied for receiving the desired ranking judgments. The result, which is the relative value of projects concerning a well-defined main objective can now be produced analytically.

Accordingly, BVA is utilized for the determination of the rank of existing or planned hyperspectral data products and is subdivided in 6 main tasks: (1) Defining an Objective Model for hyperspectral data, (2) Objective model weighting procedure of experts, (3) Compilation of an Earth observation hyperspectral data survey, (4) Comparison on the level of the objective value indicators, (5) Synthesis of values for each sensor data and (6) Evaluation of the results.

The investigation showed, that a BVA is a suitable method to analyse needs of hyperspectral data and to support sensor/data specification-building process. The BVA has the advantage, to be easy and clear to handle, resulting in a comprehensive evaluation. The disadvantage are the necessary efforts and the partly non-availability of all sensor data parameters. The paper summarizes all results of the analysis and gives insight to BVA methodology, statistics and others more.

Keywords: HYRESSA, Benefit-Value-Analysis, data products, quality assessment, User Needs in Europe

References:

1/ FP6-2004-Infrastructures-6, Contract Number 026194; URL: www.hyressa.net

2/ Zangemeister, C. (1970): Nutzwertanalyse in der Systemtechnik. Eine Methodik zur multidimensionalen Bewertung und Auswahl von Projektalternativen. München, 370 S.