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ABSTRACT:

Hyperspectral-multidirectional radiance observatiar the land surface from space potentially forme of the richest sources of
geobiophysical information possible. For soil-vegietn objects, the retrieval of this informatiomdze simulated by radiative trans-
fer modelling. In combination with a couple of aspberic parameters, the surface reflectance mddel(Soil-leaf-canopy) has
more than twenty degrees of freedom, which all haveotential impact on top-of-atmosphere radiana& dn hyperspectral-
multiangular feature space. With such a high dinoeraity, model inversion methods like look-up ®léchniques and neural net-
works tend to become less practicable, and costifum optimisation re-emerges as a viable alteveatiowever, model inversion
by optimisation techniques is often plagued by mizaginstability due to the so-called ill-posedses the model inversion prob-
lem. In the present paper, this ill-posedness effoblem is investigated and diagnosed by meaasfgular value decomposition
(SVD) of the Jacobian matrix, which contains thetiphderivatives of all observations with resprthe model variables. In addi-
tion, it is demonstrated how in a Bayesian apprdhehincorporation o& priori information can increase the numerical stability o
the model inversion. This leads to an extremelicieffit optimisation algorithm, which for randomlglscted model variable data
reaches an adequate solution in about 99% of thescan less than twenty iteration steps. The papkintroduce the model SLC,
its coupling with the atmosphere, for which MODTRAMAused, and for some selected cases it will aealye SVD results in or-
der to explain the causes of ill-posedness. A fadehinversion sequences will be presented in dalélustrate the numerical sta-
bility of the algorithm and its ability to reachpausible solution under various circumstances. §greed of this method is still lim-
ited, but it might be applied selectively to remmemtive pixels in a field, or to “calibrate” thixéd model parameters in a low-
dimensional look-up table or neural network modekrsion solution.

1. INTRODUCTION model which includes the atmosphere, top-of-atmesph
(TOA) radiance image data are simulated that hagenb

Traditionally, remote sensing satellite missionsdarth obser-
vation over land have often been designed to peosidange of
geobiophysical products to a wide and globally riisted
community of users. Operational products basedhis phi-
losophy are for instance MODIS LAl and MODIS fAPAR
(Knyazikhin et al., 1998), which employ knowledgktained
from vegetation-soil radiative transfer modellingdaglobal
maps of ecotypes, but nevertheless are still basieher sen-
sor-specific. However, there is a growing awarerieas algo-
rithms designed for the massive processing of esyervation
data into single products from single satellite simas might
interfere with the consistent use of several landase vari-
ables in dynamic process models. Also, differemvigers
might disseminate basically the same product (&Ad). derived
from different sensors and based on different #lgms, mak-
ing it hard for a user to decide which LAl is th@sh suitable
for the intended application. Therefore, it becomesre and
more obvious that a multisensor / multimission apph might
be more successful in providing the user communiih a
range of products that can be assimilated in Ipoatess mod-
els in a more natural and self-consistent manmetthis way
also the quality of products could be improvedcsimore in-
formation from various sources, including local dmhation
stored in GIS, could be integrated, thus reducirgdhance of
inconsistencies. In Figure 1 it is illustrated hewch an ap-
proach could be applied to assimilate data from setellite
sensor. The surface object properties are stored@its and by
means of a generic remote sensing (RS) earth obiserva

adapted to the spatial, spectral and geometricepties of the
sensor that produced the actual image. Comparistotbfim-
ages leads to conclusions on the adjustment otbpjeperties
and these are then fed back until actual and stedilemages
sufficiently match. This feedback loop establishexdel inver-
sion on the level of complete (series of) imagesfdiyard
simulation, with the great advantage that the ihpthe com-
plexity of the heterogeneous landscape and thesgtnere on
image formation, including topography, can be cegutifairly
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Fig. 1 Updating geographic information by balanairegv earth
observation data with existing forward-modeléegriori infor-
mation.



well by forward modelling, making various atmospbeand
topographic corrections unnecessary. Besides, siooglete
images are compared, the correct values of atmasghaame-
ters will be found in an early stage, as these laveffect on all
pixels in the image, and thus the overall cost fiancfor the
whole image, which is to be minimised during th¢imjsation
process, will rapidly decrease if a better charaagon of the
atmosphere is found. This concept of parameterevetr by
forward modelling can be characterised by the fWilhg fea-
tures:

=  Simultaneous retrieval of all object properties

=  Self-consistent set of object properties is obtine
= High degree of sensor-independence

=  User-oriented because of logapriori GIS info

If current surface properties stored in the GIStarbe updated
using a new satellite image, of course the questiises what
should be the resistance against modifying datae lttee bal-
ance between new earth observation data and exiGii@ info

comes into play, and a key element one could usase deci-
sions on is uncertainty. If there is little uncertg about the
correctness of the current GIS info, then the taste against
changing it must be high, even if satellite eaftsayvation data
seem to indicate that there are discrepanciesh®nther hand,
if one actually does not know whether the currerfio is cor-

rect, one will be inclined to readily accept angththat can be
derived from a new satellite observation. The doestad-

dressed in this paper is how one can balance tmttcas of
information in an optimum way. For this, the modelersion

of hyperspectral multidirectional radiance obseorat from

space was taken as a prototype, since this istimate example
of the richness of earth observation data, for wtite inver-

sion is a challenge because of the complexity efdhta, the
high dimensionality and the chance of numericabfms due
to ill-posedness of the model inversion problemwimat fol-

lows, first the set of coupled models used is mhticed in sec-
tion 2. Next the theory of Bayesian model inversiendis-

cussed, and in section 4 some results of modelksiore are
presented.

2. MODELLING SET-UP

The set of models used was meant to represenetieration of
TOA hyperspectral radiance data for generic sajetation
objects. The integrated soil-leaf-canopy model $V/€rhoef &
Bach, 2007) was used to generate surface reflectaocehe
former candidate mission SPECTRA over the waveleraige
400-2400 nm at 10 nm resolution and under 7 dwasti as
representative of data-rich inputs. The SLC modeisists of
the following submodels:

e 4-stream modified Hapke (1981) BRDF model
«  Soil moisture effect after Bach & Mauser (1994)

e PROSPECT (Jacquemoud & Baret, 1990) leaf model
e 4SAIL2 canopy RT model (including canopy - soil in-

teraction)

Compared to previous versions of SAIL, advancemanthe
4SAIL2 model (Verhoef & Bach, 2007) can be summatias
follows:

e leaf colours different in two layers
e crown clumping effect included

«  output of spectral canopy absorption (support for f
PAR) and observed fractional vegetation cover (FVC)

« numerically robust (singularities intercepted)

e speed-optimised

A complete list of object properties of the SLC miodepre-
sented in Fig. 2
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Fig. 2 Object properties of SLC model

For a given dry soil reflectance spectrum the nundfefree

parameters is 5 for the soil, 5 for green leave$orSbrown

leaves, and 8 for canopy structure, so 23 in tdtelorder to
simulate observations from space of top-of-atmosphadi-

ances, MODTRAN4 was coupled to SLC as illustratedrim

3. This coupling allows also to simulate produdke fAPAR

and surface albedo, but this falls outside the saufpthe pre-
sent paper. As an illustration, Fig. 4 shows a darop simu-
lated TOA observations of hyperspectral radianceten 7 di-
rections for a soil-vegetation object with an LAl ane under
standard conditions in April at mid-latitudes for atmospheric
visibility of 23 km.

For model inversion, the sensitivity of TOA radienabserva-
tions to changes in surface variables is partibulianportant.

However, for successful inversions this is notisight. If two

variables induce similar changes in TOA radiancecsp, it
will be hard to identify which variable caused ttieange, so
changes caused by one variable should also berliineae-

pendent from changes caused by other variables.
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Fig. 3 Coupling of SLC outputs to MODTRAN4 for simuidat
of TOA radiance spectra.
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Fig. 4 Sample of simulated hyperspectral-multidice@al TOA

radiance observations for a soil-vegetation object Fig. 5 Sensitivities of hyperspectral-multidirectad TOA radi-

ance observations to soil moisture and leaf oppoaperties.
Top row: soil moisture, leaf chlorophyll, brown pignt; bot-

Figures 5 and 6 show examples of the sensitivitspefctral and tom row: leaf water, dry matteN parameter.

directional TOA radiances to a selection of surfaadables.
These illustrate that the sensitivities to the masi parameters
are spectrally and angularly quite diverse, altioage can also
notice similarities. Especially for the canopy stwre the
shapes of spectral sensitivities or often simildere, different
parameters often give different angular resporseghat mul-
tiangular information provides quite some discriatine power.
The amount of linear independence in the sengittaeitsurface
variables can be established by investigating #w®lian ma-
trix, which contains the partial derivatives of albservables |
(spectral bands and viewing directions) with respeall sur- E

face variables. A very useful tool for this is gitay value de- +—R
composition (SVD). Any matrix can be decomposedSWD, i MRA — !
and for a Jacobian matrikone obtains NN |
— T
J=usv, @) Fig. 6 Sensitivities of hyperspectral-multidirectad TOA radi-

ance observations to canopy structure. Top row; LIDF a
with UTU =1 ; V'V =vVT =1 ; Sdiagonal. parameter, LIDF b parameter; bottom row: hot spoameter,
crown cover, fraction brown leaves.

The sensitivity of model observables to surfaceapaters is
thus described by 3. BAYESIAN MODEL INVERSION

If Newton’s optimisation method is applied withcany regu-
larisation by means o priori information, in the neighbour-
hood of the final solution one can write

Ar =JAp=USV "'Ap,

which after pre-multiplication by the transposedJogives

Ar =JAp,
U'Ar=SV'Ap. ) P

where Apis the change in the surface parameters required to

remove the discrepandy between measured and modelled
observables. Formally, the solution in terms ohange of pa-
rameters which removes the discrepancy in the vhbkss is
found by pre-multiplication with the transposedipfjiving

This result expresses that it is possible to obtaimector of
linearly transformed changes of surface variabigsich are
one-to-one related to the elements of a vectoinefltly trans-
formed changes of observables. The relation comgedtoth
transformed vectors is given by the diagonal maifisingular
valuesS. One may state that the singular values expresoth
cal sensitivities of a set of linearly transformauservables to a
set of linearly transformed surface variables. Aingependence
will be expressed by one or more Singu|ar Valu@sd)equa| to HOWeVer, this solution fails if the Jacobian matd)singular,

zero, indicating that there are certain linear ciomlions of ob- ~ Since one can show that the matrix

servables which have no sensitivity to a spaceudfse vari-

ables (the so-called null-space). This is exatibydituation en- 37T =vSUT,

countered when model inversion becomes an ill-pgseblem.

In that case the Jacobian matrix is singular, st the model which obviously leads to infinite changes in partereif any
inversion problem has no solution, or rather hattipie solu- of the singular values equals zero.

tions. Thus, singular value decomposition is aulsebl to di-  Regularisation of Newton's iteration method can dmom-
agnose ill-posedness. In the next section it wéllshown how  plished by mixing it with the solution which goesa the direc-
the ill-posedness can be reduced by usipgiori information. tion of thea priori parameter vector, and using proper weights.

JTAr =3"JAp, or Ap=(J37I) I Ar



For the optimisation of a single paramegtefor which a model
provides the solutiorp, and thea priori value isp, the
weights are related to the uncertainties attaclethé model

This updating rule forms an effective cure for tfv@osedness
problem, since also for singular values equal tm ze stable

result and thea priori value. If these are expressed by theirsolution is found. In that case the correspondingar trans-

variancesam2 and cra2 , the Bayesian final solution is given by

2

2
Ua pm+am pa

p =
a,aZ +0,m2

This can also be written as an equivalent exprassitich bal-

ances the differences with the model solution dredat priori

solution, where the inverse variances are usedeag¢ights:

For normalised parameters having uaifpriori variance, one
can write

S*(p-p,)=—(P—P.).

where S is the relative sensitivity of the model to chasdge
normalised parameters. In this relative sensititligy noise level
of the sensor should be taken into account: thednithe noise
level, the lower the relative sensitivity should B®r a multi-
variate system one can write similarly for a transfed variable
space in the equilibrium situation

SVT(p-p.) =V (P-p,)-
The goal of an iteration step in the regularisedvida optimi-

sation method is trying to minimise the differendgth the equi-
librium solution, which is given by

P =V(S*+1)(SV T p, +VTp,), 3

and which clearly illustrates that more weight iseg to the

model solution if relative sensitivity is high, wieas in the case

of no sensitivity at all tha priori solution is taken.

For the current vector of parameters one can write
p=V(S*+1)(SV p+Vip),

and by subtracting this from Eq. (3) one obtainsupdating

rule which can be used in a regularised Newtonntipétion
algorithm, and reads

Ap=V(S*+1)"[SVT(p, - P)+V (P, ~ P)]

Since in the neighbourhood of the solution the nade be
linearised as given by Eq. (2), one can write

Vi(p,-p=SU"(r,-T),

where r is the vector of modelled observables for the enirr
vector of parameters, ang is the vector of measured observ-

ables, so an iteration step should perform a chafigeodel
parameters equal to

Ap=V(S*+1)7[SUT(r,-N+VT(p,=PI. (4

formations of surface variables will automaticadily equated to
thea priori ones.

4. RESULTS

Before showing some examples of successful reldexfamany
parameters by the Bayesian model inversion algarifrom
simulated hyperspectral-multidirectional TOA radiardata, the
dimensionality of this kind of rich data (201 bamd¥ direc-
tions) is investigated by analysing the Jacobiatrimaf model
sensitivities for a single benchmark case. Thig capresents a
clumped (less than 100% crown cover) and mixed tetiga
canopy (green and brown leaves both present) witiown LAl
of one. This kind of object was chosen in ordegite all pa-
rameters some sensitivity on remote sensing obiskyaso that
a maximum potential dimensionality would be reachEdr
some settings of model variables the sensitivitiea subset of
variables may go to zero. A trivial example is aapy which
only has green leaves (fraction brown leaf area)zdthis gives
zero sensitivity to the brown leaf optical propesti Another is
the case of no clumping (homogeneous canopy with%l0
crown cover). In this case the tree shape factoofnes irrele-
vant.

For the case of a hyperspectral-multidirectionasiain the re-
sults are given by the red line (box symbol) in.Fig which
shows the retrieval error variances of the linearynsformed
surface variables obtained from the SVD of the Basomatrix,
relative to those valid for the case of guessirggthirom thea
priori information. Here the priori information was assumed
to consist of the assumption that each variableegasl to its
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Fig. 7 Dimensionality plot for four different missi concepts.

value at the centre of its interval. Taeriori variances (uncer-
tainties) were expressed by assuming for each hlaria uni-
form distribution over their entire plausible ran@#mensional-
ity may be expressed by counting the number ofaliiyeinde-



pendent transformed variables which can be rettievih an
error variance clearly less than the error variazareesponding
to guessing. For double-normalised data, i.e. tugables are
normalised by their standard deviations and theofables by
their noise levels (also expressed as standarchtilmvs), the
relative error variance of a linearly independetansformed
variable becomes equal (S + ,lvhereS is the associate
singular value. Calling a transformed variableiestble if its
error variance is more than ten times smaller tharone corre-
sponding to randomly guessing, in Fig. 7 one maseole that
for the hyperspectral-multidirectional mission oolye singular
value is found that is associated with a transfarvegiable that
should be considered non-retrievable. The total bemof sin-
gular values is 21 here, since the four Hapke B&DF pa-
rameters were not varied, and in this case twonpeters were
added to include some uncertainty due to the athergpadija-
cency effect, the fractions of dense vegetation laau@ soil in
the neighbourhood of the target pixel. So one neaclude that
the dimensionality of the data retrievable from éngpectral-
multidirectional observations in this case is 20r & multispec-
tral mission (6 Landsat bands) with 7 directions dimension-
ality is 12, and the same number is found for glsiview na-
dir-looking hyperspectral mission. For a nadir-lowk multi-
spectral (Landsat bands) mission the dimensiondkfined in
this way is 5. Note that for this simulation theisgolevel was
assumed to be given by 0.1 Wipm™sr? | uniformly distrib-
uted over the spectrum. For a tenfold higher néésel (1

This is illustrated in Fig. 8, where for brown leavafter 11 it-
erations still considerable deviations are found tlee bio-
chemical components chlorophyll, water, and broigment.
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WmZumsr?) the dimensionalities obtained for the same mis- Fig. 8 Retrieval of brown leaf optical properti€$at blue lines

sion types are 13, 7, 5 and 2, respectively. Hegentultispec-
tral multidirectional mission scores higher tharsiagle-view

hyperspectral mission. One may also conclude trgioal sig-

nal-to-noise ratio is essential for the successéttieval of

many geobiophysical surface variables, as wellrmadvanced
hyperspectral-multidirectional mission concept.

In order to test the performance of a Bayesian inimdersion

algorithm based on the regularised Newton optintisanethod

as outlined in section 3, 10000 combinations oflcamly se-

lected surface variables were generated, the goneng TOA

hyperspectral-multidirectional radiance data weseputed by
forward modelling, and next these were providethtoretrieval

algorithm. In this numerical experiment all 23 adles of the
SLC model were allowed to vary and these shouldallre-

trieved as well. However, the dry soil reflectaspectrum and
the atmospheric properties were assumed to be knovthnis

case. The result was that in 99% of the casesdlreat solu-

tion was found, and that the number of Newton fiens was

mostly less than twenty. Computation time on a comiC is

quite considerable, since one iteration requirescthmputation
of the Jacobian matrix, which involves 201 x 7 x raddel

simulations, so that a complete sequence of iteratfor a sin-
gle optimisation may well take 5 to 10 seconds. Easv, one
could imagine that the full optimisation would bepéed only

to field-averaged data or certain representativeelpi while

look-up table methods might be applied elsewhereagture

intra-field variations (Verhoef & Bach, 2003). Inatt case most
variables are set to fixed values, and only a fegvtp four) are
allowed to vary.

An example illustrating the functioning of the afigom for the

retrieval of the brown leaf optical properties eown in Fig. 8.

This example was chosen to illustrate in particthat for some
parameters the final solution deviates from theemrone be-
cause of the bias created by theriori solution. The modelled
TOA radiances are only weakly sensitive to somesabpa-

rameters, and for parameters for which this iscéee the final
solution will give relatively much weight to theepriori values.

show the correct values to be retrieved, red lthesuccessive
trials during 11 iteration steps. The right axiswhk the names
and plausible ranges of the respective parameters.

How, for the same Bayesian model inversion experimthe

most important canopy structural parameters wetrgeved is

shown in Fig. 9. Especially the LAl and the averéeg slope
(LIDFa) are found soon. The more or less corret¢tspot pa-

rameter is found only after several iterations.sTiki caused by
the fact that the simulated observations were mtté principal

plane (minimum relative azimuth about 25 deg), sosgivity

to the hot spot parameter is only small.
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Fig. 9 Retrieval of some canopy structure pararseter

Although it was found that Bayesian retrieval ofgmaeters by
regularising Newton’'s method witla priori information, it



should be noted that some extra measures weraetiissary to
improve the stability of the algorithm, the mostpiontant one
being the initial search for a suitable startinglLBor this, a
small look-up table is constructed which contaihe tmodel
results for eight LAI values and default values ttoe other pa-
rameters. This look-up table is used to find thetlstarting
LA

Another refinement was introduced to compensatehfernon-
linearity of the model's response to LAI. An expatially
transformed LAl was used to improve linearity, whitas a fa-
vourable effect on convergence speed.

5. CONCLUSIONS

A concept of remote sensing data assimilation heenpre-
sented which retrieves land surface informatiomfroew earth
observation data by comparing this to forward-miedekxist-

ing a priori information, and applying a feedback loop on the

level of complete (series of) images. In this madsra the bal-
ancing of old and new information plays a key raled for this
a Bayesian approach based on the uncertaintiesmaite sens-

ing observables and treepriori surface variables appears very

attractive. The concept can be used for updatirgudfce vari-
ables from several sensors on board of severdl eadervation
missions, thus bridging the gaps between sensgrepties and
improving the continuity and consistency of landface prod-
ucts. This concept has been prototyped on therirdtion-rich

simulated data that one might expect from a hypithlehyper-
spectral-multidirectional earth observation mission

The information content of hyperspectral multidirenal radi-
ance observations from space has been investiggtetans of
singular value decomposition (SVD) of the Jacobmatrix,

which expresses the coupled model’s sensitivitghianges in
surface variables. In a Bayesian context, inforamattontent
can be defined by the ability to retrieve surfaegiables rela-
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