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ABSTRACT: 
 
Hyperspectral-multidirectional radiance observations of the land surface from space potentially form one of the richest sources of 
geobiophysical information possible. For soil-vegetation objects, the retrieval of this information can be simulated by radiative trans-
fer modelling. In combination with a couple of atmospheric parameters, the surface reflectance model SLC (soil-leaf-canopy) has 
more than twenty degrees of freedom, which all have a potential impact on top-of-atmosphere radiance data in hyperspectral-
multiangular feature space. With such a high dimensionality, model inversion methods like look-up table techniques and neural net-
works tend to become less practicable, and cost-function optimisation re-emerges as a viable alternative. However, model inversion 
by optimisation techniques is often plagued by numerical instability due to the so-called ill-posedness of the model inversion prob-
lem. In the present paper, this ill-posedness of the problem is investigated and diagnosed by means of a singular value decomposition 
(SVD) of the Jacobian matrix, which contains the partial derivatives of all observations with respect to the model variables. In addi-
tion, it is demonstrated how in a Bayesian approach the incorporation of a priori information can increase the numerical stability of 
the model inversion. This leads to an extremely efficient optimisation algorithm, which for randomly selected model variable data 
reaches an adequate solution in about 99% of the cases, in less than twenty iteration steps. The paper will introduce the model SLC, 
its coupling with the atmosphere, for which MODTRAN4 is used, and for some selected cases it will analyse the SVD results in or-
der to explain the causes of ill-posedness. A few model inversion sequences will be presented in order to illustrate the numerical sta-
bility of the algorithm and its ability to reach a plausible solution under various circumstances. The speed of this method is still lim-
ited, but it might be applied selectively to representative pixels in a field, or to “calibrate” the fixed model parameters in a low-
dimensional look-up table or neural network model inversion solution. 
 

1. INTRODUCTION 

Traditionally, remote sensing satellite missions for earth obser-
vation over land have often been designed to provide a range of 
geobiophysical products to a wide and globally distributed 
community of users. Operational products based on this phi-
losophy are for instance MODIS LAI and MODIS fAPAR 
(Knyazikhin et al., 1998), which employ knowledge obtained 
from vegetation-soil radiative transfer modelling and global 
maps of ecotypes, but nevertheless are still basically rather sen-
sor-specific. However, there is a growing awareness that algo-
rithms designed for the massive processing of earth observation 
data into single products from single satellite missions might 
interfere with the consistent use of several land surface vari-
ables in dynamic process models. Also, different providers 
might disseminate basically the same product (e.g. LAI) derived 
from different sensors and based on different algorithms, mak-
ing it hard for a user to decide which LAI is the most suitable 
for the intended application. Therefore, it becomes more and 
more obvious that a multisensor / multimission approach might 
be more successful in providing the user community with a 
range of products that can be assimilated in local process mod-
els in a more natural and self-consistent manner. In this way 
also the quality of products could be improved, since more in-
formation from various sources, including local information 
stored in GIS, could be integrated, thus reducing the chance of 
inconsistencies. In Figure 1 it is illustrated how such an ap-
proach could be applied to assimilate data from one satellite 
sensor. The surface object properties are stored in a GIS and by 
means of a generic remote sensing (RS) earth observation 

model which includes the atmosphere, top-of-atmosphere 
(TOA) radiance image data are simulated that have been 
adapted to the spatial, spectral and geometric properties of the 
sensor that produced the actual image. Comparison of both im-
ages leads to conclusions on the adjustment of object properties 
and these are then fed back until actual and simulated images 
sufficiently match. This feedback loop establishes model inver-
sion on the level of complete (series of) images by forward 
simulation, with the great advantage that the impact of the com-
plexity of the heterogeneous landscape and the atmosphere on 
image formation, including topography, can be captured fairly  
 

GROUND
PROCESSING

GIS
info

RS 
model

TOA radiance
images (actual)

TOA radiance
images (simulated)

Maps
Mission data

GROUND
PROCESSING

GIS
info

RS 
model

TOA radiance
images (actual)

TOA radiance
images (simulated)

Maps
Mission data

  
Fig. 1 Updating geographic information by balancing new earth 
observation data with existing forward-modelled a priori infor-

mation. 



 

 

 
well by forward modelling, making various atmospheric and 
topographic corrections unnecessary. Besides, since complete 
images are compared, the correct values of atmospheric parame-
ters will be found in an early stage, as these have an effect on all 
pixels in the image, and thus the overall cost function for the 
whole image, which is to be minimised during the optimisation 
process, will rapidly decrease if a better characterisation of the 
atmosphere is found. This concept of parameter retrieval by 
forward modelling can be characterised by the following fea-
tures: 
 

� Simultaneous retrieval of all object properties 
� Self-consistent set of object properties is obtained 
� High degree of sensor-independence 
� User-oriented because of local a priori GIS info 

 
If current surface properties stored in the GIS are to be updated 
using a new satellite image, of course the question arises what 
should be the resistance against modifying data. Here the bal-
ance between new earth observation data and existing GIS info 
comes into play, and a key element one could use to base deci-
sions on is uncertainty. If there is little uncertainty about the 
correctness of the current GIS info, then the resistance against 
changing it must be high, even if satellite earth observation data 
seem to indicate that there are discrepancies. On the other hand, 
if one actually does not know whether the current info is cor-
rect, one will be inclined to readily accept anything that can be 
derived from a new satellite observation. The question ad-
dressed in this paper is how one can balance both sources of 
information in an optimum way. For this, the model inversion 
of hyperspectral multidirectional radiance observations from 
space was taken as a prototype, since this is an ultimate example 
of the richness of earth observation data, for which the inver-
sion is a challenge because of the complexity of the data, the 
high dimensionality and the chance of numerical problems due 
to ill-posedness of the model inversion problem. In what fol-
lows, first the set of coupled models used is introduced in sec-
tion 2. Next the theory of Bayesian model inversion is dis-
cussed, and in section 4 some results of model inversion are 
presented. 
 

2. MODELLING SET-UP 

The set of models used was meant to represent the generation of 
TOA hyperspectral radiance data for generic soil-vegetation 
objects. The integrated soil-leaf-canopy model SLC (Verhoef & 
Bach, 2007) was used to generate surface reflectances for the 
former candidate mission SPECTRA over the wavelength range 
400-2400 nm at 10 nm resolution and under 7 directions, as 
representative of data-rich inputs. The SLC model consists of 
the following submodels:  
 

• 4-stream modified Hapke (1981) BRDF model 
• Soil moisture effect after Bach & Mauser (1994) 
• PROSPECT (Jacquemoud & Baret, 1990) leaf model 
• 4SAIL2 canopy RT model (including canopy - soil in-

teraction) 
 
Compared to previous versions of SAIL, advancements in the 
4SAIL2 model (Verhoef & Bach, 2007) can be summarized as 
follows: 
 

• leaf colours different in two layers 
• crown clumping effect included 

• output of spectral canopy absorption (support for fA-
PAR) and observed fractional vegetation cover (FVC) 

• numerically robust (singularities intercepted) 
• speed-optimised 

 
A complete list of object properties of the SLC model is pre-
sented in Fig. 2 
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Fig. 2 Object properties of SLC model 
 
For a given dry soil reflectance spectrum the number of free 
parameters is 5 for the soil, 5 for green leaves, 5 for brown 
leaves, and 8 for canopy structure, so 23 in total. In order to 
simulate observations from space of top-of-atmosphere radi-
ances, MODTRAN4 was coupled to SLC as illustrated in Fig. 
3. This coupling allows also to simulate products like fAPAR 
and surface albedo, but this falls outside the scope of the pre-
sent paper. As an illustration, Fig. 4 shows a sample of simu-
lated TOA observations of hyperspectral radiances under 7 di-
rections for a soil-vegetation object with an LAI of one under 
standard conditions in April at mid-latitudes for an atmospheric 
visibility of 23 km. 
For model inversion, the sensitivity of TOA radiance observa-
tions to changes in surface variables is particularly important. 
However, for successful inversions this is not sufficient. If two 
variables induce similar changes in TOA radiance spectra, it 
will be hard to identify which variable caused the change, so 
changes caused by one variable should also be linearly inde-
pendent from changes caused by other variables.  
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Fig. 3 Coupling of SLC outputs to MODTRAN4 for simulation 
of TOA radiance spectra. 
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Fig. 4 Sample of simulated hyperspectral-multidirectional TOA 

radiance observations for a soil-vegetation object 
 
Figures 5 and 6 show examples of the sensitivity of spectral and 
directional TOA radiances to a selection of surface variables. 
These illustrate that the sensitivities to the various parameters 
are spectrally and angularly quite diverse, although one can also 
notice similarities. Especially for the canopy structure the 
shapes of spectral sensitivities or often similar. Here, different 
parameters often give different angular responses, so that mul-
tiangular information provides quite some discriminative power. 
The amount of linear independence in the sensitivity to surface 
variables can be established by investigating the Jacobian ma-
trix, which contains the partial derivatives of all observables 
(spectral bands and viewing directions) with respect to all sur-
face variables. A very useful tool for this is singular value de-
composition (SVD). Any matrix can be decomposed by SVD, 
and for a Jacobian matrix J one obtains 
 

TUSVJ = ,                                       (1) 

 
with IUU =T ; IVVVV == TT ; S diagonal. 

 
The sensitivity of model observables to surface parameters is 
thus described by 
 

pUSVpJr ∆=∆=∆ T , 
 
which after pre-multiplication by the transposed of U gives 
 

pVSrU ∆=∆ TT .                                 (2) 

 
This result expresses that it is possible to obtain a vector of 
linearly transformed changes of surface variables, which are 
one-to-one related to the elements of a vector of linearly trans-
formed changes of observables. The relation connecting both 
transformed vectors is given by the diagonal matrix of singular 
values S. One may state that the singular values express the lo-
cal sensitivities of a set of linearly transformed observables to a 
set of linearly transformed surface variables. Linear dependence 
will be expressed by one or more singular values being equal to 
zero, indicating that there are certain linear combinations of ob-
servables which have no sensitivity to a space of surface vari-
ables (the so-called null-space). This is exactly the situation en-
countered when model inversion becomes an ill-posed problem. 
In that case the Jacobian matrix is singular, so that the model 
inversion problem has no solution, or rather has multiple solu-
tions. Thus, singular value decomposition is a useful tool to di-
agnose ill-posedness. In the next section it will be shown how 
the ill-posedness can be reduced by using a priori information. 
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Fig. 5 Sensitivities of hyperspectral-multidirectional TOA radi-
ance observations to soil moisture and leaf optical properties. 
Top row: soil moisture, leaf chlorophyll, brown pigment; bot-

tom row: leaf water, dry matter, N parameter. 
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Fig. 6 Sensitivities of hyperspectral-multidirectional TOA radi-
ance observations to canopy structure. Top row: LAI, LIDF a 
parameter, LIDF b parameter; bottom row: hot spot parameter, 

crown cover, fraction brown leaves. 
 

3. BAYESIAN MODEL INVERSION 

If Newton’s optimisation method is applied without any regu-
larisation by means of a priori information, in the neighbour-
hood of the final solution one can write 
 

pJr ∆=∆ , 
 
where p∆ is the change in the surface parameters required to 

remove the discrepancyr∆ between measured and modelled 
observables. Formally, the solution in terms of a change of pa-
rameters which removes the discrepancy in the observables is 
found by pre-multiplication with the transposed of J, giving 
 

pJJrJ ∆=∆ TT , or rJJJp ∆=∆ − T1T )(  
 
However, this solution fails if the Jacobian matrix is singular, 
since one can show that the matrix  
 

T1T1T )( UVSJJJ −− = , 
 

which obviously leads to infinite changes in parameters if any 
of the singular values equals zero.  
Regularisation of Newton’s iteration method can be accom-
plished by mixing it with the solution which goes into the direc-
tion of the a priori parameter vector, and using proper weights. 



 

 

For the optimisation of a single parameter p, for which a model 
provides the solution pm, and the a priori value is pa, the 
weights are related to the uncertainties attached to the model 
result and the a priori value. If these are expressed by their 

variances 2

mσ and 2

aσ , the Bayesian final solution is given by 

 

22

22

ma

amma pp
p

σσ
σσ

+
+

= . 

 
This can also be written as an equivalent expression which bal-
ances the differences with the model solution and the a priori 
solution, where the inverse variances are used as the weights: 
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For normalised parameters having unit a priori variance, one 
can write  
 

)()(2
am ppppS −−=− , 

 
where S is the relative sensitivity of the model to changes in 
normalised parameters. In this relative sensitivity the noise level 
of the sensor should be taken into account: the higher the noise 
level, the lower the relative sensitivity should be. For a multi-
variate system one can write similarly for a transformed variable 
space in the equilibrium situation 
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The goal of an iteration step in the regularised Newton optimi-
sation method is trying to minimise the difference with the equi-
librium solution, which is given by 
 

)()( TT212
as pVpVSISVp m ++= − ,                 (3) 

 
and which clearly illustrates that more weight is given to the 
model solution if relative sensitivity is high, whereas in the case 
of no sensitivity at all the a priori solution is taken.  
 
For the current vector of parameters one can write 
 

)()( TT212 pVpVSISVp ++= − ,  
 

and by subtracting this from Eq. (3) one obtains an updating 
rule which can be used in a regularised Newton optimisation 
algorithm, and reads 

 
)]()([)( TT212 ppVppVSISVp m −+−+=∆ −

a  

 
Since in the neighbourhood of the solution the model can be 
linearised as given by Eq. (2), one can write 
 

)()( T1T rrUSppV −=− −
om , 

 
where r  is the vector of modelled observables for the current 
vector of parameters, and or  is the vector of measured observ-

ables, so an iteration step should perform a change of model 
parameters equal to 
 

)]()([)( TT12 ppVrrSUISVp −+−+=∆ −
ao .       (4) 

 
This updating rule forms an effective cure for the ill-posedness 
problem, since also for singular values equal to zero a stable 
solution is found. In that case the corresponding linear trans-
formations of surface variables will automatically be equated to 
the a priori ones. 
 
4. RESULTS 

Before showing some examples of successful retrievals of many 
parameters by the Bayesian model inversion algorithm from 
simulated hyperspectral-multidirectional TOA radiance data, the 
dimensionality of this kind of rich data (201 bands × 7 direc-
tions) is investigated by analysing the Jacobian matrix of model 
sensitivities for a single benchmark case. This case represents a 
clumped (less than 100% crown cover) and mixed vegetation 
canopy (green and brown leaves both present) with a crown LAI 
of one. This kind of object was chosen in order to give all pa-
rameters some sensitivity on remote sensing observables, so that 
a maximum potential dimensionality would be reached. For 
some settings of model variables the sensitivities to a subset of 
variables may go to zero. A trivial example is a canopy which 
only has green leaves (fraction brown leaf area zero). This gives 
zero sensitivity to the brown leaf optical properties. Another is 
the case of no clumping (homogeneous canopy with 100% 
crown cover). In this case the tree shape factor becomes irrele-
vant. 
For the case of a hyperspectral-multidirectional mission the re-
sults are given by the red line (box symbol) in Fig. 7, which 
shows the retrieval error variances of the linearly transformed 
surface variables obtained from the SVD of the Jacobian matrix, 
relative to those valid for the case of guessing them from the a 
priori  information. Here the a priori information was assumed 
to consist of the assumption that each variable was equal to its 
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Fig. 7 Dimensionality plot for four different mission concepts. 

 
value at the centre of its interval. The a priori variances (uncer-
tainties) were expressed by assuming for each variable a uni-
form distribution over their entire plausible range. Dimensional-
ity may be expressed by counting the number of linearly inde-



 

 

pendent transformed variables which can be retrieved with an 
error variance clearly less than the error variance corresponding 
to guessing. For double-normalised data, i.e. the variables are 
normalised by their standard deviations and the observables by 
their noise levels (also expressed as standard deviations), the 
relative error variance of a linearly independent transformed 
variable becomes equal to )1/(1 2 +S , where S is the associate 
singular value. Calling a transformed variable retrievable if its 
error variance is more than ten times smaller than the one corre-
sponding to randomly guessing, in Fig. 7 one may observe that 
for the hyperspectral-multidirectional mission only one singular 
value is found that is associated with a transformed variable that 
should be considered non-retrievable. The total number of sin-
gular values is 21 here, since the four Hapke soil BRDF pa-
rameters were not varied, and in this case two parameters were 
added to include some uncertainty due to the atmospheric adja-
cency effect, the fractions of dense vegetation and bare soil in 
the neighbourhood of the target pixel. So one may conclude that 
the dimensionality of the data retrievable from hyperspectral-
multidirectional observations in this case is 20. For a multispec-
tral mission (6 Landsat bands) with 7 directions the dimension-
ality is 12, and the same number is found for a single view na-
dir-looking hyperspectral mission. For a nadir-looking multi-
spectral (Landsat bands) mission the dimensionality defined in 
this way is 5. Note that for this simulation the noise level was 
assumed to be given by 0.1 Wm−2µm−1sr−1 , uniformly distrib-
uted over the spectrum. For a tenfold higher noise level (1 
Wm−2µm−1sr−1) the dimensionalities obtained for the same mis-
sion types are 13, 7, 5 and 2, respectively. Here the multispec-
tral multidirectional mission scores higher than a single-view 
hyperspectral mission. One may also conclude that a good sig-
nal-to-noise ratio is essential for the successful retrieval of 
many geobiophysical surface variables, as well as an advanced 
hyperspectral-multidirectional mission concept.  
In order to test the performance of a Bayesian model inversion 
algorithm based on the regularised Newton optimisation method 
as outlined in section 3, 10000 combinations of randomly se-
lected surface variables were generated, the corresponding TOA 
hyperspectral-multidirectional radiance data were computed by 
forward modelling, and next these were provided to the retrieval 
algorithm. In this numerical experiment all 23 variables of the 
SLC model were allowed to vary and these should all be re-
trieved as well. However, the dry soil reflectance spectrum and 
the atmospheric properties were assumed to be known in this 
case. The result was that in 99% of the cases the correct solu-
tion was found, and that the number of Newton iterations was 
mostly less than twenty. Computation time on a common PC is 
quite considerable, since one iteration requires the computation 
of the Jacobian matrix, which involves 201 × 7 × 24 model 
simulations, so that a complete sequence of iterations for a sin-
gle optimisation may well take 5 to 10 seconds. However, one 
could imagine that the full optimisation would be applied only 
to field-averaged data or certain representative pixels, while 
look-up table methods might be applied elsewhere to capture 
intra-field variations (Verhoef & Bach, 2003). In that case most 
variables are set to fixed values, and only a few (up to four) are 
allowed to vary.  
An example illustrating the functioning of the algorithm for the 
retrieval of the brown leaf optical properties is shown in Fig. 8. 
This example was chosen to illustrate in particular that for some 
parameters the final solution deviates from the correct one be-
cause of the bias created by the a priori solution. The modelled 
TOA radiances are only weakly sensitive to some object pa-
rameters, and for parameters for which this is the case the final 
solution will give relatively much weight to the a priori values. 

This is illustrated in Fig. 8, where for brown leaves after 11 it-
erations still considerable deviations are found for the bio-
chemical components chlorophyll, water, and brown pigment.  
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Fig. 8 Retrieval of brown leaf optical properties. Flat blue lines 
show the correct values to be retrieved, red lines the successive 
trials during 11 iteration steps. The right axis shows the names 

and  plausible ranges of the respective parameters. 
 
How, for the same Bayesian model inversion experiment, the 
most important canopy structural parameters were retrieved is 
shown in Fig. 9. Especially the LAI and the average leaf slope 
(LIDFa) are found soon. The more or less correct hot spot pa-
rameter is found only after several iterations. This is caused by 
the fact that the simulated observations were not in the principal 
plane (minimum relative azimuth about 25 deg), so sensitivity 
to the hot spot parameter is only small. 
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Fig. 9 Retrieval of some canopy structure parameters.  

 
Although it was found that Bayesian retrieval of parameters by 
regularising Newton’s method with a priori information, it 



 

 

should be noted that some extra measures were still necessary to 
improve the stability of the algorithm, the most important one 
being the initial search for a suitable starting LAI. For this, a 
small look-up table is constructed which contains the model 
results for eight LAI values and default values for the other pa-
rameters. This look-up table is used to find the best starting 
LAI.  
Another refinement was introduced to compensate for the non-
linearity of the model’s response to LAI. An exponentially 
transformed LAI was used to improve linearity, which has a fa-
vourable effect on convergence speed.   
 

5. CONCLUSIONS 

A concept of remote sensing data assimilation has been pre-
sented which retrieves land surface information from new earth 
observation data by comparing this to forward-modelled exist-
ing a priori information, and applying a feedback loop on the 
level of complete (series of) images. In this mechanism the bal-
ancing of old and new information plays a key role, and for this 
a Bayesian approach based on the uncertainties of remote sens-
ing observables and the a priori surface variables appears very 
attractive. The concept can be used for updating of surface vari-
ables from several sensors on board of several earth observation 
missions, thus bridging the gaps between sensor properties and 
improving the continuity and consistency of land surface prod-
ucts. This concept has been prototyped on the information-rich 
simulated data that one might expect from a hypothetical hyper-
spectral-multidirectional earth observation mission. 
The information content of hyperspectral multidirectional radi-
ance observations from space has been investigated by means of 
singular value decomposition (SVD) of the Jacobian matrix, 
which expresses the coupled model’s sensitivity to changes in 
surface variables. In a Bayesian context, information content 
can be defined by the ability to retrieve surface variables rela-
tive to the a priori uncertainty of these variables. This approach 
allows to establish the dimensionality of the data as a function 
of instrument performances (noise levels) for several earth ob-
servation mission concepts.  Furthermore, it can be used as the 
basis for an efficient and stable  parameter retrieval algorithm, 
employing Newton’s method with incorporation of the a priori 
uncertainties.  
Hyperspectral multidirectional earth observation data are a very 
rich source of information about soil-vegetation objects. In spite 
of the huge number of observables (7 × 201 = 1407 in our ex-
ample), dimensionality appears to remain limited to 13 respec-
tively 20, depending on the assumed noise levels. This seems to 
indicate that a considerable data compression by a factor of 70 
should be possible. It was also found that the dimensionalities 
of single-view hyperspectral data and multiple view multispec-
tral data (6 bands) are comparable and amount to about 6 and 
12 for high and low noise levels, respectively. A single-view 
multispectral mission produces dimensionalities of 2 and 5 at 
the same noise levels.  
A priori information was incorporated successfully to remove 
ill-posedness and to retrieve all 23 parameters of the SLC model 
by a Bayesian model inversion approach.   
For randomly generated model cases, in 99% of the cases a cor-
rect solution was found in less than 20 iteration steps. In the 
remaining cases no convergence was achieved.  
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