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Abstract: An airborne scanning LiDAR (light detection and ranging) survey using a small footprint discrete pulse return Airborne 
Laser Terrain Mapper (ALTM) was conducted over the Utikuma Boreal wetland area of northern Alberta in August 2002. These data 
were analysed to quantify systematic LiDAR errors in: a) ground surface elevation; and b) vegetation canopy surface height. Of the 
vegetation classes, aquatic vegetation was associated with the largest error in LiDAR ground surface definition (+0.15 m, σ = 0.22), 
likely a result of saturated ground conditions. The largest absolute errors in LiDAR canopy surface height were associated with tall 
vegetation classes. However, the largest relative errors were associated with low shrub (63%) and aquatic vegetation (54%) classes. 
The openness and orientation of vegetation foliage was thought to enhance laser pulse canopy surface penetration in these two 
classes. Raster canopy height models (CHMs) systematically underestimated field validation heights by between 3% (aspens and 
black spruce) and 64% (aquatic vegetation). It is recommended that robust LiDAR canopy surface height correction methods be 
investigated that are universally applicable to vegetation classes of all species and heights. 
 

1. INTRODUCTION 
 
To explore the effects of natural and anthropogenic stresses on 
the hydro-ecology of the Western Boreal Plain region, a 
collaborative research project was initiated entitled “Hydrology, 
Ecology, And Disturbance (HEAD) of the western boreal 
wetlands” (Devito, et al., 2000). The focal point of the HEAD 
study is a hydro-geologic gradient located on the Utikuma 
Uplands, north of Utikuma Lake in Alberta, Canada. An 
airborne LiDAR data collection campaign was organised to 
produce a high-resolution ground digital elevation model 
(DEMground), a canopy digital elevation model (DEMcanopy) and 
canopy height model (CHM) to be used in process-based energy 
balance and hydrological models within the region. 
 
Models used to calculate landcover energy fluxes have been 
shown to be sensitive to errors in vegetation parameterizations 
and the need for accurate height estimates has been highlighted 
(Crawford and Bluestein, 2000; Schaudt and Dickinson, 2000). 
Roughness length calculations derived from profiling LiDAR 
estimates of vegetation height have been shown to agree well 
with field measurements over grass and shrubland areas 
(Menenti and Ritchie, 1994). In a similar study conducted by 
Weltz et al. (1994) there was some underestimation of canopy 
height, a result common to many scanning LiDAR studies (e.g. 
Magnussen et al., 1999; Gaveau and Hill, 2003). 
Underestimating canopy height is typically attributed to: (i) laser 
pulse penetration into the foliage; (ii) insufficient representation 
of canopy apices due to low sample point density (St-Onge et 
al., 2003) or (iii) ground height overestimation due to minimal 
pulse penetration through dense vegetation (e.g. Weltz et al., 
1994; Reutebuch et al., 2003). Ground height biases up to 0.2 m 
have been observed for wetland and riparian vegetation covers 
(Bowen and Waltermire, 2002; Töyra et al., 2003) and these 
biases have been found to vary with landcover (Töyra et al., 
2003; Hodgson and Bresnahan, 2004). 
 
Many studies have investigated the use of LiDAR for tree height 
measurement and found good relationships between LiDAR and 
field measures with r2 values typically ranging from 0.85 to 0.95 
(Maclean and Krabill, 1986; Ritchie, 1995; Naesset, 1997; 
Magnussen and Boudewyn, 1998; Means et al., 2000; Witte et 
al., 2001; Naesset, 2002; Naesset and Okland, 2002; Popescu et 
al., 2002; Lim et al., 2003a; Lim et al., 2003b). According to 
Davenport et al. (2000) and Cobby et al. (2001) short vegetation 
heights can be predicted from the standard deviation of LiDAR 
heights. However, these studies did not ascertain the level of 

error associated with directly measuring the canopy surface 
height for short (< 2 m) vegetation. In addition, the approach 
used filters the data with a moving window to model vegetation 
heights and thus will tend to generate data of a lower resolution 
than the raw LiDAR data. 
 
The objective of this paper is to evaluate the capability of 
airborne scanning LiDAR to directly measure vegetation canopy 
height for a range of common vegetation types within the WBP 
environment. The accuracy and systematic biases within the 
derived ground elevation and vegetation height data will be 
quantified. The analysis presented is one of the first in-depth 
assessments of vegetation class dependant error in LiDAR 
estimates of both ground height and vegetation canopy height 
 
The study was conducted in the Utikuma Uplands located north 
of Utikuma Lake, Alberta, Canada along a 40 km × 6 km 
transect. Topography along the hydrogeologic gradient is subtle 
with a total relief of about 75 m. Vegetation is dictated by soil 
moisture conditions with relatively dry sites dominated by 
trembling aspen (Populus tremuloides Michx.), very dry sites 
dominated by jack pine (Pinus banksiana Lamb.), and 
imperfectly drained peatland sites dominated by black spruce 
(Picea mariana Mill.).  
 

2. DATA COLLECTION 
 
The LiDAR survey was conducted in August 2002 using an 
Optech Inc. ALTM model 2050. The ALTM 2050 is a high-
resolution discrete dual pulse return (first and last) small 
footprint scanning LiDAR with manufacturer quoted vertical 
and horizontal standard deviation accuracies of ± 0.15 m and 
1/2000 flying height, respectively.  
 
The entire area was surveyed at relatively narrow scan angle 
swaths (± 16o) with appropriate distance between flight lines to 
facilitate 50% sidelap (or 200% total aerial coverage). Twenty 
flight lines were surveyed in total. This configuration increased 
the chance of obtaining returns from the true ground level over 
as much of the polygon as possible. The emitted LiDAR sample 
point density, was greater than 3 per m2. All LiDAR and ground 
truth data were georegistered to UTM coordinates using two 
global positioning system (GPS) base stations located within the 
area that was surveyed. 
 
Several differential kinematic GPS surveys were conducted 
coincident with the airborne survey to locate reference points 
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(RPs) for comparison with the LiDAR data. These surveys were 
conducted to establish RPs on ground surfaces that were: i) non-
vegetated highway surfaces, to assess the vertical accuracy of 
the raw LiDAR data; ii) covered by a short (< 5 m tall) vegetated 
canopy, to compare with LiDAR data that had penetrated 
through the vegetation and had been classified as ground returns. 
These data were collected to quantitatively assess whether the 
LiDAR data were within expected tolerances; i.e. ± 0.15 m (1 
standard deviation) for elevation data over well-defined surfaces. 
For less well-defined vegetation covered surfaces, the only 
known comparable statistics detailing vertical bias in ground 
elevation for a northern wetland environment range from + 0.07 
m (± 0.15 m) to + 0.15 m (± 0.26 m) for graminoid and willow 
scrub, respectively (Töyra et al., 2003).  Analysis carried out by 
Hodgson and Bresnahan (2004) in South Carolina demonstrated 
both positive and negative absolute errors, from – 0.06 m (± 0.23 
m) to + 0.06 m (± 0.19 m), in LiDAR ground elevation for 
various ground covers.  
 
Non-vegetated RPs were surveyed along road centre and 
shoulder markings at 100 m intervals along a highway running 
across the survey polygon. (RMS errors in the GPS RP locations 
were in the mm to cm range.) RPs lying beneath vegetation 
cover were collected along six relatively flat transects of 30 m to 
60 m in length across heterogeneous ground cover types. Each 
transect was marked with stakes and a 30 m tape, and RPs were 
collected equal intervals (from 0.5 m to 2 m depending on local 
vegetation height variability). Ground cover types varied along 
the transects and were divided into four short vegetation classes 
(Figure 1) based on the Ducks Unlimited vegetation 
classification of the Utikuma wetland complex (Ducks 
Unlimited Canada, 2002): a) Aquatic vegetation – AQ; b) Grass 
and herbs – GH; c) Low shrubs – LS (< 2 m); d) Tall shrubs – 
TS (2 m – 5 m). 
 

 
Figure 1. Vegetation classes sampled. Individual diagrams at 
different scales.  
 
At each transect RP, the mean maximum vegetation canopy 
height within a 0.5 m radius around that point was visually 
estimated with a measuring staff (measurement uncertainty of up 
to ± 0.05 m) and noted along with a description of the vegetation 
type. RP and vegetation height data were collected 
simultaneously to ensure coregistration of the data. Collecting 
canopy height and GPS data was challenging under tall canopies 
and so only short vegetation classes could be investigated along 
transects. For tree vegetation classes, forest mensuration data 
were collected for a series of sample plots to characterize canopy 
height for subsequent comparison to plot-level LiDAR data. 
Two predominant endmember forest species belonging to the 
Ducks Unlimited classifications of “needle leaf conifer” and 
“deciduous” were chosen for this analysis (Figure 1): a) Needle 
leaf conifers (black spruce [Picea mariana Mill.]) – BS; and b) 
Deciduous (aspens [Populus tremuloides Michx.]) – AS. 

Eight 15 m x 15 m plots were located using distance and bearing 
measurements to nearby RPs. Four plots each of aspen and black 
spruce were set up to represent deciduous and conifer 
endmember species, respectively. Homogeneous forest plots 
representing a range of height classes were sampled. Tree height 
and live crown length was measured using a vertex sonic 
hypsometer, diameter at breast height (DBH) with a standard 
DBH tape measure, and crown diameter was measured along 
north-south and east-west crown axes using a survey tape 
measure. In the aspen plots, all trees with a DBH greater than 9 
cm were recorded. For the black spruce plots, all stems above 2 
m in height were recorded, as trees with a small DBH could 
comprise significant canopy elements for this conifer species. 

 
3. ANALYSIS 

 
LiDAR data were processed by Optech Inc. and provided in 
UTM co-ordinates for all first and last laser pulse returns. Over 
hard impenetrable surfaces the first and last laser pulse returns 
for every emitted pulse are coincident. Over areas of tall canopy, 
the first laser returns are preferentially distributed throughout the 
upper canopy with the last returns nearer the ground. The laser 
pulse time interval meters within the ALTM hardware used in 
this study were unable to distinguish between first and last 
returns less than 4.6 m apart. Therefore, only single (i.e., 
coincident first and last) returns can be recorded in canopies 
lower than this height. The raw LiDAR data were classified into 
ground and vegetation returns using an automated algorithm in 
proprietary software by Optech Inc.  
 
To assess the accuracy of the raw LiDAR elevation data, 
highway RPs were compared with LiDAR returns that were 
within a 0.5 m horizontal radius of a RP (error = LiDAR height 
– RP height). The road was flat and all RPs were collected at 
least 1 m from the road edge. The highway traversed the entire 
width of the study area and the RPs collected were compared 
with raw LiDAR data sampled from every flight line. Vegetated 
transect RPs were also compared to ground classified LiDAR 
returns for the short vegetation classes to evaluate the influence 
of vegetation on LiDAR ground height accuracy. In areas of 
steep slope, positional error in the LiDAR data will introduce a 
vertical error component (Hodgson and Bresnahan, 2004). To 
minimise vertical errors due to positional uncertainty, highway 
and transect RPs were collected over flat areas. 
 
Ground classified LiDAR sample point densities are typically 
irregularly spaced over the ground surface due to varying 
degrees of vegetation density. To determine LiDAR heights 
above ground level and to generate canopy height models 
(CHMs), the ground and vegetation data can be interpolated to a 
common raster array (e.g. Lim et al., 2003a). These two surfaces 
are referred to as DEMground and DEMcanopy for the bare-ground 
and vegetation canopy surfaces respectively. In this study, both 
the ground surface and vegetation canopy height data were 
rasterised to a 1 m grid so that field measured RPs and 
vegetation heights could be compared with their interpolated 
LiDAR equivalents. 
 
All ground-classified data were rasterised to generate a 1 m 
resolution digital elevation model (DEMground). An inverse 
distance weighted routine was chosen as it maintains point 
integrity, enables interpolation using a simple distance weighted 
function and is relatively fast (Golden Software Inc., 2002). A 
search radius of 10 m was chosen so that a surface would be 
interpolated in areas of sparse LiDAR data coverage. The 
highway and ground transect GPS control points were compared 
to the LiDAR DEMground to estimate absolute errors resulting 
from the interpolation. 
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The DEMcanopy for the survey polygon was rasterised from the 
vegetation classified LiDAR data. To reduce the possibility of 
biasing the interpolated DEMcanopy model downwards, the 
LiDAR data were filtered so that only the highest points within 
each 0.5 m x 0.5 m window were used for rasterisation. As with 
the ground DEM, an inverse distance weighted rasterisation 
procedure was adopted but the search radius was reduced to 1 m 
so that a vegetation canopy would not be interpolated in areas of 
no data. A raster CHM was then created by subtracting 
DEMground from DEMcanopy. 
  
The LiDAR point-based estimates of canopy surface height for 
short vegetation were derived by extracting the highest laser 
pulse return from within a 0.5 m radius of every transect RP and 
subtracting the RP elevation. The canopy lidar return was 
compared with the RP height rather than another LiDAR return 
at ground level, as the purpose of this analysis was to assess the 
level of vertical correspondence between the uppermost canopy 
LiDAR returns and the actual surface of the vegetation canopy. 
The raster-based estimates of canopy height were extracted from 
the CHM for each transect control point using the value of the 1 
m x 1 m grid cell closest to each RP. The LiDAR point-based 
and raster-based estimates of canopy surface height were then 
compared to the field measured heights. Summary statistics and 
regressions were performed for each short vegetation class to 
assess the error in LiDAR point-based and raster-based estimates 
due to laser pulse foliage penetration, and to assess whether or 
not there was significant correlation with field measurements. 
Some height error is to be expected due to the inherent 
horizontal uncertainty (up to ~ 0.6 m) in the LiDAR XY co-
ordinate. Height errors due to LiDAR point position will be 
maximised in areas of variable canopy surface height. 
 
In order to make a direct comparison of LiDAR point- and 
raster-based height estimates with the forest plot mensuration 
data, a half ellipsoid tree crown model was employed to describe 
the vertical distribution of canopy surface exposure within each 
plot. The model used was similar to those described by Pollock 
(1996) and Nelson (1997), and has been used in other LiDAR 
canopy simulation studies (Holmgren et al., 2003). Tree height, 
crown length and crown radius were the parameters necessary to 
model the plot-level canopy surface distribution. Although black 
spruce and aspens tend to have quite different shapes (Figure 1), 
the same half ellipsoid function was applied to both as it was 
assumed that the major differences in crown shape would be 
accommodated by the measured differences in crown lengths 
and diameters. Other studies have also used the same function to 
describe a variety of tree types (e.g. Straub et al., 2001). By 
adopting an ellipsoidal model, as opposed to a spherical or 
conical, potentially large errors are mitigated (Nelson, 1997). 
 
A vertical frequency distribution of exposed canopy surface area 
was generated for each plot and the average canopy height for 
each plot was calculated. Vertical area frequency distributions 
were also generated for both the first pulse return LiDAR and 
raster data for comparison (only first returns were considered, as 
these were assumed to most likely represent canopy surface). 
The LiDAR distribution was generated by first dividing the area 
of each plot into the total number of all laser pulses reflected 
from the plot to calculate the area represented by each pulse Ar. 
The LiDAR data were then detrended to remove the influence of 
topography by subtracting the interpolated raster ground 
elevations associated with each LiDAR return, and a vertical 
frequency distribution of the number of returns multiplied by Ar 
was plotted at 1 m height quantile intervals. The raster CHM 
distribution was generated by plotting the vertical frequency of 
grid cells in each height quantile (Ar for each grid cell = 1 m2). 
Average canopy surface heights were considered to be the mean 
quantile height of the area frequency distributions. The volumes 

beneath the plot canopies using each method were calculated 
using equation 1. 
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Volume V was calculated by multiplying the quantile heights Hq 
by their respective frequencies Fq and the area represented by 
each pulse, then summing the results. 
 
4. RESULTS AND DISCUSSION 
 
The average dropout rate (lost laser pulses as a percentage of the 
total emitted pulses) recorded by the ALTM during the survey 
was approximately 8%, with a maximum loss of 19% over scan 
lines with a high proportion of open water. The average point 
density for the entire polygon was between 2 and 5 points per 
m2, depending on swath overlap, local dropout rate and division 
of first and last pulse returns. Following the automated 
vegetation classification, 24% of all the raw LiDAR data were 
classified as ground points. The point density of ground-
classified returns over the survey polygon was between 0.5 and 
1.3 returns per m2. However, the ground class point density was 
highly variable, with higher densities over open dry ground and 
lower densities over areas of dense canopy and wet ground.  
 
After subtracting highway RP elevations from LiDAR returns 
within a 0.5 m horizontal radius, the mean height difference was 
found to be 0.00 m with a standard deviation of 0.07 m. These 
results are consistent with those of Töyrä et al. (2003). The 
raster DEM comparison showed similar results (Table 1). These 
results demonstrate that the ALTM 2050 was accurately 
calibrated and performing well within specification. 
 

Landcover 
Statistic 

Hwy  Ground 
data 

Aquatic  Grass 
herbs 

Low 
shrubs 

Tall 
shrubs 

Mean 0.00 +0.07 +0.15 +0.02 +0.06 +0.06 
Min -0.18 -0.15 -0.15 -0.13 -0.09 +0.02 
Max +0.25 +0.91 +0.91 +0.49 +0.49 +0.08 
St. Dev. 0.07 0.16 0.22 0.10 0.12 0.03 
N 95 127 35 45 43 4 

Raw 
LiDAR 
height 
error 
stats 

P  ND < 0.01 < 0.01 ND < 0.01 < 0.01 
Mean 0.00 +0.04 +0.12 0.00 +0.01 +0.11 
Min -0.19 -0.30 -0.10 -0.25 -0.30 -0.16 
Max +0.13 +0.88 +0.88 +0.39 +0.31 +0.36 
St. Dev. 0.08 0.14 0.18 0.10 0.13 0.16 
N 95 208 45  77 72 14 

Raster 
LiDAR 
height 
error 
stats 

P  ND < 0.01 < 0.01 ND ND < 0.01 
Table 1. Ground classified LiDAR and raster ground DEM height errors 
relative to GPS reference points for each landcover. P = tail probability 

of no difference in height; ND = no significant height difference. 
 
The average difference between ground classified LiDAR 
returns and RPs collected from vegetated surfaces was +0.07 m 
(± 0.16 m). Similar results were returned for the raster DEM and 
ground control point comparison with a mean offset of +0.04 m 
(± 0.14 m) (Table 1). LiDAR pulses lying above RPs were also 
observed in vegetated areas by Töyrä et al. (2003) and can be 
explained by the reduced probability of LiDAR pulse 
penetration to true ground level. Some error in lidar ground 
return elevation is usually attributable to misclassification of 
lidar returns by the classification algorithm used (Raber et al. 
2002). However, for this study, the classification algorithm was 
kept spatially constant and any variation in the magnitude of 
vertical error can be attributed to localised ground cover 
conditions. It is apparent that the vertical offset varied with 
vegetation type, with negligible offsets of +0.02 m (raw LiDAR) 
and 0.00 m (raster DEM) for the grass/herb class and relatively 
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large offsets of +0.15 m (LiDAR) and +0.12 m (raster) for the 
aquatic vegetation class (Table 1).  
 
Foliage orientation, height, density and ground surface type can 
all potentially influence the likelihood of laser pulses reaching 
and reflecting from the true ground level. The larger offset for 
aquatic vegetation is probably not a simple function of 
vegetation height, as both low shrub and tall shrub ground 
covers display taller vegetation heights (Table 2). Along the 
transects visited, aquatic vegetation was not noticeably denser 
than other vegetation types. Aquatic vegetation tended to have 
the most uniform structure with most stems pointing upwards 
and a small planimetric surface area relative to other vegetation 
classes (Figure 1). With such a foliage arrangement, laser pulse 
penetration is somewhat dependent on incident scan angle 
(Davenport et al., 2001). However, for this study, the average 
scan angle incident on the ground was close to nadir at 8o, and 
should therefore ensure a high rate of laser pulse penetration 
through the canopy. It is speculated that the relatively large 
average difference of 0.15 m between LiDAR and RP height is 
related to the ground surface condition. The ground cover 
beneath most of the aquatic vegetation sampled tended to be 
open water or saturated organic soils. These types of ground 
cover reflect weakly in the 1067 nm infrared wavelength of the 
laser and thus the likelihood of a ground return is reduced 
relative to drier and more reflective surfaces. In the absence of 
strong laser backscatter from the true ground surface, laser 
returns will therefore tend to be biased upwards into the more 
highly reflective foliage. 
  

Vegetation class 
Statistic 

Aquatic  Grass and 
herbs 

Low 
shrubs 
< 2 m 

Tall 
shrubs 
2 – 5 m 

Average 0.45 0.30 0.82 3.76 
Minimum 0.01 0.05 0.10 2.30 
Maximum 1.00 0.80 2.00 5.00 
Std dev. 0.25 0.20 0.59 0.94 

Field  
height 
measures 

Number (total) 27 (49) 31 (77) 44 (71) 12 (16) 
Average 0.21 0.20 0.30 2.92 
Minimum -0.04 -0.02 -0.07 0.10 
Maximum 0.52 0.83 1.48 5.03 
Std dev. 0.14 0.20 0.31 1.46 

Pont-
based 
LiDAR 
height 
statistics Number (total) 27 (40) 31 (57) 44 (55) 12 (12) 
Mean 
difference 

 -0.24 
(53%) 

-0.10 
(33%) 

-0.52 
(63%) 

-0.84 
(22%) 

P   < 0.01 < 0.05 < 0.01 < 0.10 
Average 0.16 0.26 0.43 2.67 
Minimum 0.03 -0.04 -0.01 1.19 
Maximum 0.55 0.91 1.76 4.70 
Std deviation 0.12 0.26 0.38 1.30 

Raster 
LiDAR 
CHM 
statistics 

Number (total) 27 (32) 31 (44) 44 (55) 12 (16) 
Mean 
difference 

 -0.29 
(64%) 

-0.04 
(13%) 

-0.39 
(48%) 

-1.09 
(29%) 

P   < 0.01 > 0.1 < 0.01 < 0.05 
Table 2. Field, LiDAR and raster CHM vegetation height error statistics 
for short (< 5 m) vegetation classes. Number = comparative sample used 
for generation of statistics; (total) = total number of data collected; Mean 

difference = LiDAR canopy height – field canopy height; P = tail 
probability of no difference to field measured heights. 

 
Comparative statistics of the six transects of field vegetation 
height measurements, filtered LiDAR heights above RPs and 
raster CHM heights are presented by vegetation class in Table 2. 
Table 2 demonstrates that there is a tendency for the filtered 
point-based LiDAR returns (i.e. highest returns within a 0.5 m 
window around the RP) to penetrate the vegetation canopy 
surface but the amount of penetration is highly variable along 
the transects. (It should be noted that although positional error in 
the LiDAR data will lead to some random vertical error in 
canopy height estimation, the consistent underestimation of 
height from the LiDAR derived methods (Table 2) indicates that 
positional uncertainty in the LiDAR returns is not the source of 

vertical bias.) This is likely a function of ground height 
interpolation errors and the larger 1 m search radius used for 
raster interpolation compared to the 0.5 m search radius used to 
find the highest laser pulse relative to a GPS reference point.  
 
From Table 2 it is apparent that the amount of foliage 
penetration varied with vegetation type. Average foliage 
penetration ranged from 0.10 m (33%, P < 0.05) for the grass 
and herb class to 0.84 m (22%, P < 0.10) in the tall shrub class. 
However, low shrubs displayed the highest proportion of 
vegetation surface underestimation with average laser pulse 
penetration of 63% (0.52 m, P < 0.01) into the vertical foliage 
profile. The relatively open structure of low shrubs (i.e. space 
between stems) compared to other classes (Figure 1) likely 
allows greater penetration of a laser pulse into the foliage before 
sufficient energy is backscattered to register a signal within the 
electro-optical sensors of the ALTM. Aquatic vegetation also 
demonstrates a high proportion of foliage laser pulse penetration 
(53%, P < 0.01) and this is likely due to its generally vertical 
foliage orientation projecting a minimal planimetric surface area 
exposure (Figure 1). The average aquatic vegetation raster CHM 
estimate displays the greatest difference from field 
measurements (64%, P < 0.01), and this is likely a function of 
both: a) increased laser penetration into foliage; and b) 
overestimation of true ground surface height beneath this kind of 
vegetation (Table 1).  
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Figure 2. Plot of short vegetation height data / LiDAR and raster height 
data per transect and vegetation class. h = vegetation height; L = point-

based LiDAR; R = raster CHM. (Data thinned below 1 m measured 
vegetation height to remove heteroscedacity.) 

 
The relationships between measured vegetation canopy heights 
and the corresponding LiDAR derived estimates for transect 
measurements are illustrated in Figure 2 (data points below 2 m 
measured vegetation height have been resampled by keeping 
every third point and deleting the rest to create a more uniform 
distribution for regression analysis). After performing linear 
regression on each individual vegetation class, it was found that 
a statistically significant relationship existed between the point-
based LiDAR and field vegetation height measures for all 
classes. The relationship between field and raster CHM 
measures are, in all cases, weaker and for aquatic and low shrub 
classes, the relationship is not significant at the 99% confidence 
level. All coefficient of determination values returned for 
regression lines passing through the origin (0 m vegetation 
height) for all but the tall shrub vegetation classes, were null and 
indicate that the true vegetation heights cannot be predicted 
using a simple multiplication factor of the LiDAR or raster 
CHM estimates.  
 
Figure 3 suggests that laser pulses either penetrate slightly into 
the foliage, or the tops of the tallest trees are not adequately 
sampled. This general finding is in agreement with findings from 
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other studies (Magnussen et al., 1999, Gaveau and Hill, 2003). 
Although both forest endmember types display a similar 
underestimation of exposed vegetation area at the upper height 
quantiles, the two distributions differ markedly at lower height 
quantiles. For the aspen species with relatively well-defined 
canopy top and base, there appears reasonable correspondence 
between the mensuration data modeled, point-based LiDAR and 
raster CHM canopy surface area distributions in the lower 
canopy. Overall, the underestimation of upper canopy area 
combined with a reasonable estimate of lower canopy area leads 
to an approximately 10% underestimate in the total canopy 
volume for aspen trees (Figure 3). However, the canopy surface 
area at the mid to lower height quantiles (above undergrowth 
layer) in the black spruce plots is overestimated in the LiDAR 
and raster distributions. This leads to overestimates of black 
spruce canopy volume of 3% (point-based LiDAR) and 26% 
(raster CHM) despite underestimating the canopy surface area at 
the upper quantiles. 
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Figure 3. Combined canopy surface area distributions per height quantile 

for all plots within each forest vegetation class.  
 
Given that significant foliage penetration was observed in the 
short vegetation classes (Table 2), and that Gaveau and Hill 
(2003) observed this phenomena directly for trees, it can be 
assumed that laser penetration into the canopy is partly 
responsible for the underestimation of exposed canopy surface 
area in the upper height quantiles (Figure 3). However, it should 
be noted that the two forest endmember classes differ markedly 
in canopy morphology, with relatively large crowns and closed 
canopy for the aspens and small crowns with open canopy for 
the black spruce. The smaller conifer tree crowns result in a 
reduced likelihood of a laser pulse sampling the upper quantiles 
of an individual tree, and therefore systematically bias the 
sample distribution downwards. This is evidenced in the canopy 
surface area distributions in Figure 3, where this bias has led to 
an apparent down shift in the overall black spruce distribution 
and an overestimation of area at lower quantiles. These data, 
therefore, demonstrate influences of both laser pulse foliage 
penetration and laser pulse sample density. 
 

5. CONCLUSIONS 
 
This study has provided an assessment of LiDAR based errors in 
ground elevation, vegetation height and a sensitivity analysis of 
hydrological friction parameter estimates for six dominant 
vegetation classes within a Boreal wetland environment. 
Comparing raw LiDAR data points with 95 highway reference 
points collected across the entire survey polygon revealed no 
vertical bias. The standard deviation in the LiDAR data over the 
RPs was ± 0.07 m. After subtracting field GPS elevations from 

ground classified LiDAR data for 127 RPs over vegetated 
transects, an average bias of +0.07 (± 0.16 m) was found (+0.04 
m in rasterised LiDAR data). The observation of ground height 
errors in vegetated areas is consistent with the findings of other 
studies (Töyrä et al. 2003; Hodgson and Bresnahan, 2004). The 
vertical bias was found to vary with vegetation cover, from no 
significant difference for grass and herbs to +0.15 m for aquatic 
vegetation. It is believed that LiDAR ground height estimation 
was most problematic for aquatic vegetation due to weak laser 
backscatter from the saturated ground conditions typically 
associated with this vegetation class. These observations support 
the rationale that ground level LiDAR point classification should 
be vegetation class dependent (e.g. Cobby et al., 2001). 
 
After filtering the data for local maxima, the penetration of 
vegetation classified first pulse LiDAR returns into the canopy 
surface was found to vary with vegetation class and range from 
0.10 m to 0.84 m. Maximum proportional foliage penetration 
was found to occur in low shrub vegetation (> 60%) and this was 
thought due to the relatively open structure and low foliage 
density typical of this vegetation class. Aquatic vegetation was 
also susceptible to a high proportion (> 50%) of laser pulse 
foliage penetration and this was thought related to the generally 
uniform and vertical orientation (minimal planimetric area 
projection) of aquatic vegetation in the study area. The tendency 
for both poor ground and canopy surface definition from LiDAR 
data in the aquatic vegetation class results in the greatest 
underestimations of height.  
 
Actual forest canopy surfaces could not be compared directly 
with canopy laser pulse returns but after modeling canopy 
surface area distributions from forest mensuration data, a 
quantile-to-quantile comparison could be made with similar 
distributions generated from the frequency of all LiDAR returns 
and CHM grid cells. It was found that the average canopy 
surface heights derived from the LiDAR point-based area 
frequency distributions were good predictors of average plot-
level tree height (r2 = 0.97). Height and volume were both 
underestimated by 3% and 8%, respectively for the aspen plots, 
presumably influenced by laser pulse foliage penetration. For the 
black spruce plots, it was found that although LiDAR height was 
underestimated by 10%, the canopy surface volume was actually 
overestimated by 3% and 26% for the LiDAR point-based and 
raster CHM distributions, respectively. The increased volume 
estimate is a function of the LiDAR and raster CHM model of 
vertical canopy surface area distribution over-representing the 
intermediate and low foliage heights in the plots. 
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