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ABSTRACT: 
 
High intensity canopy height LIDAR data affords model-based estimation of tree locations. The analysis of spatial point 
patterns is a natural extension of this modeling capability. Identification of within-stand clusters (features) of trees 
deviating significantly in height from those of surrounding trees (clutter) is important for inventory and forest 
management purposes. We demonstrate a nonparametric profile likelihood estimation of spatial clusters using Voronoï 
tesselation with and without prior smoothing via a morphological closure operation on the sets of Voronoï cells 
considered as solutions to the clustering problem. Smoothing yields not only a more regular outline of clusters but also 
appears to perform significantly better when there is more than one cluster in the point pattern. Two examples derived 
from LIDAR canopy data collected above Douglas-fir-dominated stands on Vancouver Island (British Columbia, 
Canada) illustrate practical applications. The morphological closure of the Voronoï cells prior to computing the 
likelihood provides more appealing results with potential for practical application in forestry. 
 
 
 

1. INTRODUCTION 
 
 
Forest stands often contain pockets of trees with a height 
that is distinctly different from that of surrounding trees. 
These pockets, or clusters as we shall call them, may be 
due to species differences, age differences, site factors, or 
the outcome of differing silvicultural treatments. Clusters 
of trees with similar height characteristics occupying a 
large enough area may influence significantly the growth, 
yield, or value of a stand. The identification and spatial 
delineation of such clusters either during or after a forest 
stand inventory will improve the precision of stand-level 
growth and yield predictions and the accuracy of stand-
level inventories. There is a plethora of techniques 
available for identifying and delineating spatial clusters; 
excellent reviews of approaches and methods can be 
found in, for example, Ripley (1985), Diggle (1983), 
Upton and Fingleton (1985), Lawson and Denison 
(2002), and Cho (2004). The method we have chosen to 
illustrate appears promising for practical applications in 
forestry; it is free of the assumptions that make the 
performance of many alternatives context dependent. 
 
In a gray-tone image rendition of canopy height data 
obtained from high-intensity small-footprint LIDAR (≥ 1 
first return pulses per m2) the aforementioned ‘height’ 
clusters are usually visible; a manual delineation would 
seem straightforward. However interpersonal differences 
in interpretation would raise questions about the quality 
of a manual delineation. 
 
In this study we propose a semi-automatic delineation 
procedure to capture within-stand areas (clusters) with 
height characteristics distinctly different from those of the 

remaining stand. The approach is as follows: An 
interpreter of a LIDAR gray-tone rendition of a stand first 
decides on the presence or absence of height clusters in 
the stand. In the affirmative case the interpreter provides 
an initial estimate of the number of spatially disjoint 
clusters in the stand. This estimation can be accomplished 
quickly and with a minimal rule-set. Once the presence 
and the number of clusters is decided, the canopy height 
data is transformed to a three-dimensional array of 
location and height-class of presumed trees. Next a non-
parametric maximum likelihood separation of feature and 
clutter points is done on data from a selected height-class 
(Allard and Fraley, 1997). We illustrate this method with 
an example using data from airborne LIDAR data 
collected in 2001 on Vancouver Island, Canada over 
mixed stands of Douglas-fir and Hemlock subject to 
variable retention cutting. 
 
 

2. METHODS AND 
ALGORITHMS 

 
 

2.1 Feature and clutter points 
 
The clusters to be delineated are composed of a subset of 
the assumed tree heights that meet specified criteria. The 
spatial locations of these observations forms a spatial 
point pattern with zero, one, or more apparent clusters. A 
cluster is simply a compact spatial sub-domain within the 
stand where the density of observations meeting the set 
criteria is significantly elevated compared to the density 
in surrounding areas. A point inside a cluster is called a 
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feature point while all others are regarded as clutter 
points. The spatial delineation of a height-cluster is 
therefore accomplished by a classification of the points as 
either feature or clutter (Hartigan, 1975). Once classified 
the spatial clusters are formed by the union of feature 
points and their associated areas. The definition of the 
area associated with a point is critical for the actual 
delineation of clusters; here it is the set of locations closer 
to a feature point than to any clutter point (Allard and 
Fraley, 1997). 
 

2.2 A profile likelihood for separating feature and 
clutter points 
 
Consider a bounded domain K with area |K| in ℜ2 on 
which we observe a random sample { of size n from a 

mixture of two uniform random variables: features 
}ix

( )AU  

with support A K⊂  with probability p and clutter ( )KU  
with support K and complementary probability 1-p. Both 
the support A and the mixture parameter p are unknown 
and are to be estimated simultaneously from the observed 
point pattern. The density function associated with a point 

K∈x is 
 
 

( ) ( ) 1
| |A

pf p
A K

δ −
= × +x x     (1) 

 
 
where ( )Aδ x  denotes the feature indicator function 

for which we have ( ) 1Aδ =x  if x is a point in A 
 and 0 if it is not 

 
We cannot solve simultaneously for maximum likelihood 
estimators of A and p. Instead, if A was fixed, the 
maximum likelihood estimator of p is 

( )( ) (ˆ # /p A A n n A= − × − )n  and the partial likelihood 
is obtained accordingly. 
 
A maximum profile likelihood estimator of A can only be 
obtained if we impose constraints on A with regard to its 
shape and number of clusters, otherwise the likelihood 
would be unbounded. We constrain Â  to be defined by a 
subset of the n Voronoï cells defined by the data in the 
bounded domain K (Okabe et al, 2000). A subset of 
spatially connected Voronoï cells forms a cluster. 
 
For a fixed number of Voronoï cells, say m, the sub-
region maximizing (3) is the union of the m smallest 
cells. Â  is therefore determined by the set of the m 
smallest Voronoï cells maximizing (3). If Â  contains 
more than the prescribed number of clusters (say C) only 
the C largest clusters are retained in Â , the others are 
disregarded. 
 

2.3 Regularizing  the shape of clusters by 
morphological closure 
 
The natural boundary of a cluster may not be well 
approximated by the procedure outlined above. The 
purely mathematical definition of a Voronoï cell 
enhances the risk of a highly irregular (‘unnatural’) 
outline of connected subsets; some may even contain 
‘holes’. A regularized outline and plugging of holes may 
be desired in practical applications. The closing operation 
on graphs in mathematical morphology can be used to 
‘smooth’ the outline of a cluster to a desired degree of 
regularity (Pratt, 2001). 
 

2.4 Clustering of height quartile classes 
 
The spatial locations of presumed trees in the first 
quartile of an assumed tree height distribution recovered 
from LIDAR canopy height data in a stand dominated by 
Douglas-fir on Vancouver Island (British Columbia, 
Canada) are shown in Figure 1. The LIDAR data were 
collected by Mosaic Mapping Systems Inc. using a Riegl 
Q140i 60 laser with a wavelength of 0.9 µm. The target 
flying altitude was 220 m AGL resulting in a swath width 
of approximately 220 m. The scan angle was set with an 
allowance of up to +/- 30 degrees. A flight overlap of 40 
percent was the result of a flight line spacing of 120 m. 
Using a scan rate of 34 Hz a point density of 
approximately 0.4 m x 1.0 m resulted. The beam 
divergence was programmed for 3.0 mrads (resulting in a 
spot size of 90 cm at 300 m flying altitude). The 
collection mode of the data was for first and last return 
and intensity. The conversion from canopy height data to 
assumed height of individual trees was achieved in two 
steps. In step one the distribution of canopy height 
differences between the maximum value and all other 
values within a window of size was 
computed (  is the median stand LIDAR canopy 
height, (Magnussen and Boudewyn, 1998). In step two 
the stand is gridded with a grid-size equal to the smallest 
integer larger than the mode of this distribution and the 
maximum LIDAR canopy height in each grid cell is 
retained as the height of a presumed tree. The spatial 
location of this maximum in the grid cell is retained as 
the spatial location of this tree. 

1.680.24 meCH × 
meCH

 
A visual inspection of the point pattern indicates a non-
random spatial distribution. We assume that trees in the 
first height quartile are clustered into three disjoint 
clusters. The maximum profile solution in Figure 1 and 
the smoothed solution in Figure 2 share many common 
features with the latter distinctly more attractive. 
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Figure 1. Maximum profile likelihood estimator of three 
clusters (shaded area). 

 

 
Figure 2. Smoothed maximum profile likelihood 

estimator of three clusters (shaded area). 
 
Associated cluster point densities were, in both cases, 
about twice as high as the density of clutter points and no 
cluster was less than 0.2 ha. 
 
 

3. DISCUSSION AND 
CONCLUSIONS 

 
 
The rapid increase in the average density of first-return 
LIDAR canopy heights captured over forest stands opens 
new opportunities for the forest inventory analyst beyond 
recovery of tree heights and associated tree attributes like 

volume and biomass. Tools and methods available for 
image analysis apply increasingly also to LIDAR data. 
 
Clustering of point patterns can be achieved in a variety 
of ways, from segmentation of a grayscale ‘images’ of 
canopy heights (Hill, 1999; Lee, 2000) to a classification 
based on nearest neighbor distances (Byers and Raftery, 
1998). The nonparametric likelihood approach rests on a 
minimum of assumptions and is computationally 
straightforward. Allard and Fraley (Allard and Fraley, 
1997) pioneered the method also and variations in the 
way cells were added or removed from the current set of 
Voronoï cells under consideration for clustering. They 
found the solutions obtained after closure with Voronoï 
cells as structuring elements was the best overall choice. 
 
We conclude that the nonparametric profile likelihood 
approach to delineation of clusters in spatial point 
processes is suitable for special applications in forest 
inventory and provides an additional, and unique, option 
for the analysis of LIDAR data. 
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