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ABSTRACT
A method to estimate cross sections of tree branches and stems using closed free-form curves is presented. The data is
gathered in the form of unstructured point clouds from terrestrial laser scanning of the standing tree in the forest. A
method to compute a model for each branch, also applicable to the stem, is presented first. This model describes the
branch surfaces with a sequence of overlapping cylinders. In slices orthogonal to these cylinder axes points are selected
from the data set and closed B-Splines are fitted to those cross section points. Fitting accuracy of ±1cm can be achieved.
The measurement of branch ovality based on these B-Splines is illustrated.

1 INTRODUCTION

Cross sections of tree branches are of interest to forest
managers, because economically important measures can
be derived from them. The knowledge of e.g. taper (i.e.,
the decrease in diameter from base to tip) and ovality (ra-
tio between maximum and minimum diameter of a branch)
are measures for the shape and quality of wood. Another
example are buckles, which are irregularities in the sur-
face, e.g. caused by an earlier injury to the tree, resulting
in wood of reduced strength. Additionally, precise knowl-
edge of tree shape enables the study of the growth process
as a reaction to environmental factors (e.g. wind).

The traditional way of obtaining cross sections is to cut
down the tree, draw slices of it, and measure them. This
has the disadvantage, that the quality assessment cannot
be performed on the standing tree, but only after cutting
it down. Alternatively, direct measurement of quality pa-
rameters, e.g. ovality, on standing trees can be performed
by means of manual measurement with a calliper. This
approach has the disadvantage, that it requires much man-
ual work, measurements can only be performed at a few
places, and additionally there is the problem of operator-
subjective execution of the measurement process.

In this paper a method is described for reconstructing the
cross section of tree stems and branches from terrestrial
laser scanner data. A laser scanner is positioned in the
forest and captures one or more trees from different sides.
This provides a dense set of points in 3D, a point cloud,
covering the tree surface and the ground. The principal
requirement for cross section determination is that the
branches or the stem are covered with points along the
entire circumference. A section can then be determined at
any position. As the cross sections cannot be described by
simple curves like circles and ellipses due to their irregu-
larity, free-form curves (e.g. B-Splines) have to be used.

The organization of the paper is as follows. In Sec. 2 a
method will be described which provides estimations of
branch axes. This is a requirement for virtually cutting
out a section of the tree. In Sec. 3 the reconstruction of the
cross sections with adjusting B-Splines will be explained.
Examples and applications are presented in Sec. 4. The
Appendix gives a brief overview on B-Splines.

2 TREE MODELS BASED ON CYLINDERS

To reconstruct branch cross sections it is necessary to know
where the branches are and in which direction their axes
are pointing. While this can also be prescribed manually,
it is more efficient to determine these measures automati-
cally from the given points. Especially the axis direction,
or equivalently the definition of the cross section plane or-
thogonal to the axis, is difficult to specify manually. First
a method to compute a sequence of overlapping cylinders

on the branch surface is described. Based on this, the com-
putation of a smooth branch axis and surface is presented.

2.1 Cylinder following

Assuming that we are given a set of points P = {pi |
i = 1, . . . m} on one branch and possibly some outliers, it
is possible to determine a rough model of the branch by
fitting of multiple, overlapping cylinders. The procedure
runs as follows.

1. A subset of points is selected around a start point
ps, which is e.g. the point closest to the barycenter
of all the given points. All points within a sphere
centered on ps and a radius rs not smaller than the
expected branch diameter are selected: S = {pj |
‖pj − ps‖ ≤ rs}.

2. An approximation for an adjusting cylinder through
the points in S is determined by first estimating the
axis direction a0. In each point pj its normal vector
nj is estimated by fitting a plane than minimizes the
orthogonal distances to pj and its k nearest neigh-
bors.1 The vectors nj lie approximately in the same
plane, which goes through the origin and is orthogo-
nal to the cylinder axis. This plane is determined by
adjustment, and its normal is denoted as a0. For the
position and the radius the choice of approximations
is less critical, the barycenter of S, p0 =

∑
pj/|S|,

and a radius r0 = rs/2 are sufficient.

3. With the current approximation values for the pa-
rameters (a0,p0, r0) least square fitting of the cylin-
der is performed. To avoid divergence or conver-
gence to wrong solutions (e.g. cylinders with very big
radii, which are very similar to the adjusting plane
in the region of the given points) regularization is
applied, e.g. by the Levenberg-Marquardt method
(Press et al., 2002). The result is checked (see be-
low) in order to assure that the fitted cylinder is
a good approximation for the branch at the given
points. The points pj are projected to the adjusted
axis, and the outermost points define top and bot-
tom of the cylinder.

4. The cylinder is shifted forward along its axis. This
yields firstly an area to select a new set of points:
proximity to the cylinder skin is the deciding crite-
rion (e.g. with a threshold of three times the mea-
surement accuracy). The skin does not stretch to
infinity, but is bounded by top and bottom point
on the axis. Secondly the forward shifted cylinder
provides approximation values for the parameters of
the next cylinder to be fitted. After point selec-
tion and cylinder adjustment, the obtained cylinder

1The value k depends on the measurement noise and the sam-
pling density. For dense laser data with 5–10 points per cm2 on the
tree surface and a measurement accuracy of a few millimeter k=20
gives good results.
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Figure 1: Branch modelling by a sequence of cylinders. In a) the original point cloud is shown (thinned out by a factor
10), in b) a detail of the sequence of cylinders as wireframe models is shown. The average axis for the entire branch
together with the fitted cylinders is shown in c). In d) the x-coordinates (squares) and the y-coordinates (triangles) of
the cylinder axis, and the radii (circles) are shown as function values, parameterized over the average axis. In e) the
branch model interpolated with moving least squares for the x-, y-, and z-coordinate and the radius is shown.

is checked. If fitting was un-successful, another for-
ward shift can be tried, or the length of the cylin-
der can be reduced, resulting in a reduced set of
selected points. If all these measures fail, cylinder
following is stopped, otherwise forward shifting and
fitting continues.

The forward shift, i.e. the overlap between two consecutive
cylinders, maximum length of the cylinder, and criteria for
accepting a cylinder (maximum r.m.s.e. of the fit, maxi-
mum angle between subsequent axes, . . . ) can be derived
from the measurement accuracy and the sampling density.
Further details can be found in (Pfeifer et al., 2004).

For a given point set (Fig. 1.a) cylinder following yields a
sequence of overlapping cylinders (Figs. 1.b and 1.c), each
describing the tree surface in a certain region.

2.2 Smooth axis and radius function estimation

The cylinders describe the branch surface only piecewise,
whereas a smooth (i.e. continuous and continuously deriv-
able) branch model is required for further analysis. This
model has a smooth axis c(t), and a corresponding smooth
radius function r(t).

First an average axis in the form of a line cp + tcd is com-
puted (Fig. 1.c). Its constant point cp is the barycenter of
the cylinder axes midpoints and its direction cd is the aver-
age of the cylinder axes directions. For straight branches
this line lies within the branch, but for strongly curved
branches this is not necessarily the case. As this average
axis is only used in an intermediate step for computing the
smooth model, its precise location is of minor importance.

For each cylinder the axis start point s and the end point e
are projected onto the line cp + tcd and the parameters of
the projected points ts and te are computed. With these
two parameters, two observation tuples of a 4D curve can
be generated: ts 7→ (sx, sy, sz, r) and te 7→ (ex, ey, ez, r),

where r is the cylinder radius. This leads to observations of
the branch axis and its radius function parameterized over
the line as shown in Fig. 1.d. With moving least squares
(Lancaster and Salkauskas, 1986) these points are approx-
imated to determine a smooth axis c(t) and a smoothly
varying radius r(t). A polynomial model (e.g. a linear
function) is fitted independently to the observations of
each co-ordinate direction and the radius observations with
a weighting scheme, that depends on the parameter t. For
a given parameter t0 the weight functions assigns the high-
est weight 1 to observations at location t0 and decreasing
weights to observations further away. The smoothness of
the weighting function determines the smoothness of the
final model. For a bell shaped weight function the model
is shown in Fig. 1.e.

The data to be approximated is well distributed in the
parameter domain and not noisy. Therefore the simple
method of moving least squares gives satisfying results.
While this branch model adapts to the curvature of a
branch axis, it does not consider the non-circular cross
section of real-world branches.

3 ACCURATE CROSS SECTIONS

With the algorithm explained in the previous section a
reconstruction of a branch axis is provided, generated from
a set of points on the outer branch surface. Branch cross
sections orthogonal to this axis have to be determined now.

3.1 Point selection

Given a point c0 = c(t0) on the branch axis c(t), points
have to be selected for reconstructing the cross section at
this point. The plane α orthogonal to ċ(t0) and going
through c0 is the carrier for the cross section. For having,
on the one hand, enough points to determine the cross sec-
tion reliably, and avoiding, on the other hand, influences of
the branch curvature and the changing cross section along
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the axis, a slice of points from the original point set P is
projected onto α. Let p′ =

(
I− ċ(t0)ċ(t0)

>)
(p− c0) de-

note this orthogonal projection of p. Then the set of cross
section points is

C = {pk | ‖p′k − pk‖ ≤ h ∧ ‖p′k − c′0‖ < d}, (1)

the set of points which have a height less than h above
or below the plane α and a distance less than d to the
axis. The value d is the estimated radius from the cylinder
increased by a certain distance in order to compensate for
the non-circularity of the branch. With this upper bound
it is prevented that other points of the entire point set –
lying close to the plane (±h), but not close to the branch
axis – are used for the determination of the cross section
curve. The value h is chosen according to the straightness
of the axis and point density as discussed above.

The points p′k lie in a plane embedded in 3D. With a local
coordinate system with c′0 as origin and any two orthogo-
nal vectors in this plane p′k is mapped from 3D to 2D.

Figure 2:

This procedure is straight forward, but
any error in the inclination of the plane
will result in an overestimation of the
branch diameter d in one direction. As
shown in Fig. 2 the points are projected
onto an area (shown in grey) in place
of a curve. The angle ε between the
actual projection direction (dash-dotted
line with arrow) and the correct one in-
fluences on the wrongly estimated diam-
eter d′ through d′ = d/ cos(ε). If the
diameter must not be overestimated by
more then 0.3% for example, the maxi-
mum value for ε is 4.4◦.

3.2 B-Spline fitting

In the Appx. a short overview on B-Spline curves is given.
For a comprehensive introduction see e.g. (Farin, 2002).

A B-Spline curve of degree n is defined as

x(u) =

L∑
j=0

djN
n
j (u) (2)

with control points dj ∈ R2 and basis functions Nn
j (u).

The basis functions are defined via a recursion (see Appx.)
over the knot vector (u0, . . . uK), and the curve is defined
in the interval [un, . . . uL+1]. The knot vector prescribes
the intervals of the individual polynomial curve segments
which form the B-Spline curve.

Fitting a B-Spline curve to a set of points pi, i = 1, . . . m
means to determine the control points dj in such a way,
that the sum of squared distances between the curve x(u)
and the points pi is minimized (least squares adjustment).
The distance between a point and the curve is equivalent
to the distance between the point pi and its foot point on
the curve p̂i , i.e. its orthogonal projection onto the curve.
Therefore the curve parameter wi (the running argument
u in Eq. 2) of the foot point has to be determined for every
point, too, so that p̂i = x(wi) with pi − x(wi) orthogonal
to ẋ(wi). The minimization can be written as:

∆ =

m∑
i=1

‖pi −
L∑

j=0

djN
n
j (wi)‖2 → Minimum (3)

This kind of fitting problems are usually solved with two
alternating steps. First the foot point parameters wi are
determined, which is an independent operation for each
point pi (so-called parameter correction (Farin, 2002)). In
the second step the control points dj are found by setting

the derivatives ∂∆/∂dj of Eq. 3 to zero and solving the
overdetermined linear system of equations by least squares
adjustment (Mikhail, 1976). Then iteration commences
with the process of determining new foot point parameters
for the new curve and subsequent control point determi-
nation. If the root mean square error of the adjustment

σ0 =
√

∆/(m− (L + 1)) (4)

does not become smaller anymore, the system is end-
iterated. A criterion is imposed on the relative change
(σs−1

0 − σs
0)/σs−1

0 , with s denoting the iteration number.

For the first step of determining foot points an initial curve
is required and the correct orthogonal projections of all pi

onto the curve have to found. For closed curves there are
at least two orthogonal projections for each point.

For describing closed B-Spline curves the last n control
points must be identical to the first n control points, and
the knot vector has to be cyclical, too (see Appx.). Taking
e.g. four knots and spreading them equally over the param-
eter interval [0◦, 360◦], the knot vector for a degree n = 3
B-Spline is [−270,−180,−90, 0, 90, . . . , 360, 450, 540, 630],
and d4 = d0, . . .d6 = d2.

3.3 Initial curve and knot insertion

The first approximating curve can be obtained from the
radius of the cylinder which was fitted to the point cloud
as described in Sec. 2. By using Eq. 3 with four “observed”
points (r cos(wi), r sin(wi))

>, spread equally along the cir-
cle with parameters wi = 360/4 ∗ i, i = 0, . . . 3 a unique
solution for four control points is found. Initial values for
the foot point parameters wi of the points pi can then be
derived from their azimuth to the circle center point.

The number of knots has a large impact on the B-Spline
curve. The more knots, the more flexible the curve is, and
smaller details of the tree surface can be approximated
better. A too high number of knots on the other hand can
lead to strongly oscillating curves, self-intersecting curves,
and curves that follow the random distribution of noisy
points instead of averaging out the random measurement
errors. A solution suggested in (Dierckx, 1993) is to start
with a low number of knots and incrementally increase the
number of knots in intervals of poor approximation quality.
For each interval a test value is determined, and in the
midpoint of the interval with the highest test value a new
knot is inserted (see Appx.). This increases the number of
control points and the number of curve segments by one.
Adjustment is continued and this process is repeated, until
all test values are below a certain threshold.

The test value suggested in (Dierckx, 1993) is based on the
mean square distances from the curve to the points in each
segment. This quantity is not suited for the application of
determining approximating free-form curves for tree cross
sections. The m.s.e. (mean square error) is a measure of
noise, but it remains unclear, if this noise comes from a
poor approximation, i.e. the curve is far away from the
points, or from the points themselves. Both situations can
occur in our case: the first case indicates indeed a poor
approximation, if e.g. one curve segment lies only on one
side of the points, but the second case indicates noise, e.g.
due to random measurement errors, a locally very irregular
tree surface, or small remaining registration errors between
the different scans. In the first case a new knot has to be
inserted in this interval in order to increase the approxi-
mation quality, but in the second case, the segment must
not be subdivided into two segments, because this could
lead to oscillating or self-intersecting curves (see above).
Additionally, a new knot in this segment cannot improve
the approximation of the point set, because the adjusting
curve is already running in an optimal way (in the least
square sense) between the points on either side. What is
needed is a test value, that measures systematic differences
between the given points and the curve for each segment.
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Figure 3: A set of points is shown in a), and a sequence of
B-Spline curves with increasing knot number is fitted to
it. Scaled versions of the curve are shown in b) with the
knots indicated as circles. The final curve with 8 knots is
shown in c) with the point set.

To measure a systematic difference between a curve seg-
ment and its points, the residuals, i.e. the signed distances
between the given point and their curve foot points, have
to be analyzed. If the residuals are plotted over their cor-
responding foot point parameters and a trend can be ob-
served in this graph, i.e. if the expectancy of the residuals
is not zero everywhere, a systematic error exists.

The test value we use is computed in two stages. First
each curve segment is split into k parts of equal size in the
parameter domain. This shall be illustrated by an exam-
ple. If the initial number of knots is L = 4, the parameter
bounds of the segments us are 0, 90, 180, 270, 360 and if
k = 5, then the first curve segment is split into the in-
tervals [0, 18), [18, 36), [36, 54), [54, 72), [72, 90). With Is,j

denoting the jth interval in segment s, for each interval
the mean residual is determined:

rs,j =
∑

wiεIs,j

|pi − x(wi)|/ms,j ,

with ms,j the number of points in the interval Is,j . Here
| · | denotes the signed distance from the foot point to
the given point2. The average number of points in each

segment is m =
∑L−1

l=0
ml/L, and the average length of

each segment in the parameter domain shall be denoted as
∆u. The final test value for each interval is:

ts =

k∑
j=1

‖rs,j‖
ms,j

ms
× ms

m
× un+s+1 − un+s

∆u
(5)

The first term is the average of the absolute mean resid-
uals in the intervals of one curve segment, with weighting
by the number of points in each interval. Segments in
which one or more intervals have a large average residual
obtain a large test value. The second term is a weighting
according to the relative number of points in the segment.
A segments with a few points only shall not be subdi-
vided further and its test value becomes smaller. The third
term favors subdivision of larger segments in the parame-
ter domain. The last two terms are both relative measures,
yielding factors of 1 for equally distributed data and knots.
Eq. 5 measures the systematic difference in meters.

The number of intervals in a segment, k, should be bigger
than two to avoid overlooking symmetric systematic devi-
ations. A curve segment lying completely inside the points
in the first half of the segment, and completely outside in
the second half, can lead to ts = 0 for k = 1. We achieved
good results with k = 5.

The process of B-Spline fitting and sequentially insert-
ing knots is demonstrated with a cross section containing
6826 points (Fig. 3.a), demonstrating the robustness of the

2Signed distance means, that the distance is positive, if the point
lies outside of the curve, and negative if it is on the inner side of
the curve.

method. The curve was started with four knots, and a new
knot was inserted in the interval with the largest test value
ts (Eq. 5), as long as ts > 0.006, which is larger than the
random measurement accuracy of 3mm, but other influ-
ences (poor registration between different data sets) had
to be considered in this example, too. The r.m.s.e. σ0

(Eq. 4) of the spline curves went from ±1.23cm with four
knots to ±1.05cm with eight knots. Choosing eight equally
spaced knots from the beginning leads to a σ0 which is only
3% larger, but with 15% larger systematic deviations.

If too few points are given, e.g. only along one third of
the circumference, the B-Spline determination can become
impossible. Each interval [uj , uj+n+1] within the curve
domain must contain at least one point. Fitting can also
fail, if the curves starts oscillating strongly. This can be
detected e.g. by looking at the curve’s total length and
comparing it to the circle circumference, or by analyzing
the angles in the control polygon d0, . . .dL.

4 APPLICATIONS AND EXAMPLES

The computation of free-form curves for cross sections is
demonstrated for the stem and one branch of an oak tree,
including the determination of cross section ovality as a
measure of wood quality.

First a definition of ovality, which is suitable for closed free-
form curves will be given. Also a method for the estimation
of the direction accuracy (remember Fig. 2) will be given.
Axis accuracy is important to avoid overestimating the
cross section diameter. The presented example is based on
these topics and the algorithms of the previous Sections.

4.1 Ovality Measurement

Ovality is a measure for the deviation of a stem cross sec-
tion from a circle. The instruction for manual measure-
ment is to measure the largest and the smallest diameter.
The largest diameter is the length of the largest straight
line segment connecting two points on the outer surface of
the tree in one slice. Smallest and largest diameter are, by
definition, orthogonal. The measurement must be taken
once in a height of least 1m. The ovality in percent is
(Deutsches Institut für Normung e.V., 2000):

(1− dmin

dmax
) · 100

This measurement instruction was mapped to an algo-
rithm in order to calculate the ovality of the B-Spline
curves. This could be done analytically, too, but for ease
of implementation we decided to discretize the spline as
polygon. In order to get a more accurate result and elim-
inate outliers due to buckles or other irregularities on the
stem surface, the ovality is calculated for multiple layers.
For each spline curve the largest and the ‘smallest’ diame-
ter are determined. Afterwards, the ovality values for the
layers starting at 1m up to 90% of the stem length are
averaged. The upper end of the tree stem may not be
used for ovality calculation, because the stem cross section
deforms due to the transition to the crown branches.

4.2 Directional accuracy testing

In order to get an estimate if the chosen projection direc-
tions are the growing directions, a simple test has been
performed for each slice. After projection onto the plane,
the points are sorted into a raster with an edge length
a, e.g. 3mm, which is the accuracy of the laser scanner
used. The number of raster cells containing one or more
points is determined. This is repeated for other projec-
tion directions deviating from the original direction by a
few degrees, e.g. up to 10◦. Each projection direction is
associated with its number of filled raster cells. Assuming
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Stem Branch

Number of points 1,669,368 34,363
Cylinder length [cm] 50 20
No. of fitted cylinders 90 60
Axis length [m] 11.05 4.25
Min./Max. σ0 [m] 0.011, 0.029 0.009, 0.022
Average σ0 [m] 0.0175 0.0147

Table 1: Results of cylinder following for tree stem and
branch. σ0 refers to the r.m.s.e. of the cylinder fitting.

Stem (1) Stem (2) Branch

Number of knots 6 4 4
Avg. no. pts./slice 6638 6638 613
Number of slices 112 112 59
Not accepted slices 2 0 23
Minimum σ0 [m] 0.0103 0.0106 0.0093
Maximum σ0 [m] 0.0266 0.0335 0.0234
Average σ0 [m] 0.0154 0.0159 0.0139
Avg. angle deviat. 2.88° 2.95° 4.95°
Min./Max. iterations 2, 49 6, 41 2, 18
Avg. no. iterations 11 14 5
Ovality [%] 7.8 7.1 –

Table 2: B-Spline fitting results for the tree stem with
different number of knots and the branch.

a homogeneous point distribution along the entire circum-
ference of the tree, and assuming that the tree grows cylin-
drically (i.e., it has zero gaussian curvature), the direction
which leads to the lowest number of filled raster cells is
the growing direction. The angular difference between the
original projection direction and the new direction is a
measure for the correctness of the cylinder axis as treated
in Sec. 3.1. As the assumptions are not fulfilled exactly,
this angular deviation can only be used as an indication
on the correctness of the projection direction.

4.3 Example

The B-Spline fit algorithm can be applied to point clouds
of tree stems and of the larger crown branches. The steps
for cross section determination are as follows:

1. Execute cylinder following for the relevant point
cloud (Sec. 2.1). The result is a list of cylinders
which represent the stem or a branch.

2. Determine a smooth axis from the individual cylin-
ders (Sec. 2.2).

3. Separate the point cloud of the stem or branch into
cross sections with a defined thickness along the
curved axis. (Sec. 3.1)

4. Fit the B-Spline curves to the cross section points
and calculate the ovality for each slice. Average the
ovality values.

For the example a point cloud of an oak tree was taken.
The tree was scanned from four positions around it, with a
maximum registration error for the combined point cloud
below the measurement accuracy. The whole stem was
covered with points, but due to occlusions it is impossible
to get points from all around the crown branches. Besides,
the number of points on branches is also lower because of
their smaller size and larger distance to the scanner.

The 1st step of the cylinder following is illustrated in Ta-
ble 1. Because the branch axis is curved stronger, the max-
imum length of the cylinder for point selection was chosen
smaller. In the 2nd step a moving linear polynomial was
used for the computation of the smooth axis from the in-
dividual cylinder “observations”. Along the average axis,
and with a spacing of 10cm, the axis position and its first

derivative were determined. For weighting the observa-
tions a bell curve was used, that assigned the weight 1 to
observations at the interpolation position and the weight
1/2 to observations at a distance of 0.5m. This yields a
smooth axis which eliminates some of the small details but
follows the branch axis well (see Figs. 1.d and 1.e).

The selection of points (3rd step) was performed in slices of
h = ±10cm thickness. This ensured a sufficient high num-
ber of points for the spline calculation. Within a 20cm
thick slice the curvature of the branches are negligible (see
e.g. Fig. 4). All points in this height slice with a dis-
tance from the axis less than the cylinder radius plus 20cm
(Eq. 1) were used for the spline calculation in the next step.

The 4th step of spline calculation was performed for the
tree stem with four and with six knots, the latter being a
compromise between calculation speed and accuracy. Cal-
culation speed is also the reason for not choosing the time-
consuming knot insertion strategy presented in Sec. 3.3.
The two different knot numbers were chosen to demon-
strate the effect on the accuracies and for comparison to
the splines of the branch. As described above, fewer points
are available for the branch cross section reconstruction.
Therefore the spline calculation must be executed with
four knots, in order to avoid having curve intervals with-
out point support. Table 2 shows the results of the spline
calculation for the stem and one branch of the oak tree.
With six knots the fitting accuracy is ±1.5cm, and the
direction accuracy testing value is, on average, below 3◦.

The ovality which results of the calculation with a reduced
number of knots is a little smaller. This is comprehensible
because with a smaller number of knots the spline curves
fits the real cross section with less accuracy, it stays closer
to an averaging circular shape (see also Fig. 3.b).

Fig. 4 shows the point cloud of the oak tree and the tree
stem model consisting of 112 spline curves which have a
distance of 10cm to each other. The spline curves and
point cloud of the branch can be seen in Fig. 5. Only about
half of the branch surface is covered with scan points. The
darker point cloud slices are those where no spline curve
could be fitted. As can be seen, the spline determination
is only reliable where points are measured, too (i.e., the
lower side of the branch). This underlines the necessity of
having the points covering the entire circumference.

5 CONCLUSIONS

In this paper a method for the determination of cross sec-
tions with B-Spline curves was presented. Point clouds
from laser scanning are the only data source required.
The B-Splines are faithful models of the cross sections
with an accuracy between 1cm and 2cm. This accuracy
is a product of measurement noise, surface roughness and
un-modelled small features of the cross section. All these
components are in the order of a few millimeter.

Processing begins first with determining a rough model of
the tree, consisting of overlapping cylinders. The next finer
model is obtained by approximating these cylinders with a
model consisting of a smooth axis and a smoothly varying
radius. Slices of points, orthogonal to this axis are drawn
from the original point cloud, projected onto a plane, and
a closed B-Spline curve of degree three is fitted to these
points. For the processing only a few threshold values
have to be set, but all these values can be related to gen-
eral tree parameters (e.g. curvature of a branch axis) and
can therefore be determined easily. As expected, cross sec-
tion reconstruction works only satisfyingly, if the branch
is covered with points from all sides.

Minimum and maximum diameter of the tree can be de-
termined in different heights from the cross section curves.
In order not to overestimate the diameter, it is necessary
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a) b)

Figure 4: The point cloud of an oak tree is shown in a), and
the stem reconstruction with B-Spline curves (six knots)
from ground up to crown base in b).

Figure 5: Point cloud and spline curves for a sample
branch.

that the cross section plane is orthogonal to the growing
direction of the tree. A method has been described, that
tests if another projection direction provides a more com-
pact point set in the cross section plane. With this method
it has been demonstrated that an error bound of 3% over-
estimation in diameter was not exceeded in the example.

These different models of branches and branch cross sec-
tions allow measurement of the ovality of the stem or a
branch, as demonstrated in the paper. Further parameters
(e.g., taper) can be determined as well, and the reconstruc-
tion of realistic tree models for visualization is possible.
One of the next aims is to recognize buckles automatically.
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APPENDIX

B-Splines (Farin, 2002) are so-called free-form curves, al-
lowing the approximation or interpolation of a given set
of observed points by a parametric curve x(u). The curve
has a representation of the form

x(u) =

L∑
j=0

djN
n
j (u),

with dj as control points in 1-, 2-, or 3D space, and basis
functions Nn

j (u), the so-called normalized B-Spline func-
tions, where n is the degree of the curve. The basis func-
tions are defined over the knot sequence (u0, . . . uK), ui ≤
ui+1 (a.k.a. knot vector) with the recursion:

Nn
l (u) =

u− ul

ul+n − ul
Nn−1

l (u) +
ul+n+1 − u

ul+n+1 − ul+1
Nn−1

l+1 (u)

N0
i (u) =

{
1 ui ≤ u < ui+1

0 otherwise (6)

The relation between the number of control points L + 1
and the highest index in the knot vector is K = L + n +
1, and the curve is defined over the parameter interval
[un, . . . uK−n]. Starting the knot vector with u0 = u1 =
. . . = un leads to the interpolation of the first control point
d0, analogy applies to dL. The first derivative is

dx(u)

du
= n

L−1∑
j=0

∆dj

un+j − uj
Nn−1

j (u),

where ∆dj = dj+1 − dj. The B-Spline curve consists of
L− n + 1 polynomial curve segments of degree n.

Within the curve interval it holds
∑L

j=0
Nn

j (u) ≡ 1, which

leads to invariance under affine transformations, and there-
fore independence of the origin and the rotation of the co-
ordinate system. Additionally, the recursion Eq. 6 is com-
putationally stable, as each of the basis functions remains
in the interval [0, 1] and so do the fractions. As Nn

j (u) 6= 0
in the interval [uj , uj+n+1], the curve has local support,
which means that changing a control point dj only affects
the curve in this interval.

A B-Spline curve with L + 1 control points can also be
described as a B-Spline curve with L + 2 control points,
if an additional knot tε[ul, ul+1) is inserted into the knot
vector. The new control points d∗j are obtained from the
old ones by d∗j = ajdj + (1− aj)d

∗
j−1 with:

aj =

{
1 : j ≤ l − n

t−uj

uj+n−uj
: l − n < j ≤ l

0 : l < j

A closed B-Spline curve of degree n with as many curve
segments as control points L can be obtained over the knot
vector {u0, . . . uL+2n} by setting uL+n+r+1 − uL+n+r =
ur+1 − ur for r = 0, . . . n − 1, and cyclic continuation of
the control points dL+r = dr. This cyclic continuation has
be be applied also in the formulae for derivation and knot
insertion.
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