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ABSTRACT: 
 
Extensive monitoring of forest health in Europe has been carried out for two decades, based mainly on defoliation and 
discolouration. Together these two variables reflect chlorophyll amounts in the tree crown, i.e. as an indicator of foliar mass, and 
chlorophyll concentration in the foliage, respectively. In a current project we try to apply remote sensing techniques to estimate 
canopy chlorophyll mass, being a suitable forest health variable. So far, we limit this to Norway spruce only. LIDAR data here play 
an important role, together with optical and spectral data, either from survey flights or from satellites. We intend to model 
relationships between foliar mass and LIDAR data for sample trees, and then scale up this to foliar mass estimates for the entire 
LIDAR area. Similarly, we try to scale up chlorophyll concentrations in sample trees, by modelling a relationship between sample 
tree chlorophyll and hyper-spectral data. The estimates of foliar mass and chlorophyll concentrations are then aggregated to every 
10x10 m pixel of a SPOT satellite scene which is also covered by airborne data, providing an up-scaled ground truth. If we are 
successful with this, it might be a starting point for developing a new nationwide forest health monitoring system in Norway. 
 
 

1. INTRODUCTION 

On the global scale forests are threatened by population growth 
and human activities, including deforestation, air pollution and 
climate change (Anon. 2001, Kimmins 1997). Climate change 
is likely to cause increasing forest damage and tree mortality 
from direct and indirect causes (Martinez-Vilalta 2002, Tenow 
et al. 1999, Auclair 1993), and in Norway we have noted a 
number of unusually severe and large-scale damage events 
during recent years (Solberg 1994, Solheim 2001). There is a 
need for quantitative information on forest health, and how it 
varies in space and time. Important here is the need for a 
quantitative and general health variable integrating across 
diagnoses, because a global climate change may be manifested 
by a wide range of different damage types. Forest health 
monitoring has been run by the European forest monitoring 
programme UN-ECE/ICP-Forests since 1986, with annual 
health assessments of 320,000 trees throughout Europe (Anon. 
2002a). The core of these surveys is binocular assessments of 
defoliation and discolouration, which indeed are quantitative 
and general health variables, and they are also integrating 
across many diagnoses. Forest damage normally leads to 
defoliation. For example foliage is typically lost after drought 
stress, is eaten by insects, or killed by frost. Some damage, 
however, does not lead to defoliation, but only to reduced 
concentration of chlorophyll and other pigments, which is 
another general response to most stress (Carter & Knapp 2001, 
Young & Britton 1990). In severe cases this is observed as 
yellowing, and examples of this include fungal diseases on 
foliage and nutrient deficiency. 
However, the limitations of these surveys are that they are 
subjective, and this has created inconsistent spatial patterns, e.g. 
between regions (Binns et al. 1986) and countries (Innes et al. 
1993, Klap et al. 1997); they have low aerial coverage and 
focus on single trees rather than areas; and they are lacking the 
ability to integrate some damage types, such as windthrow and 
snow breakage. Also, defoliation is well suited to track changes 

in foliage density within a crown, while it is less suitable for 
tracking foliar mass reductions in the form of reduced crown 
size. 
The aim of this paper is to describe a project which intends to 
develop a method for monitoring of forest health by remote 
sensing. The project is quite new, and hence, this presentation 
concentrate on presenting the idea; the data; and some 
preliminary results mainly connected to Lidar data. The basic 
idea is that variation in forest canopy chlorophyll per ground 
area is a suitable measure of variation in forest health, and that 
this quantity can be estimated from remote sensing data, where 
Lidar data provide foliar mass estimates (or for that matter, 
synonomously Leaf Area Index (LAI)) and airborne hyper-
spectral data provide chlorophyll concentration estimates via 
spectral signatures. These two variables, which correspond to 
the commonly used variables defoliation and discolouration, 
respectively, are combined to determine canopy chlorophyll 
masses. On a larger spatial scale, satellite images provide data 
which can be used to gain similar variables. If this is successful, 
it might form the basis for a routine monitoring of forest health 
in Norway by remote sensing. 
Remote sensing has already demonstrated its ability to provide 
forest health-relevant data. It is recognized as the key 
methodology in understanding the (boreal) forest biome and its 
interactions with the atmosphere, biosphere, and the carbon 
cycle (Gamon et al. 2004). Some excellent work has been 
performed to extract key observables such as LAI, fractional 
cover, dry matter, and water content (Schaepman et al. 2004); 
chlorophyll (Malenovský 2002, Zarco-Tejada et al. 2004); 
lignin and nitrogen (Martin & Aber 1997) from remotely sensed 
data. Even identification of trees infected with root-rot, which is 
not obviously possible by visual inspection alone, has shown to 
be feasible (Leckie et al. 2004). Airborne Lidar is recognised as 
an excellent means for deriving forest parameters of relevance, 
especially structural parameters such as leaf density, leaf loss 
and canopy structure (Brandtberg 2003, Lefsky et al. 1999).  
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Although all these investigations provide corner steps in 
understanding and interpretation of remote sensing data sets, 
they are usually confined to one sort of data (i.e., either airborne 
or satellite-based), very few channels or ratios of spectral 
coefficients only (for an exception, see Malenovský 2002) 
and/or mono-aged single-species stands. Our approach differs 
from that in several aspects: 

• Extremely high spatial resolution. Our data allow for 
the identification of structures well below the single 
tree scale, and thus tree crowns are not handled in a 
parametrized way but spatially explicit. 

• Collection of very different data types. We combine 
in our project ground-based assessments on needle, 
branch, single tree and probe circle with Lidar data 
from flights, hyperspectral data from an airplane, and 
satellite images (SPOT and Hyperion). This mixture 
is a chance and a challenge at the same time. 

• The 16 probe circles cover a wide range of age 
classes, from very young (age class II) to overmature 
(age class V); in addition, most of the probe circles 
have a multilayered canopy architecture. Although 
circles were selected for fair homogeneity, the 
topography of the site and its character as a natural 
reserve with absent management make them very 
diverse even on small spatial scales. 

• Full exploitation of hyperspectral information. Rather 
than relying on well-known indices (e.g. NDVI), we 
are investigating the measured spectra at all channels, 
using local as well as integrated properties (Carter 
and Spiering 2002).  

 
 

2. MATERIALS AND METHODS 

2.1 Study area 

The area for this study is located nearby Oslo, south-eastern 
Norway (59º 50´N, 11º 02´E, 190–370 m a.s.l). The size of the 
area is 6 km2, comprising mainly Norway spruce (Picea abies 
L. Karst.) and some Scots pine (Pinus sylvestris L.). One large 
part of the area consists of old forest stands only. This area is a 
forest reserve, where no clear-cuttings have been executed since 
1940 and it is considered as a primeval forest, being partly 
multi-layered. 
 
2.2 Sample plot inventory 

We subjectively selected 16 spruce sites for sample plots, being 
in the four age-classes with the Norwegian labelling II; III; IV 
and V with corresponding tree heights in the plots being around 
0.5-6; 7-14; 15-20; and 21-35 m, respectively. Ground data 
were gathered in 2003. We used differential GPS for 
determining plot coordinates. The planimetric plot coordinates 
(Euref89) was determined in the center of each plot by means of 
Global Positioning System (GPS) and Global Navigation 
Satellite System (GLONASS). A Javad Legacy 20-channel 
dual-frequency receiver, observing pseudorange and carrier 
phase of both systems, was used as rover equipment. The 
receiver setup had a two-second logging rate, and all satellites 
below a 15º angle from the antenna (cutoff angle) were 
disregarded. The logging period on each plot ranged between 
0.5 and 1.5 hours, with an antenna height of four m. A similar 
Javad Legacy GPS+GLONASS receiver was established as base 
station within a distance of <2.5 km from the sample plots. The 
planimetric coordinates (x and y) of the base station was 
determined with an accuracy of approximately 0.4 cm. The base 

station records were used as reference during post-processing of 
the rover coordinates. To ensure that the base station received 
signals from the same satellites as the rover, the cutoff angle 
was set to 12º. The post-processing of all rover records was 
undertaken by means of the Pinnacle version 1.0 software 
package by Topcon (Anon. 1999). The post-processing together 
with the study by Næsset (2001) indicated an accuracy of the x 
and y coordinates to be mostly less than one cm, however with 
one extreme value of 80 cm.    
On each plot, the diameter at breast height (dbh) was callipered 
for all trees with dbh �3 cm. Also, for each tree we recorded 
defoliation, discolouration, polar co-ordinates from the plot 
center, social status according to Schotte, and tree species. The 
number of trees on each plot ranged from 76 to 239, with the 
highest numbers in the younger stands. The total number of 
trees callipered was 2202.  
 
2.3 Sample tree and sample branch data 

On each plot four sample trees of the non-suppressed trees were 
systematically sampled as sample trees, being the first tree 
found going clockwise around the plot after each main cardinal 
direction. On these 64 sample trees were measured height; 
crown base; and crown width in four cardinal directions. 
Heights of sample trees were measured by a Vertex III 
hypsometer. All living branches were callipered and counted in 
0.5 cm classes, separately for the lower, middle and upper 
crown parts (crowns divided in three equally long parts). In the 
middle of each crown part, four sample branches were cut, - one 
to each cardinal direction. These sample branches were 
measured for fresh weight, basal diameter and length. Out of the 
12 branches from each tree, 3 + 3 were systematically sampled 
for further analyses. Three; i.e. one from each crown height, 
were taken indoors for drying at 65 ˚C, and weighting of the 
foliar mass. From three other branches, foliage was sampled for 
chlorophyll analyses, stored at low temperature in the field and 
during transport to the laboratory.    
 
2.4 Airborne laser scanner data 

A Hughes 500 helicopter carried the ALTM 1233 laser 
scanning system produced by Optech, Canada. The laser 
scanner data were acquired the 9th of October 2003. The leaf 
conditions were in an intermediate state, i.e the deciduous trees 
were still foliferous. The average flying altitude was 
approximately 600 m above the ground with an average speed 
of 35 ms-1. 21 flightlines were flown with an overlap between 
adjacent stripes of about 20 %. Approximately 37 million 
pulses were transmitted. The pulse repetition frequency was 10 
kHz and the scan frequency was 50 Hz. Maximum scan angle 
was 11°, which corresponded to an average swath width of 
about 230 m. Pulses transmitted at scan angles that exceeded 
10.5° were excluded from the final dataset. The average 
footprint diameter for individual plots was approximately 18 
cm. The mean number of pulses transmitted was 5.0 per m2. 
First and last returns were recorded.
The operating firm, Blom Norkart Mapping AS, Norway, 
undertook a complete post-processing of the first and last pulse 
data. Planimetric coordinates (x and y) and ellipsoidic height 
values were computed for all first and last returns. The last 
return data were used to model the terrain surface. In a filtering 
operation on the last return data undertaken by the operating 
firm using a proprietary routine, local maxima assumed to 
represent vegetation hits were discarded. A triangulated 
irregular network (TIN) was generated from the planimetric 
coordinates and corresponding height values of the individual 
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terrain ground points retained in the last pulse dataset. The 
ellipsoidic height accuracy of the TIN models was expected to 
be around 20-30 cm (Kraus & Pfeifer 1998, Reutebuch et al. 
2003, Hodgson & Bresnahan 2004). All first and last return 
observations (points) were spatially registered to the TIN 
according to their coordinates. Terrain surface height values 
were computed for each point by linear interpolation from the 
TIN. The relative height of each point was computed as the 
difference between their and the terrain surface height.  
 
2.5 Airborne hyper-spectral data 

We used a newly developed instrument, the ASI (Airborne 
Spectral Imager developed by NEO Anon. 2004). The 
instrument is a pushbroom scanner that covers the spectral 
region 400 to 1000 nm (VNIR) with a spectral sampling 
interval of 3.7 nm. It is normally mounted in an aircraft like 
Cessna 172, where GPS and inertial navigation system data are 
logged continuously to provide geometric correction and geo-
referencing of the images. It is based on the results of the HISS 
(Hyperspectral Imager for Small Satellites) definition study 
performed by NEO for ESA in 1996-97.  
 
2.6 Satellite data 

We have two SPOT quarter-scenes and one hyper-spectral 
image (Hyperion) covering the area from the same summer and 
autumn 2003. These are currently being pre-processed.   
 
2.7 Foliar mass and Lidar 

We develop relationships between ground measurements of 
foliar mass and defoliation and laser data from airborne LIDAR. 
Laser has the ability to penetrate the vegetation and provide a 3-
d dataset of biomass above ground, which is closely related to 
the amount of foliage, i.e. to foliar mass, crown density and 
LAI.  
 
2.8 Tree detection and positioning 

For correcting possible GPS offsets between the ground and 
airborne georeferencing, positions of single trees in the Lidar 
data set was done by finding local maxima in the digital canopy 
model (DCM) This was done using SURFER software (Anon. 
2002b), by firstly setting up a grid of 10 x10 cm over the 
sample plots and assigning a z-value for each grid node being 
the maximum z-value of the first returns within a circle of 50 
cm radius around each node. Secondly, the DCM was created 
by fitting these z-values to a “minimum curvature” surface 
model. This surface was ‘polished’ running a 3x3 gaussian filter 
10-20 times. 
Trees were then identified as local maxima in this surface, i.e. 
grid nodes being higher than their nearest eight neighbours. 
Compared to the positions of trees in Schotte’s social status 
classes 1-3 in the ground truth, this gave: n trees were not 
found, nn non-existing trees were ‘found’, and nnn trees were 
identified as two or more trees. Some of the latter ones were 
trees with twin tops or top breakage.  
 
2.9 The chlorophyll and the final up-scaling 

The previous point is widened up using airborne hyper-spectral 
data to model chlorophyll concentrations measured in the forest 
canopy layer, which together with the foliar mass data provides 
canopy chlorophyll data, integrating any type of forest damage 
(at least at a developed stage where symptoms are observable). 
To that end, we establish a relationship between direct 

chlorophyll content measurements on needles for selected trees 
and properties of the individual spectra, such as the NDVI, the 
first oder derivative green vegetation index (Elvidge and Chen 
1995), or the green normalized difference vegetation index 
(Gitelson and Merzlyak 1998). When exploiting the full set of 
(160) channels available from the hyperspectral images 
(contrary to the SPOT images), we calculate wavelength-
dependent canopy reflectance (normalized to standardized). We 
intend to use the empirical models between foliar mass and 
Lidar, and between chlorophyll concentrations and hyper-
spectral data for up-scaling of the ground truth to every pixel in 
the satellite scenes, i.e. to a reference wavelength (e.g. 820 nm)) 
versus chlorophyll content correlations 10x10 and 30x30 m 
pixels, and to determine maximum sensitivity. It has been 
shown (Carter and Spiering 2002) that this usually leads to 
maximum correlation coefficient of 0.9 and above. 
 
2.10 Handling of shadowing and edges 

The interpretation of individual pixels from satellite images 
crucially depends on available information on illumination (sun 
elevation, cloud cover), viewing angle, and obstructions by 
objects outside the pixel. It has been shown that shadow 
fraction and even brightness within the shadow, or radiation 
load, crucially determines vegetation properties such as Leaf 
Area Index (Seed and King 2003) or canopy chlorophyll 
content (Zarco-Tejada et al. 2004). Thus, radiometric 
corrections have to be applied, which is done through radiative 
transfer models. Given the detailed information we have on 
local topography from Lidar and on satellite position, we 
proceed to correct for shadowing and obstacles as follows. First 
we calculate an imaginary solar path length, and use the Lidar 
DEM to calculate subpixel areas in the shadow using raytracing 
algorithms (Jones 1997). Secondly, each image pixel (10 m x 
10 m) is assigned a “shadow fraction” counting the number of 
subpixels contained which are in the shadow. This matrix is 
then multiplied with the direct beam radiation map calculated 
from the satellite’s position. Finally, a viewshed (Dozier and 
Frew 1990) function customary in numerous radiation models is 
applied to each pixel. The resulting pixel matrix can then be 
investigated in a quality assessment step to exclude pixels 
highly influenced by shadowing from further analysis, e.g. by 
assigning a threshold (e.g. of 50%) to convert the shadow 
fraction map into a binary shadow matrix prior to multiplication 
with the direct beam radiation map. 
 
 

3. PRELIMINARY RESULTS AND DISCUSSION 

 
3.1 Ground data: Branch, foliage and chlorophyll data 

Branch fresh weights were strongly correlated to branch basal 
area. A linear regression for branch weight (g) against branch 
basal area (mm2) with R2=0.82 had the following equation: 
 
[1] Branch fresh weight = -47 + 3.1 * branch basal area 
 
Using this model together with the branch counts gave total 
branch weights of the sample trees ranging from 4 to 740 kg, 
with averages given in Table 1. On average 23% of the branch 
fresh weight was made up by needle dry weight. Concentration 
of total chlorophyll (chl a + chl b) was on average 1.1 mg/g 
needle fresh weight. Given 65% water content of the needles, 
the chl concentration was 3.1. mg/g needle dry weight. An 
overview of some average tree and branch data is given in table. 
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1. These estimates will be refined using more explanatory 
variables at hand; i.e. canopy level, cardinal direction and 
branch length.  
 
Table 1. Mean tree diameter; height; branch weight, foliar mass and chlorophyll 

mass, all by age class 

Age 
class 

D 
Mm 

H 
m 

Branch 
fw 
kg 

Foliar  
dw 
kg 

Chl 
g 

II 50 1 4 18 4 12 
III 79 9 64 15 47 
IV 172 21 287 66 205 
V 189 20 412 95 295 
1) diameter in age class II measured at the ground 
 
3.2 Canopy surface 

The minimum curvature surface worked well in the sense that 
very few Lidar residuals had a positive sign; i.e. z-values above 
the surface (about 4%). And it followed smoothly the 
uppermost Lidar observations (Fig. 1). Only in the border areas 
between trees and treeless openings it tended to overestimate 
the canopy surface height. This requires further refinement.  
 

0

1000

2000

3000

-2000 -1000 0 1000 2000
 

Fig. 1. DCM: First Lidar returns and mean canopy surface in a one m wide belt 
across plot 1 (old spruce forest) after using a minimum curvature 
model. The stem of two trees are included, - their positions and 
heights from ground measurements. Scale unit = cm. 

 
 
3.3 Tree detection and positioning 

When comparing the positions of ground measurements and the 
Lidar data, we found indications of an offset between them. 
Local maxima in the Lidar data tended to be about one m to the 
northwest compared to the positions of tree stems as measured 
from the ground (Fig. 2). The differences in positions varied, 
which is to be expected due to some trees with double tops, 
trees with not vertical stems, and trees with top-breakage. 
However, there is a clear tendency throughout this plot of an 
offset. A similar offset was found in plot 1, and we continue to 
check this for other plots. 

 
Fig. 2. Offset in plot 4 (old forest): Lidar local maxima (O), and positions of trees 

in social status 1 and 2 (+) and social status 3 and 4 (+) as 
measured from ground using differential GPS. 

 
3.4 Lidar data and foliar mass  

In order to correlate Lidar data to foliar mass, the Lidar data 
had to be assigned to the trees, and this was done by estimating 
crown projections in the horizontal plane. As a starting point 
this was done by developing a crown model as follows. Firstly, 
the crown widths were modelled as a linear function of tree 
diameter, using only crown widths that were classified as not 
influenced by competition. A grid of 10x10 cm were put over 
the sample plot, and all trees made a claim for every grid node 
within their estimated crown width, where the claim was 
proportional to the tree height and decreasing linearly from the 
stem centre outwards and reaching zero at the outline of the 
projection. Every grid node was then assigned to that tree 
having the highest claim. An example from plot 1, age class V 
(old stand) is given in Fig. 3.  
 

 
Fig. 3. Tree crown projections in plot 1 (old forest), as estimated by a theoretical 

“claim” model (see text for details). 
 
From this the crown projection area was calculated for every 
tree. As a measure of foliar density, a Lidar index was 
calculated for each tree, as the fraction of first returns that did 
not hit the ground, i.e. its z-value were at least 10% of the tree 
height. For the 64 sample trees a regression of foliar dry mass 
(kg) against crown projection area (m2) and the Lidar index 
came out as follows: 
 
Foliar mass = -13 + 8.9*Lidar_index + 5.7*crown_area , 
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with R2=0.82 and both coefficients for the explanatory variables 
being significantly different from zero. However, the crown 
area had a much stronger influence on the foliar mass than the 
Lidar index. This is likely due to have three explanations. 
Firstly, most trees were fairly healthy with fairly dense 
canopies. Thus, the ability of a Lidar pulse to penetrate the 
entire crown and hit the ground did not differ strongly between 
the trees. Secondly, the crown projections were preliminary, 
and needs to be refined considerably. The offset that was likely 
present between the GPS positioning made from ground and in 
the flight was not adjusted for. Finally, the suppressed trees 
were not taken into account, although their stems and branches 
were often present under the sample tree crowns. 
The high density Lidar data appears to be a promising tool for 
foliar mass or defoliation measurements (Fig. 4).  
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Fig. 4. Lidar data assigned to tree nr 27 on plot 1, as well as the stem position and 

height as measured at the ground.  
 

4. CONCLUSIONS 

We believe remote sensing is a promising tool for future forest 
health monitoring, in particular when combining Lidar and 
hyper-spectral data-sources. The high density Lidar data 
appears to be a suitable tool for foliar mass or defoliation 
measurements. This and other preliminary results indicate this, 
although considerable work remains to be done in order to 
eventually realize this.  
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