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ABSTRACT: 
 
We examined the accuracy measures to evaluate maps created from knowledge-based classifications of remotely sensed data. The 
automated classifications involved categories that showed different levels of annual loadings of six pollutants. From the classification 
error matrices that used spectral information and ancillary data, we computed the overall accuracy and the kappa coefficients. These 
common measures, however, assume that misclassification errors are equally serious. We propose a procedure, directly related to the 
pollutant loadings, to calculate weights for the cells  in the error matrix to reflect the severity of the misclassification errors. With the 
weights we were able to calculate the weighted overall accuracy and the weighted kappa coefficient. By using the weighted 
equivalents of the usual measures of accuracy, we find that there is more specificity in the measures of quality of the classifications 
for the individual pollutants.   
 
 

                                                                 
*  Corresponding author 

1. INTRODUCTION 

Calculation of pollutant loadings is necessary to be able to 
identify areas to be prioritized for the implementation of 
stormwater best management practices. Since the generation of 
contaminants is closely related to land use, pollutant loadings 
are usually computed from land use maps. However, acquiring 
data to create a land use map is a slow and difficult process. In 
addition, land use data from public records is not optimized for 
environmental purposes. Usually, the land use categories are too 
specific, not relevant, or poorly defined. Therefore, instead of 
classifying land use from satellite imagery, we identified 
different levels of pollution directly from the image. We 
considered six contaminants: total suspended solids (TSS) , 
biochemical oxygen demand (BOD5), total phosphorus  (Total 
P), total Kjeldahl nitrogen (TKN), copper (Cu), and oil and 
grease (O & G). The study area is Marina del Rey and its 
vicinity,  a 24.7 sq km highly urbanized portion of the Santa 
Monica Bay  watershed in Los Angeles , California. The image 
used was a 28.5 m resolution Landsat ETM+ acquired on 
August 11, 2002. To evaluate the quality of the classifications, 
error matrices were assembled, and overall accuracy and kappa 
coefficients were computed. However, these measures assume 
that all misclassification errors are equally serious. We propose 
a method that weighs the errors, and suggest measures that  
reflect the accuracy of the classifications with more specificity.  
 
 

2. METHODOLOGY 

Pollutant loadings for the study area were reported by  Abellera 
and Stenstrom (2005) and are shown in Table 1. We designated 
the pollution levels as high, medium, and low. For example, for 
TKN, we found that the loadings were similar for single-family, 
multiple-family, commercial, public, light industrial, and other 
urban (0.17-0.22 kg/year). Therefore, these types of land use 
were aggregated to form the high TKN loading category. Since 
open land had a much lower emission at 0.04 kg/year, we 
designated this land use as low loading. We did a similar analysis 
for the rest of the water quality parameters. 
 
 

Land Use Pollutan
t SF MF C P LI OU O 

TSS 14.70 15.83 17.31 15.44 17.31  18.01  6.37  
BOD5 0.86 1.13 1.35 1.20 1.35  1.29  0.02  
Total P  43.08 46.73 41.35 36.88 41.35  53.18  6.76  

TKN 0.22 0.18 0.19 0.17 0.19  0.20  0.04  
Cu 4.82 7.54 6.92 6.18 6.92  8.58  0.71  
O & G 0.15 1.66 2.12 1.89 2.12  1.89  0 

SF = Single-Family, MF = Multiple-Family, C = Commercial, P 
= Public, LI = Light Industrial, OU = Other Urban, O = Open 
Loadings are in kg/year, except for Total P and Cu which are in 
g/year. 

 
Table 1.  Annual pollutant loadings 

 
With ERDAS Imagine 8.7, we segregated the imagery to areas 
that had high, medium, and low loading for each pollutant  using 



knowledge-based classification coupled with standard GIS 
operations. We applied the ISODATA (Iterative Self-
Organizing Data Analysis Technique) procedure (Richards, 
1986) on a tasselled cap transformation (Crist and Cicone, 1984) 
using the greenness, wetness, and haze components computed 
from the six raw bands of blue, green, red, near infrared, and the 
two mid-infrared bands. This resulted in the separation of open 
land from non-open land. Single-family residential was likewise 
distinguished using the six raw bands. Only the near infrared 
band was utilized to segregate water. Using only spectral data 
(first classification), the area where the beach met the ocean 
showed open land misclassified to non-open land. In the second 
classification, a buffer distance of five pixels (142.5 m) corrected 
this error. Neighbourhood analysis was employed in the third 
classification. To keep its value in the second classification, a 
pixel should have at least three of its neighbours (in the north, 
east, west, and south directions) in the same category. 
Otherwise, it was replaced by the value in the majority image 
that was processed from a 3 x 3 filter. 
 
The next task was to quantify the quality of the classifications. 
This was done first by assembling error matrices. We tested 
1,040 randomly generated pixels which were 3.4% of the study 
area. These points were mainly checked from aerial photos and 
field visit. The land use digital map published by the Southern 
California Association of Governments (SCAG) was not used 
fully because there was no one-to-one correspondence between 
its categories and the classes we have designated. For example, 
“other urban” areas in the SCAG data have both open land and 
built-up areas. This illustrates that land use data from public 
records are often incompatible with environmental objectives. 
 
Overall accuracy is the sum of the correctly classified pixels  
divided by the total number of test p ixels. The kappa coefficient 
factors in the effect of chance in the classification (Lillesand and 
Kiefer, 1994). For example, a kappa value of 78% indicates that 
the classification is 78% better than a classification that resulted 
from random assignment. Therefore, kappa is lower than the 
overall accuracy. Both measures were computed using ERDAS 
Imagine 8.7. To calculate for their weighted equivalents, we need 
to assign a weight for each cell in the error matrix to reflect the 
severity of the misclassification error. Let wij be the weight 
associated with the i,jth cell in the error matrix. Fleiss et al. 
(1969) state that weights are limited to the interval 0 = wij = 1 for 
i ? j, and that the weight for perfect agreement is 1 (i.e., wii = 1). 
Naesset (1996) suggested that weights may reflect the loss of 
utility because of misclassification. If Uc,j is the utility when a 
pixel is correctly classified into class j and UE,ij  is the utility 
when a pixel belonging to class j is wrongly  classified into class 
i, then the weight is 
 
                                     wij = UE,ij/Uc,j                                                        
 
The benefit of creating a pollutant loading map is to be able to 
identify areas generating high levels of pollution. Therefore, 
initially, we thought of quantifying the value of best 
management practices (BMPs). However, BMPs can vary 
depending on the type of pollutants. In addition, it may be 

difficult to determine the dollar value of the benefit arising from 
a BMP. Next, we looked at the pollutant loadings . We 
computed for the average values associated with high, medium, 
and low loadings. If we put the absolute values of pollutant 
loadings in the equation above, we may have a value of zero in 
the denominator. Amount s over- or underestimated from the 
misclassification errors can also produce zeroes in the 
denominator.  
 
Cicchetti and Allison (1971) proposed a way of assigning 
weights specifically for ordinal data. Perfect agreement is 
assigned a weight of 1, and the worst disagreement is assigned a 
weight of zero. Weights of other cases of misclassifications are 
determined linearly. Because our classification is in ordinal scale, 
this procedure is applicable. However, we have modified it so 
that the weights were linearly related to the amount of pollutant 
loadings.  The difference between TSS low loading and TSS 
medium loading, for example, is not the same as the difference 
between BOD5 low loading and BOD5 medium loading.   
 
To demonstrate how weights are calculated, we take copper as 
an example. Similar procedures were applied to the other 
pollutants. Complete agreement is assigned a weight of 1, and 
the worst disagreement is assigned a weight of zero. (Table 2) 
When we misclassify an actual water pixel to high loading, we 
are “putting” high amounts of loading to an area where there is 
none generated. Misclassifying medium to high loading or vice-
versa has  a less serious effect because the over- or 
underestimated amount is smaller than in the worst 
misclassification case. In Table 2, we need to compute for the 
weights a, b, c, d, e. Note that the severity of error associated 
with misclassifying low to high loading, for example, is as severe 
as misclassifying high to low loading, hence they have the same 
weight. 
 
 

 Water Cu, Low 
Cu, 

Medium 
Cu, High  

Water 1 a b 0 
Cu, Low a 1 e c 
Cu, Medium b e 1 d 
Cu, High 0 c d 1 

 
Table 2.  Agreement weight matrix for copper with variable 

weights to be computed 
 
In Table 3, the weights are related to the pollutant loadings. In 
the second and third columns, when the loading is zero, the 
weight is one, and when the loading is 7.23, the weight is zero. 
For the last column, when the loading is 0, the weight is also 
zero. When the loading is 7.23, the weight is one. By simple 
ratio and proportion, we computed for the values of a, b, c, and 
d. Using these values, the weight e was calculated by averaging 
the weights of its neighbours in the north, east, west, and south 
directions. Table 4 shows the completed agreement weight 
matrix for copper. Similar tables were made for TSS, BOD5, 
Total P, TKN, and O & G. After the weight matrices were 



computed, weighted overall accuracy and weighted kappa 
coefficients (Cohen, 1968) were calculated using STATA 8.2. 
 
 

 Loading Weights Weights 
Water 0 1 0 
Cu, Low 0.71 a c 

Cu, Medium 4.82 b d 
Cu, High 7.23 0 1 

 
Table 3.  Relationship of copper loadings to weights 

 
 

 Water Cu, Low 
Cu, 

Medium 
Cu, High 

Water 1.00 0.90 0.33 0 
Cu, Low 0.90 1.00 0.61 0.10 
Cu, Medium 0.33 0.61 1.00 0.67 
Cu, High 0 0.10 0.67 1.00 

 
Table 4.  Agreement weight matrix for copper 

3. RESULTS AND DISCUSSION 

Tables 5-7 summarize the results of all the calculations. The 
addition of the buffer zone improved the classification. 
However, the effect of the neighbourhood analysis is hard to 
tell. In some cases the accuracy increased, but in other cases, the 
accuracy decreased, or remained the same.  
 
 

Pollutant 
Overall 

Accuracy 

Weighted 
Overall 

Accuracy  
Kappa 

Weighted 
Kappa 

TSS 92.3 95.2 86.0 86.9 
BOD5 92.3 92.4 86.0 84.2 
Total P  92.3 93.4 86.0 85.0 
TKN 92.3 93.8 86.0 85.4 
Cu 85.5 90.8 79.2 78.8 
O & G 87.1 87.6 78.0 73.6 

 
Table 5.  Accuracy measures for classification with spectral data 

(in percent) 
 
 

Pollutant 
Overall 

Accuracy 

Weighted 
Overall 

Accuracy  
Kappa 

Weighted 
Kappa 

TSS 92.8 95.4 86.9 87.7 
BOD5 92.8 92.9 86.9 85.2 
Total P  92.8 93.8 86.9 85.9 
TKN 92.8 94.2 86.9 86.3 
Cu 86.0 91.2 79.9 79.8 
O & G 87.6 88.1 78.9 74.5 

 
Table 6.  Accuracy measures for classification with spectral data 

and buffer zone (in percent) 

 
 

Pollutant  
Overall 

Accuracy  

Weighted 
Overall 

Accuracy 
Kappa 

Weighted 
Kappa 

TSS 92.8 95.3 86.8 87.2 
BOD5 92.8 92.9 86.8 85.1 
Total P 92.8 93.7 86.8 85.7 
TKN 92.8 94.1 86.8 86.1 
Cu 86.1 91.0 80.0 79.3 
O & G 87.0 87.5 77.9 73.3 

 
Table 7.  Accuracy measures for classification with spectral 

data, buffer zone, and neighbourhood information (in percent) 
 

Overall accuracy values and kappa coefficients were the same 
for TSS, BOD5, Total P, and TKN for each group of 
classifications. This was because there were only two states for 
these pollutants, low loading and high loading, which basically 
meant separating open land from non-open land. This qualitative 
assignment of pollution levels did not take into account the 
difference in magnitudes between pollution levels. With the 
weighted equivalents of the overall accuracy and kappa 
coefficient, we observed that these pollutants showed different 
values, indicating the fact, for example, that among TSS, BOD5, 
Total P, and TKN, TSS loading classification was the best 
classified. We also observed that weighted overall accuracy was 
always higher than overall accuracy. But weighted kappa 
coefficient could be smaller or larger than kappa coefficient. 
Naesset (1996) states that these values depend on the dataset 
and the weights applied.  
 

 
4. CONCLUSIONS  

The weighted equivalents of the overall accuracy and the kappa 
coefficient provide a new way to look at accuracy measures for 
assessing the quality of maps made from automated 
classification of remotely sensed data. This becomes more 
important especially when classifying ordinal data. Since levels 
of pollution are only designated as high, medium, and low, these 
more specific accuracy measures will give better information to 
users and serve as a guide in designing best management 
practices.  
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