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ABSTRACT: 
 
Many applications of remote sensing – like, for example, urban monitoring – require high resolution data for a correct determination 
of object geometry. These spatial high resolution image data contain often limited spectral information (e.g. three band RGB 
orthophotos). This poor spectral  information lead often to classification errors between visible similar classes like water, dark 
pavements or dark rooftops. Additional information about the material of an urban object’s surface is needed to separate these 
classes. Hyperspectral data with the typical high number of bands could be used to provide this information and allow a 
differentiation of material due to their typical spectra.  
In the context of remotely sensed data, fusion is often performed by combining high spatial with high spectral resolution imagery on 
different levels. In contrast to pixel-based approaches like the IHS-transformation or PC spectral sharpening, the emphasis of this 
paper is fusion of data at feature level. Hyperspectral data recorded by the HyMap sensor are fused with high spatial resolution 
imagery (digital orthophotos) for a combined endmember selection and classification. 
After a segmentation of the high spatial resolution orthophotos, the resulting segments will be used to detect those pixels in the 
hyperspectral data set , which represent candidates for the definition of reference spectra (so called endmember). Afterwards, the 
segments of the high spatial resolution data will be classified based upon the classification of the hyperspectral dataset and the 
application of overlay rules. 
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I. INTRODUCTION 

Remote Sensing data used for spatial planning tasks require 
"high" resolution especially in urban areas. On the one hand, as 
a precondition for the detection of object shapes, high spatial 
resolution is necessary. On the other hand, high spectral 
resolution allows a differentiation of urban surfaces by their 
material composition due to their characteristic spectra.  
 
However, high spatial resolution imaging sensors like the High 
Resolution Stereo Camera (HRSC-A) provide less than 10 
bands to characterize the spectral feature of recorded data [1]. 
This low spectral resolution is insufficient to characterize the 
object's surface material by it's spectral characteristic 
(absorption bands, ratios). Hyperspectral sensors like the Digital 
Airborne Imaging Spectrometer (DAIS) or the Hyperspectral 
Image Mapper (HyMap) are able to record the reflecting spectra 
of an object's surface with 79 (DAIS) respective 128 (HyMap) 
bands [2, 3]. Due to technical limitations (e.g. sensors scan rate 
of 10 to 25 Hz) hyperspectral sensors are not able to deliver a 
spatial resolution of better than 2-3 m across flight track even at 
lower operating altitudes [4]. 
 
If an area of interest is recorded by both sensor types (maybe 
even co-registered), data fusion techniques are needed in order 
to retrieve the mutual benefit of both data types. In contrast to 
pixel based fusion algorithms [1, 5, 6] in this paper we discuss 
data fusion at feature level [7].  
 

II. STUDY AREA AND DATA ACQUISITION 

The study area is located in the centre of the City of Osnabrueck 
(Northwest Germany), covering 205x762 m2 with different 
urban surface types: 
 

    
Figure 1. Study area of the city of Osnabrueck 

Left: Hyperspectral image data with study area 
(yellow box), Right: Corresponding high spatial 
resolution data 



 

For this study, different datasets were obtained for further 
investigations: 
 

• Digital orthophoto data 
• Digital elevation model (DEM) derived from cadastral 

data 
• Digital surface model (DSM) derived from HRSC-A 

image data 
• Hyperspectral image data 

 
The hyperspectral data (Fig. 1 - left) were taken by the HyMap 
sensor. Scanned aerial images, taken by the Local Earth 
Observation System (LEO) [8] represent the image data of high 
spatial resolution (Fig. 1 - right). 
 
A. Digital orthophoto system 

The high spatial resolution data produced by LEO were 5.5cm x 
5.5cm airphotos, taken on 16 May 2003 at an average flying 
height of 500 m. The image scale was about 1:10,000. The 
photos were scanned and resampled to a spatial ground 
resolution of 0.125 m. An orthoimage was generated using 
softcopy photogrammetry software with a resulting horizontal 
accuracy (one sigma) of sx,y = 0.2 m. For further processing 
steps like image segmentation, the orthophoto was resampled by 
pixel aggregation to a resolution of 0.5 m (Fig. 2). 
 

 
Figure 2. Orthophoto of the LEO system with overlay of a GIS 

layer (buildings). 
 
B. Normalized Digital Surface Model 

Information about the elevation of surfaces in the study area 
exist in two datasets: 
 

• Digital elevation model (DEM, derived from cadastral 
data, grid size 12.5 m, vertical accuracy 0.5 m) 

• Digital surface model (DSM, derived from HRSC-A 
image data, grid size 0.5 m, vertical accuracy 0.2 m) 

 
For the generation of the DSM, a digital multiple correlation 
process is performed on the HRSC-A data [9]. The resulting 
DSM was normalized (nDSM) by use of the DEM data [10]. 
Unfortunately the HRSC-A campaign has been carried out in 
April 1999, an early stage of vegetation period. As a result the 
height of objects like trees or bushes could not be determined 
correctly. This effect is shown in Fig. 3, Trees in the middle of 
the image are displayed as a kind of flat terrain due to the 
erroneous DSM data. As a consequence the differentiation of 
vegetation objects in classes like "tree" and "lawn" has been left 
out in further processing. 
 

 
Figure 3. Orthophoto of the LEO draped over the DSM derived 

from HRSC-A data. 
 
C. Hyperspectral image data 

In 2003 the German Space Centre (DLR) in Oberpfaffenhofen 
coordinated a campaign on hyperspectral HyMap surveys in 
Europe (HyEurope2003). During this campaign, on July 15th, 
the hyperspectral image data were obtained by a north-south 
transect over the City of Osnabrueck.  
 
The HyMap Sensor records 128 reflective bands covering the 
visible and near infrared range (VNIR) and the short wave 
infrared domain (SWIR) between 0.4 µm and 2.5 µm. With an 
operating altitude of 1500 m and a scan frequency of 16 Hz data 
could be recorded with a ground projected instantaneous field 
of view (GIFOV) of 3 m across and 4 m along flight track. 
 
According to the whiskbroom principle of the opto-mechanical 
system of HyMap, the recorded lines of data were geocoded to a 
raster. This step was carried out by a parametric geocoding 
approach, implemented in the Software Package PARGE 
(implemented in IDL, executable in ENVI) [11]. To maximize 
the geometric accuracy during the orthorectification process, the 
nDSM with a grid size of 2 m was used. This oversampling 
(GIFOV = 3 m) reduced the amount of double-mapped image 
pixels from 1,8% to 0,3% (nDSM grid size 3 m vs. 2 m). The 
geometric accuracy of the image data was checked by cadastral 
GIS data (buildings) and estimated to be 1.8 m (one sigma). 
 

 
Figure 4. RGB-Image of the HyMap data with overlay of a GIS-

Layer (buildings). 
 
After geometric processing the recorded radiances were 
corrected to absolute reflectances using the FLAASH software 
package (FLAASH = Fast Line-of sight Atmospheric Analysis 
of Hyperspectral Cubes) [12]. A subset of 104 bands was taken 
for further processing. 



 

III. METHODOLOGY 

Our methodological approach for data fusion is characterized by 
a object-oriented segmentation of the geometric high resolution 
orthophotos and a SAM-score generation of hyperspectral data. 
The method is based on a mutual support of both data types, in 
a segment based endmember selection, the geometric location of 
the pixel in hyperspectral data, which is representing an 
endmember of an urban surface type is determined by a 
segmentation of the high resolution image data. Pixel that are 
fully contained in a segment are candidates for the definition of 
reference spectra and are considered for the creation of a 
spectral library. 
 
With the user-specific knowledge contained in that spectral 
libraries, the hyperspectral data are classified by the full pixel 
classification approach Spectral Angle Mapper (SAM). The 
classification results are transformed to an 8-bit SAM-score by a 
user-independent automated algorithm. Due to the identical 
geometric registration of both image data, the SAM-scores 
provide additional feature values for the image segments of the 
high geometric resolution orthophoto. The end product of this 
approach is a map produced by the classified segments. The 
workflow of our approach is shown in the following figure: 
 

 
Figure 5. Segments of high resolution data (top left) are used for 

endmember selection in hyperspectral data (top 
right). Minimum distance (nearest neighbor) 
classification and score image are fused by using a 
linear membership function. Results are produced by 
a neural network classifier of eCognition. 

 
A. Segment based endmember selection 

Reference spectra for surface materials can be retrieved from 
field measurements or derived from image data. In case of a 
derivation of endmembers from image data, several algorithms 
have been developed: 
 

• Manual endmember selection [13] 
• Pixel Purity Index (PPI), implemented in ENVI [14] 
• NFIND-R [15] 
• Iterative Constrained Endmembers Algorithm (ICE) 

[16] 
• Autonomous Morphological Endmember Extraction 

(AMEE) [17] 
 
Urban surface endmembers are often a result of the mixture of 
manmade materials which usually leads to flat spectra. In 
addition, these endmembers have similar spectral features and 

are hardly separable in feature space. As a consequence, 
automated algorithms like PPI or manual endmember selection 
lead to a significantly smaller number of defined urban surface 
endmembers. Due to this fact, the geometric location of pixels 
which represent endmembers are detected in our approach by 
segmentation of high spatial resolution data. The segments are 
generated by a multiresolution segmentation approach 
implemented in eCognition [18]. Only pixels of the 
hyperspectral data which are embedded in a N-8 neighborhood 
(Fig. 6) that is completely included in the identified image 
segments are considered for the manual definition of 
endmember spectra and stored in a spectral library (Fig. 6). 
 

 
Figure 6. Segment based endmember selection. Left: high 

spatial resolution data and derived segments. Right: 
endmember candidates (yellow) 

 

 
Figure 7. Retrieved endmember spectra of segment based 

selection process (“red pavement” from Fig. 6). 
 
Using this approach for our study site, we were able to define 
one endmember for each a priori defined class. 
 
B. SAM-score 

For the further classification process a score for each pixel of 
the hyperspectral data has to be determined. The score is 
calculated by the results of the Spectral Angle Mapper (SAM). 
SAM calculates the cosine of a spectral angle for each given 
reference spectra  with the following equation: 
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where  � = spectral angle 
 e =  given image spectra 
 r = reference spectra (endmember) 
 n = number of classes 



 

 
Beneath a class image, an additional result of SAM is a "rule 
image" which contains n spectral angles (�1….n, see eq. 1) for 
each image pixel at n given endmember. A value near zero in a 
rule image represents a good fit to a given endmember (Fig. 7, 
middle). In other words, a low value in layer n of the rule image 
indicate a candidate for the investigated class n. 
 

 
Figure 8. SAM-score generation for class “dark red roof”. 

 
As shown in Fig. 8, dark red roof tiles in the orthophotos (Fig. 8 
left) get a low value in the corresponding rule image after SAM 
classification (Fig. 8 middle). The SAM-score image (Fig. 8 
right) is a kind of positive 8-bit greyscale image of the rule 
image data with a certain kind of sharpening. The 
transformation is done by the follow following equation: 
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where  sc,I = SAM-score for Pixel i with respect to class c 
 �i

  = spectral angle of investigated pixel 
 �c

max = spectral angle which leads to a score of zero 
   for class c (upper border) 
 �c

min  = best fitting spectral angle for class c which 
leads to a score of 255. 

 n  = number of classes 
 
 
The sharpening effect of the transformation from rule image to 
SAM-score data (Fig. 8) depends on the thresholds given by the 
spectral angles �c

max and �c
min in (2). They have to be 

determined for each given endmember (rule image layer) and 
are highly depended on the spectral characteristics of the given 
endmember. These thresholds can be found by the following 
algorithm:  
 
As a result of SAM the spectral angle values of one classified 
pixel are stored in a rule image. The spectral angles of one 
image pixel stored in that rule image could be treated as a 
vector. The order of the vector components is given by the order 
of the given endmembers in SAM. Sorting the vector 
components ascending (3), a new Vector is created so that the 
best fitting class for this pixel has the index i, the second best j 
and so on up to the worst fitting (largest spectral angle value) 
endmember n. 
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 with n = number of endmember (3) 

 
The above mentioned thresholds �c

max and �c
min for every class c 

have to be estimated by finding the “worst” spectral angle.  
 

Defining the following constraints, every pixel is scanned: 
 
1) If the spectral angle of the best fitting class i is significant 

smaller than the second best class j (|�j-�i| > 0.33 �i ), this 
pixel is marked as candidate for a SAM-score of class i. (No 
other class spectra matches better to this pixel than the 
endmember of class i). 

2) If the second or even third best spectral angle (classes j,k) 
are near the best fitting angle (|�j,k-�i| < 0.33�i) the Pixel is 
also marked as a candidate for class j or k. 

 
After marking the pixels under these constraints, for any given 
class c all corresponding marked pixels are used to estimate the 
smallest (�c

min) respectively the largest (�c
max) spectral angle. 

Using (2), the transformation of any given spectral angle to the 
SAM-scores is now possible as shown in the following figure: 
 

 
Figure 9. Pixel with lowest spectral angle for class 3 (left) 

receives highest SAM-score for this class but also a 
score for classes 4 and 8. 

 
C. Classification of image objects 

Beneath the information about the average height of a segment 
and the RGB values from the orthophotos the above described 
SAM-scores could be used as an additional feature information. 
Like a DSM, the 8-bit SAM-score is also stored in a greyscale 
image and averaged by overlay operation in a GIS. As a result, 
for each given class, a SAM-score is available (Fig. 10.). 
 

 
Figure 10. SAM-scores for a segment 

 



 

The creation of image objects (segments) and the final 
classification is performed within the software eCognition. 
eCognition provides a neural network classifier which allows 
the user to create feature specific membership functions 
considering the SAM-scores. The segment displayed in Fig. 10 
has a SAM-score of 204.69 for the class “red pavement” and a 
SAM-score of 73.73 for “red concrete” which has similar 
spectral features. Due to the high SAM-score of the material 
“red pavement” and the average height of 0.02 m (“osi_ndom” - 
value) this segment is classified as “red pavement”. 
 

IV. RESULTS 

19 different, visibly similar classes have been defined with a 
differentiation in material classes in order to prove the 
methodology. For example, red roof tops were divided into "red 
roof concrete" and "red roof clay". Three different classification 
scenarios were defined to investigate the performance of the 
presented approach. A minimum distance classification applied 
on the RGB feature space of the orthophoto (RGB), an 
additionally combination with the segment's elevation and at 
last the implementation of SAM-scores into the classification 
process. 
 

 
Figure 11. Increasing overall classification accuracy 

 
For each of the classification scenarios the overall accuracy was 
estimated. The relative low overall accuracy of the RGB 
scenario could be explained by the strong similarities of the 
defined classes. 
 

 
Figure 12. Classification Scenario “RGB” of Fig. 2 

 
The improvement of nearly 20% in classification accuracy 
shows, however the benefit of an integration of hyperspectral 

image data into the classification process of surfaces with 
similar features but different material. 
 

 
Figure 13. Classification Scenario “RGB with nDSM and SAM-

score” 
 

V. CONCLUSION 

The presented approach uses the benefits of a combination of 
high spatial and high spectral resolution remote sensing data. It 
could be proved that a segment based endmember selection 
results in a suitable spectral library. With an automated SAM-
score generation, additional feature values for the image 
segments could be generated. The additional inclusion of 
hyperspectral image data into a classification process of high 
spatial resolution image data show significant improvements 
and allow material differentiation of urban surfaces.  
 
The accuracy of the presented approach is highly dependent on 
the geometric correctness of the acquired image data. The 
results are based on image data that are not co-registered. 
Future co-registered sensor combinations like ARES [19] and 
HRSC will show if the overall accuracy can be increased. 
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