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ABSTRACT: 

 

The quantitative assessment of pollutants on urban surfaces is of high economical and ecological interest. Nowadays a better part of 

the rain water from sealed urban surfaces is treated in sewage plants, although this might not be necessary regarding economical 

aspects and not desirable regarding ecological considerations, because the load of pollutants of the first flush is much higher than in 

the following run-off. Therefore, the dimensioning of sewage systems and on-site preflooders may be adopted to this observation and 

costs may be reduced as well as a subsidence of the groundwater table could be prevented, if unpolluted rainwater is discharged to 

the groundwater. While the focus of the Engler-Bunte-Institute (EBI), chair of water chemistry, is on the chemical analysis of the 

rain run-offs, the Institute of Photogrammetry and Remote Sensing (IPF) aims at the characterization of urban roof surfaces, namely 

their geometry (slope, exposition, size) and their surface material. For this purpose hyperspectral data with high spectral resolution 

and laser scanning data with high geometric resolution are combined  to create a detailed map of these surfaces.  

In Lemp and Weidner (2004) we already presented first results of our approach based on segmentation using eCognition and a 

previously presented technique from IPF for segmentation of roof surface patches. The classification of materials using eCognition 

was solely based on the hyperspectral data. In our recent developments we extend this approach by using the slope information, 

because of the correlation of roof slope and possible surface materials. For the classification we apply eCognition which allows the 

introduction of this knowledge as well as the use of detailed spectral properties within a fuzzy classification scheme. This increases 

the separability of classes with similar spectra but different geometrical attributes. The paper presents new aspects of segmentation, 

classification and results of data analysis, which will be focused on roof surfaces.  

 

 

1. INTRODUCTION 

Due to a regulation of the EU water framework directive, the 

influence of human activity on the status of surface waters and 

groundwater has to be reviewed by each member state. The 

assessment of pollutants on urban surfaces and their impact on 

the pollution load in rain runoffs is a small, but nevertheless 

important topic in this context.     

Thus, one aim of a recent project is not only to derive 

information on the amount of sealed surfaces in an urban area 

(cf. Butz and Fuchs (2003)), but also to derive a detailed surface 

material map. Chemical measurements for the characterization 

of the chemical processes on reference roof surfaces are 

defining the framwork of classes within the classification of 

roof surface materials. Many roof constructions have similar 

polluting behaviour resulting from a not visible bitumen layer, 

while they show differences in spectral properties of their 

surface. The material-oriented identification (cf. Heiden et al. 

(2001)) leading to a detailed material map is supported by 

geometric clues of surface patches. Furthermore in our 

application, classes with different spectral characteristics may 

be merged with respect to the resulting pollution. 

Urban areas are characterized by their complex geometric 

structure and their heterogenity concerning the occuring surface 

materials. The appearance of surface patches’ materials in the 

data is influenced by the acquisition and object geometry. Also 

the collection of rain runoffs is dependent on the slope and 

exposition of roof segments. Furthermore, the age of the 

material and environmental conditions, e.g. by weathering and 

humidity, also have impact on their appearance. All these facts 

lead to the necessity of high resolution input data to solve the 

tasks – high resolution with respect to the geometric resolution, 

but also to the spectral resolution in order to discriminate the 

various surface materials. Therefore, we combine data derived 

from laser scanning, which provides the necessary geometric 

information, and hyperspectral data for the spectral analysis of 

surface materials.  

 

In the following, we give a short overview on related work 

dealing with the use and combination of laser scanning and 

hyperspectral data. Section 3 introduces the input data. Our 

approach for the characterization of surfaces in urban areas is 

presented in Section 4 focussing on roof surfaces. A summary 

of recent results as well as a qualitative comparison of our 

results with a reference data set follows in Section 5 and the 

conclusions.  

 

 

2. RELATED WORK 

Up to now, the laser scanning and hyperspectral data were often 

used exclusively, either to derive the geometry based on laser 

scanning data (cf. Vögtle and Steinle (2003)) or to derive 

material maps based on hyperspectral data (cf. Heiden et al. 

(2001)). The improvement of reconstruction from laser data by 

additional image information is discussed, but mainly to reject 

vegetation areas. Gamba and Houshmand (2000) use 

hyperspectral data (AVIRIS) in order to improve reconstruction 

results based on IFSAR, namely to mask vegetation areas, but 

the used data has only limited geometric resolution. Madhok 

and Landgrebe, (1999) integrate DSM information in order to 

improve the results of hyperspectral classification based on 

HYDICE data. In their research the DSM, derived from aerial 

imagery, is applied for the discrimination of roofs and ground 



 

surfaces. The materials may have a similar spectrum, but they 

can be discriminated based on the height information. 

Homayouni and Roux (2004) show material mapping 

techniques based on deterministic similarity measures for 

spectral matching to separate targets from non target pixels in 

urban areas.  

 

Bochow et al. (2003) is the closest related work to our 

approach. They use a normalized Digital Surface Model 

(nDSM) approximating the ground surface and hyperspectral 

data taken by the airborne DAIS 7915 sensor. A similar 

approach of Greiwe et al.  (2004) is using HyMap data and high 

resolution orthophotos and a surface model both derived from 

HRSC-A data. Their focus is on fusing the high resolution 

datasets by a segment based technique. 

 

Our approach differs from the aboves with respect to the input 

data, in particular the laser scanning data. The development of 

special segmentation algorithms allows the consideration of 

multiple geometric characteristics, e.g. slope and size of surface 

patches. We use eCognition for classification of the data, which 

allows a hierchical classification and introduction of knowledge 

by using the different information sources for different 

decisions within a fuzzy classification scheme. Details are given 

in Section 4.  

 

 

3. DATA 

For the characterization of urban surfaces with respect to their 

geometry and their materials, two different data sets are 

combined: a DSM and hyperspectral data. The DSM was 

acquired in March, 2002, with the TopoSys system using the 

first (cf. Fig. 1) and the last pulse modes. For ease of use within 

different software packages, 1 m × 1 m raster data sets were 

generated. These data sets differ not only concerning the objects 

included, but also showing systematic effects: surface patches 

appear smoother and building footprints are systematically 

smaller in the last pulse data. The impact of these differences on 

the analysis was discussed in Lemp and Weidner (2004). 

The hyperspectral data was acquired in July, 2003, with the 

HyMap sensor during the HyEurope campaign organized by the 

DLR (German Aerospace Center). Figure 2 displays a band 

combination ranging from the visible to the near infrared 

spectrum. The white line indicates the central campus area. The 

data was preprocessed (atmospheric corrections, geocoding) by 

the DLR, Oberpfaffenhofen, using the DSM. The original data 

has a ground resolution of 4 m × 4 m. In order to use the data in 

combination with the DSM, the data was resampled to a 

resolution of 1 m × 1 m using nearest-neighbour interpolation 

(cf. Lemp and Weidner (2004)). For the classification we 

applied a  manual selection of bands based on the spectra of 

selected surface materials (Fig. 4). The classification results are 

compared, using ArcGIS software, with a 3D campus model 

(Fig. 3) as reference data, which was generated from aerial 

images taken in spring, 2002. Further details are given in 

Section 5.  

 

 
Figure 1: nDSM from laser data (first pulse mode)  

 

 
Figure 2: Hyperspectral data (RGB=25/15/10)  

 

 
Figure 3: 3D-campus model generated from aerial pictures 
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Figure 4: Spectra of selected surface materials 



 

4. DATA ANALYSIS 

The characterization of urban surfaces is based on the analysis 

of laser scanning and hyperspectral data as already depicted in 

Lemp and Weidner (2004). The geometry of surface patches is 

derived using a DSM from laser scanning, whereas the surface 

material information is obtained from both, laser scanning and 

hyperspectral data.  

With respect to the demands of our project (the chemical 

analysis of rain runoffs) the classification focus is not only on 

the material and geometry itself, but also on the detection and 

balance of contained pollutants. In some cases these ambitions 

ease requirements on the classification – e.g. in the majority of 

cases flat roofs are consisting of a bitumen sealing with a 

variable upper layer of gravel, stone plates or other stonelike 

materials. In such cases bitumen seems to have the main 

influence on pollution while the stone cover is of minor 

importance and a separation in different classes is not 

nessessary. Observing this fact, three categories bitumen, stone 

plates and gravel could be joined to one class 

“stonelike/bitumen”. On the other hand the need of a more 

detailed separation of metal surfaces to galvanized metal (zinc), 

and aluminum was realized. Table 1 shows some examples of 

roof surface characteristics, grouped with respect to similar 

spectra, and also indicating qualitatively the surface geometry. 

Taking the properties into account, the slope information is 

used as additional clue within the classification in case of slate 

and “stonelike/bitumen”, which show a high spectral similarity 

(see Fig. 4).  

The data analysis is structured in two main parts, namely (1) the 

geometrical segmentation using either eCognition or an IPF 

algorithm, and (2) the spectral segmentation and classification 

using the software package eCognition. The quality of 

segmentation is crucial as it impacts directly the classification 

result. In the following, we describe segmentation and 

classification in detail using a subset of the data as example.  

 

material geometry pollutant remarks 

 flat slope  

<10% 

slope 

 >10% 

(*)  

Brick - + ++ PAC  

Copper - + + Cu, PAC  

Aluminum - ++ +   

Zinc - + ++ Zn, PAC  

Roofing 

felt/ 

Bitumen 

++ + + TOC 

DOC 

Joined to class 

“stonelike/ 

bitumen” 

Stone 

plates 

++ - - TOC 

DOC 

Joined to class 

“stonelike/ 

bitumen” 

Gravel ++ - - TOC 

DOC 

Joined to class 

“stonelike/ 

bitumen” 

Slate - + +  spectrum 

similar to class 

“stonelike/ 

bitumen” 

Grass + + -  limited slope 

Table 1: Examples of roof surface characteristics  
(*): PAC = Polycyclic aromatic compounds, Cu = copper, Zn = zinc,  

      TOC = total organic carbon, DOC = dissolved organic carbon 

 

 

4.1 Segmentation 

The segmentation procedure within the eCognition software is 

based on a region growing algorithm. The criterion for the 

growing combines three different quantities: the homogeneity of 

the segment, the shape of the segment measured by its 

compactness, and the smoothness of its boundary. The 

homogeneity of the segment takes the deviations from the mean 

of each channel used for segmentation into account. Thus, the 

underlying model assumes constant values for each segment’s 

channel, which is only adequate when dealing with flat roofs, 

but not when dealing with roofs consisting of planar faces, 

which is our assumed model, and using the laser scanning data 

as main information. For the segmentation first and last pulse 

data and a NDVI (channels 25 and 15 of the HyMap data) are 

used. Emphasis was on the geometry data (each channel with 

weight 4), and less on the NDVI data (weight 1). An example of 

this eCognition segmentation is given in Fig. 6. The gable roofs 

of all buildings were subdivided into several slight elongated 

sections in the main roof directions, just approximating the 

sloped surface by segments with constant heights - independent 

from the choice of scale parameter. In case of flat roofs the 

segmentation resulted in reasonable segments. 

 

Instead of the segmentation by eCognition, our segmentation 

procedure for laser scanning data searches for planar faces. It 

follows the region growing principle taking the deviation from a 

plane in 3D into account. Details of the algorithm are first 

applied in Quint and Landes (1996), enhancements are given in 

Vögtle and Steinle (2000). Fig. 7 shows the result of the 

algorithm for the subset based on the last pulse laser scanning 

data, thus only the geometry is taken into account during 

segmentation. Parameters were set to include smaller roof 

extension in the surrounding larger surface patch. The use of 

geometric data only may lead to problems, when one planar 

roof surface patch consists of areas with different surface 

materials.  

 

In order to combine the advantages of both techniques, we 

applied a strategy consisting of two steps: First we use our 

segmentation procedure which provides a segmentation based 

on the geometric laserscanning data. In a second step the 

segmentation result is introduced into eCognition using the 

spectral data to split up the initial segments. We used two 

spectral channels (ch.5 at 493.4 nm wavelength and ch. 120 at 

2467.8 nm wavelength) which were also used for classification 

later on to refine the geometric segmentation. Fig. 8 shows an 

additional segment on the roof of the building on the lower 

right, which consists of brick material (cf. Fig. 9), while the rest 

of the roof is slate material. Because the smooth transition of 

those patches they could not be separated using the geometric 

segmentation (cf. Fig. 7). A second spectral segmentation 

allows the separation of this two patches because of their 

different spectral properties.  

For the classification described in the next section, we used the 

results of the combined eCognition and IPF segmentation 

shown in Fig. 8. A comparison with the same classification 

based on single geometrical IPF segmentation is given in 

section 5.  

 

 

 

 

 



 

Figure 6: Segmentation (eCognition, scale parameter 50)  

 

Figure 7: Segmentation (IPF)  

 

Figure 8: Segmentation (IPF and eCognition, scale parameter 

30, channels 5, 120) 

 

 
Figure 9: Aerial image  

4.2 Classification 

With eCognition software, the combined analysis of multiple 

datasets of different sensors is possible. The HyMap sensor 

provides spectral information in 126 channels. Fig. 4 displays 

example spectra of materials to be classified. A closer look 

reveals the following: 

 

• Some materials show a significant different spectrum  

than the others, e.g. aluminum, zinc, brick and copper.  

 

• Some spectra of different surfaces are quite similar,  

e.g. stone plates and gravel and bitumen.  

 

• Spectra of same material differ significantly due to the  

surface orientation in relation to the sun angle/illumination,  

e.g. brick or slate (cf. Lemp and Weidner (2004 )).  

 

Furthermore, a number of channels providing geometric 

information (height, slope, orientation, curvature) are derived 

from laserscanning data. The main task is to find specific 

characteristics of the spectra and the geometry to select 

channels from the hyperspectral and laserscanning data for the 

classification. From all available channels we actually use a 

subset of 20 hyperspectral channels and 3 geometric channels, 

namely height information from first pulse and last pulse data as 

well as slope information. 

 

For the classification we use the classes shown in Fig. 10, 

which are ordered hierarchically. This hierarchy mainly reflects 

the sequence of fuzzy decisions. First, we classify objects and 

non objects using the height information from laser scanning 

(first and last pulse). In a second step we derive a set of 

candidate roofs to be classified, by removing vegetation areas 

from the objects applying an NDVI (channel 25 and 15 of the 

HyMap-data) and smaller segments based on their size and their 

neighbourhood relations to segments of the classes non object 

and vegetation. Thus, this classification procedure may in 

principal also be applied, if only a nDSM from first pulse data 

or derived from other sensor data is available. The roof 

segments are now classified according to their material and 

geometry at once. For this purpose, we first have to define 

membership functions for each class and feature to be used, 

starting with those material classes with the most significant 

spectral differences to other materials. The spectral curves 

shown in (Fig. 4) are resulting not from field spectrometer but 

directly from the HyMap dataset. Brick shows an increase in the 

spectrum from the first channels to the last, which seems in our 

case to be independent from the age of the material. The 

spectrum of copper has a significant decrease from channel 8 to 

20, while aluminum has high reflection values in the first 

channels and show some characteristic slopes, so we use the 

channels (1) and (2) and a ratio. Galvanized zinc is decreasing 

between channel 32 and 40. Slate can be separated from other 

stonelike surfaces with respect to the slope. So slate surface 

usually has a significant slope, while gravel and stone plates 

have to be flat.   

As mentioned in section 4, the better part of pollution related to 

gravel and stoneplate surfaces is caused by a bitumen layer 

underneath the surface, which is part of almost every flat roof. 

So we merged the three classes gravel, stone plates and bitumen 

to one upper class “stonelike/bitumen”.  



 

 
Figure 10: Class hierarchy  

 

 
Figure 11: Classification based on geometrical segmentation  

 

 
Figure 12: Classification based on combined geometrical and 

spectral segmentation  

 

A closer look to Fig. 11 and Fig. 12 shows the influences of a 

refined segmentation technique leading to a more detailed and 

better classification result. The brick roof segment on the right 

is correctly detected in Fig. 12 as well as the wrong classified 

zinc part on the right in Fig. 11 is also eliminated in Fig. 12. 

 

 

5. RESULTS 

In this section we will present and discuss the results of the 

above segmentation and classification. For the central campus 

area (white line in Fig. 2) reference data exists, namely a 3D 

dataset of buildings generated from aerial images with visually 

approved information about their roof materials from the images 

and from field check. Fig. 13 displays the result of roof surface 

classification based on the combined geometrical and spectral 

segmentation. The membership values of all classes are 

computed using the fuzzy and(min), which means that all 

membership conditions must be complied. Fig. 14 indicates a 

lower stability in smaller segments, which is caused by the 

limited 4m geometrical resolution of the HyMap data. Also the 

class “stone like/bitumen” shows a much higher stability than 

we could reach using the subclasses gravel, stone and bitumen 

(cf. Lemp and Weidner (2004)).   

 

 
Figure 13: Classification (AND, combined segmentation)  

 

Figure 14: Stability (AND, combined segmentation)  

 

 
Figure 15: Stability statistics (AND, combined segmentation) 

 

Most of the roof segments with unstable result – i.e. second best 

classification result has only small difference in its membership 

value compared to the best – belong to the above mentioned 

classes. These segments are shown in red. In case the fuzzy 

or(max) is used, already one feature with high membership 

value is sufficient for classification. Usually this strategy leads 

to a more unstable classification than the fuzzy and(min). Fig. 

15 shows the minimum, maximum and mean results for the 

membership functions for our fuzzy and(min) classification. 

Slate has the lowest mean membership value of 0.787, which 

corresponds to the confusion matrix (cf. Table 2). In the 

following we will discuss the implications on the accuracy of 

the classification results. In order to compare the eCognition 

classification with reference values, we exported the resulting 

classes as a tagged image file (tif), which is readable and 

analyzable by a GIS software. The attributes of both datasets – 



 

eCognition and reference data – were joined after vectorization. 

Using multiple sql queries, correct and incorrect results can be 

detected and visualized as shown in Fig. 16.  

 

Figure 16: Comparison of fuzzy AND(min) classification and 

reference 3D campus model 

 

The green segments in are representing the correct classified 

ones with a total of ~71% of the total area of roof surfaces. The 

yellow patches symbolize correct classified metal roofs (~20% 

of the total area). Incorrect classified surfaces (red) are 

accumulating to 4.6% of total area, most of them in small 

segments with size < 10 m². Zinc and aluminum surfaces are 

grouped to “metal surfaces”, because they are separated in the 

eCognition classification, but not in the reference data. The 

following confusion matrix shows the comparison results in 

detail. 
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brick 12728 0 8 0 6 99.9% 

copper 0 1570 111 0 7 93% 

aluminum/zinc 0 106 14810 232 2169 85.5% 

slate 24 0 410 4490 634 81% 

stonelike/bitumen 76 99 732 356 33569 96.4% 

producer accuracy 99.2% 88.5% 92.2%  88.4% 92.3%  

Table 2: confusion matrix of classified areas (in square meters) 

(*) Aluminum and Zinc is not seperated yet in reference data 

 

The total amount of 73659 m² classified roof surfaces is 

correctly recognized in an area of 67167 m² and 91.2% 

respectively. 

 

 

6. CONCLUSIONS 

In this contribution we presented our improvements for the 

characterization of urban surfaces, focussing on geometrical and 

spectral properties of roof surfaces. The main problems with 

respect to the classification, namely the variability of the 

materials on one hand and the similarity of some materials’ 

spectra on the other hand are taken into account by our segment 

based approach. A classification based only on the 

hyperspectral data is difficult, although the data provides high 

spectral resolution. The detailed information resulting from 

laserscanner data with its high spatial resolution combined with 

the high spectral resolution of HyMap data leads to a 

hierarchical classification, which delivered reasonable results.  

As the reference is a 3D data set generated from aerial images, it 

could also be used for accuracy assessment of the slope, which 

is calculated from laserscanning data in our approach, in a next 

step. For the classification, the accuracy of the slope was less 

important than the question whether the roof is sloped or not. 

However, the knowledge of an exact slope will be important for 

the calculation of the surface area to determine the amount of  

rainwater collected by any roof segment. Our next topic will be 

the extension of the classification to the inner city part of 

Karlsruhe. This regional extension might lead to the necessity 

of a refinement of the membership functions as well as 

completely new classes might occur there. Up to now, the 

analysed six classes appearing in the campus area are a quite 

limited number, which is probably one reason for the very high 

accuracy of the classification results. Our work is closely related 

to the ongoing research on the chemical processes on roof 

surfaces, because those processes make the basic requirements  

for our classification. The complex knowledge of the amount of 

rainwater, the amount of pollution and the direction of the 

discharge combined with the knowledge of urbanism aspects 

may lead to economical and ecological important improvements 

in rainwater discharge and capacity of sewage plants. 
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