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ABSTRACT: 
 
The City of San Antonio, Texas and its surrounding have been experiencing rapid land-use and land-cover (LULC) changes as a 
result of population growth and urban development in the last few decades. Current census data shows that San Antonio is the 8th 
largest city in the United States, surpassing Dallas and Detroit (U.S. Census Bureau). With such population increase comes increased 
pressure on the environment and natural resources. Multitemporal datasets consisting of Landsat TM images of 1985 and 2003 were 
used to perform change detection analysis, with the aim of achieving LULC characterization and pattern change between the two 
periods. Data pre-processing includes the use of Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASHTM) for 
atmospheric correction. Image classification was performed using the object-oriented approach (eCognitionTM). Change analysis 
shows that impervious surface (or urban area) increased in the study area by 33% between 1985 and 2003. The expected 
corresponding decrease in forest cover, even though observable especially within and around the city limits, is not reflected in the 
overall change information. The reasons for this are discussed in detail. While many subjective factors affect the classification 
accuracy using pixel-based supervised image classification, the work suggests that eCognition-based object-oriented classification is 
also affected by subjective factors such as the weight of shape (texture) and pixel value, levels of multiresolution segmentation, and 
selection of objects as training sites.      
 
 
1. INTRODUCTION 
 
 Our natural environment is continually modified by both 
natural and anthropogenic activities. The challenges of 
understanding the various ecosystem processes and how 
changes may affect these processes in the coming decades 
are daunting. Changing climate, hydrologic regimes, 
vegetation redistributions, and urban growth are a few of the 
dynamics influencing landscape change.  
Remotely sensed satellite images provide valuable datasets 
that can be used to analyze, evaluate, and monitor changes in 
ecosystems through change detection.  
One of the major hurdles of any satellite image analysis is 
how to accurately compensate for atmospheric effects. Most 
atmospheric correction programs do not consider properties 
such as elevation, water vapour, and aerosol distribution. The 
FLAASH module in ENVI probably provides the most 
accurate means of compensating for atmospheric effects. The 
FLAASH model includes a method for retrieving an 
estimated aerosol/haze amount from selected “dark” land 
pixels in the scene. The method is based on observations by 
Kaufman et al. (1997), of a nearly fixed ratio between the 
reflectance for such pixels at 660 nm and 2100 nm (FLAASH 
User’s Guide). 
Object-based image classification, which is based on fuzzy 
logic, allows the integration of a broad spectrum of different 
object features such as spectral values, shape, and texture. 
Such classification techniques, incorporating contextual and 
semantic information, can be performed using not only image 
object attributes, but also the relationship among different 
image objects (Civanlar and Trussell, 1986; Driankov et al., 
1993; Laliberte et al., 2004, Gitas et al., 2004). Franklin et al. 
(2000), for example, found that the incorporation of texture 

in addition to spectral information increased classification 
accuracy on the order of 10-15%. 
Several studies have investigated the ability of satellite 
imagery, including Landsat TM and ETM+, to perform 
change analysis. The aim of this work is to accurately 
characterize LULC changes in the San Antonio area between 
1985 and 2003 using advanced atmospheric correction model 
and object-based image classification approach. Specific 
objectives are: 
 

- to produce accurate and reliable results 
regarding LULC changes in the San Antonio 
area between 1985 and 2003, 

- to evaluate the implications of current growth 
trends on available resources, 

- to examine the advances of radiative transfer 
code based atmospheric correction and object-
oriented classification methods. 

 
 

2. STUDY AREA AND DATASET 
 
The City of San Antonio and its surrounding environs lay at 
the confluence of four ecological regions. These ecoregions – 
Blackland prairie, Post oak savanna, South Texas plains, and 
Edwards Plateau – are each distinct in their soil, flora, and 
fauna. Also of note are the many springs, creeks, and rivers 
which arise in the immediate vicinity and to areas west and 
northeast of San Antonio as a result of fault lines along one 
of the nation’s largest karst limestone aquifers (American 
Forests, 2002). The study area, lies within longitudes 98.82, 
98.21W and latitudes 29.68, 29.17N and is situated mostly 
within Bexar County (Figure1).   
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Datasets for the study consist of two Landsat TM images of 
10-05-1985 and 10-23-2003, provided by TexasView 
Remote Sensing Consortium. Both datasets (Path27/Row40) 
have zero cloud cover. 
 
 
 
3. METHODOLOGY 
 
Data pre-processing involved converting digital numbers to 
radiance, atmospheric correction using FLAASHTM, and co-
registration. Image classification was done using object-
oriented approach (eCognitionTM), followed by accuracy 
assessment and change detection (Figure 2). 

 
Fig 1.  Study Area (red outline is the city limit) 

 
3.1           Converting digital number to radiance 
 
Conversion of the image DN values to spectral radiance is 
carried out using the equation, 
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where, DN = Digital Number for each pixel of the  
 image  

 LMAX and LMIN = calibration constants 
 (Table 1) 

 QCALMAX and QCALMIN = the highest 
 and the lowest points of the range of rescaled 
 radiance in DN. 

For Landsat 4 and 5, the QCALMAX is 255 and the 
QCALMIN is zero. 
 

Prior to Aug. 1983 Prior to 15, Jan, 1984 After 15, Jan, 1984
  mW*cm-2*ster-1*µm-1   mW*cm-2*ster-1*µm-1   mW*cm-2*ster-1*µm-1

Band LMIN LMAX LMIN LMAX LMIN LMAX
TM1 -0.152 15.842 0.000 14.286 -0.150 15.210
TM2 -0.284 30.817 0.000 29.125 -0.280 29.680
TM3 -0.117 23.463 0.000 22.500 -0.120 20.430
TM4 -0.151 22.432 0.000 21.429 -0.150 20.620
TM5 -0.037 3.242 0.000 3.000 -0.037 2.719
TM6 0.200 1.564 0.484 1.240 0.1238 1.560
TM7 -0.015 1.700 0.000 1.593 -0.015 1.438  

 
Table 1. LMAX and LMIN values for Landsat 4 and 5 TM 

(After Markham and Barker, 1986) 
 
3.2 Atmospheric correction 
 

Dark object subtraction (DOS) is perhaps the simplest and 
most widely used image-based relative atmospheric 
correction approach for classification and change detection 
applications (Spanner et al., 1990; Ekstrand, 1994).  
 
 

 
Fig 2.  Methodology flow-chart 

 
FLAASH is a more sophisticated algorithm based on 
MODTRAN that can compensate for atmospheric effects 
more accurately. Input into the FLAASH module includes 
the average elevation of the study area, scene centre 
coordinates, sensor type, flight date and time, and 
information about aerosol distribution, visibility, and water 
vapour conditions. Results shows that pixel spectral 
resolution is improved with FLAASH compared to simple 
DOS (Figures3 and 4). Our classification is based on 
FLAASH atmospheric correction. 
 

 
 

Fig 3. Pixel spectral profile after DOS 
 
 

 



 

 
Fig 4. Pixel spectral profile after FLAASH 

 
 

 
 
 
3.3 Image classification 
 
A prerequisite to classification is image segmentation, which 
is the subdivision of an image into separated regions. Image 
objects resulting from segmentation represent image object 
primitives, serving as information carriers and building 
blocks for further classification or other segmentation 
processes (eCognition User Guide, 2002). During the 
segmentation procedure, image objects were generated based 
on several adjustable criteria of homogeneity such as colour, 
shape, and texture.  
Four broad classes were delineated for classification: Clear-
cut & Agriculture, Forest, Water, and Impervious surface 
(roads, streets, parking lots, buildings). The classification is 
based on the standard nearest neighbour approach. Nearest 
neighbour is a classifier used to classify image objects based 
on a given sample objects within a defined feature space 
(eCognition User Guide, 2002). Numerous sample objects or 
training areas were defined as initial information for the 
classification process. 
 
 

 
 
Fig 5. Original image subset    Fig 6. Classified image subset 
 
In the classified image, red shows impervious surface, sky 
blue is water; green represents forest cover, while grey 
represents clear-cut and agriculture (Fig 6). 
 
3.4 Accuracy assessment 
 
It is important to be able to derive accuracy for individual 
classifications if the resulting data are to be useful in change 
detection analysis. There are a number of ways to do this in 
eCognition; the method used in this study is by generating 
error matrix based on samples. Original samples were deleted 
and new samples declared for the calculation of the error 
matrix.  Table 2 shows the accuracy for the two datasets at 
86% and 88%. 
 

Year 1985 2003 
Overall 
Accuracy 

0.8624 0.8833 

KIA 0.8050 0.8392 
 

Table 2. Results of accuracy assessment 
 

3.5 Change detection 
 
The classified data is used as input image for change 
detection, using the change detection statistics tool in ENVI. 
 
 
 
4. RESULTS AND DISCUSSION 
 
Impervious surface increased in the study area between 1985 
and 2003 by 33% (about 71 square miles) (Table 3). 

 

 
 

Table 3. Change detection statistics (Area in percentage) 
 

Most of the increases in impervious surface occur within or 
around the city limit, as a result of forest cover loss (Fig7) 
and also due to the development of some clear-cut and 
agricultural areas (Fig 8). 
 
 

 
1985                 2003 
 
Fig 7. Forest cover change to mostly urban 
   
 

 
1985                2003 
 
Fig 8. Clear-cut and agricultural land change to mostly urban 
  
However, the resulting overall increase in forest cover (18%) 
and overall decrease in clear-cut and agriculture (-42%) are 
questionable (Table 3).  The increase in forest cover is 
inconsistent with an earlier study by American Forests 



 

(americanforests.org) in the same area between 1985 and 
2001. American Forests concluded that forest cover, 
especially in the Greater San Antonio area, decreased with 
increasing impervious area. Detailed comparison found the 
major error comes from the misclassification of clear-cut and 
agriculture fields of 2003 image as forest cover (Figure  9).  
 

 
2003                    2003 
 
Fig 9. Left is the image, right is the classified result. Typical 
misclassification of agricultural field (grey) as forest (green) 
in the right side image.   
 
The reason is that many cropped agriculture fields in 1985 
was harvested land, fallow land, or even planned area for 
some new sub-divisions in the 2003 image. When we pick 
objects as training sites, we misrepresented them as forest. 
The second reason is that we might need to assign more 
weight to shape or texture than to the pixel value during 
image segmentation, because clear-cut and agriculture lands 
clearly have different shape compare with forest, even 
though they might have similar pixel value ranges. The third 
reason is that we need higher levels of multiresolution 
segmentation. After taking care of the above problems in 
future work, we can expect a reduction in forest cover with 
increasing impervious surface. The observed reduction in 
clear-cut and agricultural lands may also not be as 
significant.  
 
 
5. CONCLUSIONS 
 
This study demonstrated the potential for accurate LULC 
change assessment with advanced atmospheric correction and 
object-oriented image analysis using moderate resolution 
satellite data. Spectral resolution is clearly enhanced with 
FLAASH atmospheric model, thereby enhancing further 
analysis. Classification results show that impervious surface 
increased between 1985 and 2003 by about 33% (71% square 
miles), mostly within and around San Antonio city limits. 
With increasing urban population, increasing impervious 
surface with attendant vegetation loss especially in the 
Greater San Antonio area, will lead to increased atmospheric 
moisture and increased storm water flow; this portends 
significant economic and ecological implications in the near 
future. 
Although the preliminary results in this study appears 
promising, more work is needed to improve classification 
results in eCognition before the proposed method can be 
considered sufficiently reliable in characterizing LULC 
changes in the study area.       
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