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ABSTRACT: 
  
The expansion of urban areas has a negative impact on the environment. The increase of impervious or sealed surfaces is directly 
proportional to this expansion. The estimation of sealed surfaces has often been executed using remote sensing imagery, although 
only on a local to regional scale, using medium and recently available high resolution images like LANDSAT TM and IKONOS. In 
order to develop a global policy and strategy on urban expansion matters, consistent time series of area statistics on urban land use 
on a national and global level will become indispensable. This research explores the possibilities of SPOT VEGETATION imagery, 
with a spatial resolution of 1 km, for urban monitoring in order to generate statistics of sealed surfaces over larger zones. While low 
resolution imagery offers the advantage of covering a large area in small temporal intervals, its spatial resolution is too coarse to 
monitor most urban objects. In order to tackle this problem, a sub-pixel classification was applied and unmixed sealed surface area 
statistics were produced. Endmember selection is a key element in the sub-pixel classification process in which the spectrally 
complex sealed surface class should be distinguished from other general classes. To find the most favourable temporal interval or 
period for endmember selection, several datasets were developed and explored. SPOT-VEGETATION images were acquired in 
summer and winter for Flanders (Belgium). This region is characterised by a highly fragmented urban land-cover and large 
availability of reference data. Spectral unmixing of the multitemporal datasets illustrates that the endmember spectra differs for three 
different endmember selection techniques, affecting the quality of the final sub-pixel classification. The paper argues that the 
unmixing result is more sensitive to the endmember selection technique than to the period of image acquisition. It was found that 
with regard to the tested endmember selection techniques, the Average of Pure Pixels technique gave the best results with an overall 
accuracy of 81 %, while the combined winter/summer image performed better than the individual summer or winter images.  
 
  

1. INTRODUCTION* 

The Earth’s land cover is in constant evolution with urban 
developments continuously expanding world wide. The increase 
of sealed surfaces is one of the main characteristics of this 
expansion and is likely to be sustained due to growing 
population pressure. Keeping up to date with these changes at 
acceptable costs is a necessity for regional planners and 
managers of natural resources. In the past, land cover/use 
information was gathered mainly by field measurements and 
interpretation of aerial photographs. But these approaches are 
labour intensive, require expertise for interpretation and can 
only be applied to relatively small areas. The same is true when 
applying medium to high resolution satellite imagery like 
Landsat TM and IKONOS images to monitor land cover/use. 
The estimation of sealed surfaces has often been executed using 
digital image data of these instruments, although only on a local 
to regional scale (Small, 2003). However, to develop a global 
policy and strategy on urban expansion matters, consistent time 
series of area statistics on urban land cover/use on a national 
and global level will become indispensable. 
  
Although low resolution (LR) imagery, like those provided by 
the SPOT VEGETATION and AVHRR sensors, contains less 
geographical detail, it presents attractive features as they cover 
large areas at short time intervals (Lillesand and Kiefer, 2000). 

                                                                 
* Corresponding author 

In order to produce a land cover/use geodataset, with the 
emphasis on sealed surface identification, the imagery of these 
instruments has to be classified. Typical hard classifiers, such as 
maximum likelihood and parallelepiped operators, mostly do 
not provide satisfactory results because the spatial resolution of 
LR imagery is too coarse to monitor most urban objects. Soft 
classifiers on the contrary are more eligible to deal with LR 
imagery because they recognise, in contrast to hard classifiers, 
that pixels can cover more than one real-world feature or land 
cover/use type (Settle and Drake, 1993). Several methods have 
been proposed to characterize land cover/use at the sub-pixel 
level, including Linear Mixture Models (Verhoeye and De 
Wulf, 2000; Lu and Weng, 2004), Artificial Neural Networks 
(Paola and Schowengerdt, 1995; Swinnen et al., 2001), Fuzzy 
Classifiers (Zang and Foody, 2001), Maximum Likelihood 
Classifiers (Häme et al., 2001), Hierarchical Linear Unmixing 
(Newland, 1999) and Support Vector Machines (Brown et al., 
1999). 
  
The work presented here will make use of the Linear Mixture 
Model, assuming that the spectral response recorded for a pixel 
is a linear combination or mixture of pure spectral responses of 
the objects present in the pixel. These pure spectral responses 
are called endmembers. Once the present classes and their 
spectral responses are known, the contribution of these 
endmember spectra to the overall spectral signature of the pixel 
and, ultimately, their fraction within the pixel area, can be 
estimated. Following this ‘unmixing’ approach, a.o. Settle and 
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Drake (1993), Verhoeye and De Wulf (2000) and Lu and Weng 
(2004) have shown that it is possible to estimate the area 
proportion of different features or land cover/use types within 
single pixels of satellite imagery. According to Van Der Meer 
and De Jong (2000), the endmember selection is a key element 
in this sub-pixel classification process. The aim of this research 
is to explore the possibility of linearly unmixing SPOT 
VEGETATION imagery to obtain area statistics of sealed 
surfaces over a large area. Herewith emphasis is on the 
identification of the spectrally complex sealed surface class with 
respect to other classes and on the investigation of the effect of 
the period of image acquisition and the endmember selection 
technique.    
 
 

2. STUDY AREA AND DATA 

The northern part of Belgium, including the regions of Flanders 
and Brussels, with a total area of 13682 km2 was selected for 
the unmixing analysis. This area is characterised by a highly 
fragmented land cover, with cities interconnected by a dense 
road network along which ribbon development is pertinently 
present (Ministerie van de Vlaamse Gemeenschap, 1998). 
  
The VEGETATION instrument is a large scale Earth 
observation sensor with a resolution of 1000 m * 1000 m on 
board of both the SPOT 4 and the SPOT 5 satellite with a field 
of view of 2200 km and gathers information in 4 spectral bands 
(blue, red, NIR and SWIR). A summer and winter 10-daily 
synthesis (S10) image of the VEGETATION instrument were 
selected from the year 2001 and downloaded for free from the 
webpage http://free.vgt.vito.be/. An S10 image is composed by 
10 daily-taken VEGETATION images. The composition is 
based on the highest Normalized Difference Vegetation Index 
(NDVI) for every pixel to remove possible cloud pixels, which 
generally have low NDVI values (Ledwith, 2002).  
 
The reference data used for the endmember selection and 
validation process is an available land cover/use geodataset 
produced by the governmental organization OC GIS-
Vlaanderen, with resolution of 15 m * 15 m and a K-statistics of 
0.88. The geodataset has been derived from two Landsat images 
and ancillary vector data of 2001, covering the entire study area. 
(OC GIS Vlaanderen, 2001). 
 
 

3. METHODOLOGY 

3.1 Data preparation 

The summer and winter VEGETATION images were clipped to 
the study area and geographical transformed from Plate Carrée 
to the national Lambert conformal conical coordinate system of 
Belgium. The cloud pixels around the coastal zone, i.e. the 
“coastal ring”, caused by the synthesis procedure of the S10 
images were masked, using the land borders of the reference 
image. Both images had an error in the form of white stripes in 
the MIR-band, due to blind/or aberrant MIR detectors (Ledwith, 
2002). This error, together with the noise from the other bands, 
was removed in the final stage of the data preparation by means 
of the minimal noise fraction (MNF) transformation. 
 
MNF transformation projects the original image in a space 
where the new components are sorted in order of signal to noise 
ratio (Green et al., 1988; LU and Weng, 2004). Its procedure 
consists of a combination of two principal component analyses 

(PCA), rotating the original coordinate system such that most of 
the variation in the data is found along a limited number of 
axes. The first PCA de-correlates and rescales the noise in the 
data based on an estimated noise covariance matrix established 
under the assumption that the spatial autocorrelation of the 
signal is high compared to the noise’s one. The second step is a 
standard PCA of the noise-whitened data resulting in a two-part 
dataset, one part associated with large eigenvalues and coherent 
eigenimages, and a second part with near-unity eigenvalues and 
noise-dominated images. The MNF transformation was applied 
to the summer, winter and a stacking of the summer and the 
winter image. The single and combined period datasets resulted 
in eigenvalues bigger than unity for the first 3 and respectively 
4 MNF bands, leaving the apparent noise in the other bands. 
The latter were excluded from the endmember selection and the 
linear unmixing procedure.   
 
3.2 Linear unmixing 

Assuming that the signal received at the sensor is composed of a 
linear mixture of pure-element reflections (endmembers) 
coming from different land cover/use types, the general linear 
unmixing equation for one pixel can be written as follows:  
 
 

 efMx += *                (1) 
 
 
with the column vector x = [x1,…,xn]

T to denote the MNF 
transformed reflectance values of the spectral bands (n) of a 
VEGETATION-pixel; the column vector f = [f1,…,fc]

T to 
denote the proportions of area within each pixel occupied by 
each of the land cover/use types (c). Each column of the matrix 
M is the endmember spectrum of one pure land cover/use class 
and e is an observation error, both expressed in MNF values 
(Settle and Drake, 1993). The area fraction (f) is estimated for 
each pixel such that: 
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Before applying this linear programming problem using the 
Matlab optimization toolbox (Grace, 1999), the endmember 
spectra were to be estimated. 
  
3.3 Endmember selection 

Because the final goal is to generate area statistics on sealed 
surfaces, the two broad category endmembers “sealed” and 
“non-sealed” were selected as endmembers. This implies that 
the condition of identifiability for equation (1) is met since the 
number of land cover/use types (c=2) is smaller than the 
number of MNF spectral bands (n=3 or n=4). To estimate the 
MNF band values for these endmembers, three estimation 
techniques were applied. They each made use of the reference 
geodataset from which area fractions of the sealed and non-
sealed classes were generated in a 1000 m resolution grid. In 
order to reserve part of the reference data for validation, a 
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suitable number of training pixels was determined by comparing 
the endmember spectra for a different number of pixels out of 
the reference geodataset. The lowest percentage for which the 
endmember spectra were comparable with those generated with 
all reference data, was selected. A short explanation of the three 
used endmember estimation techniques is given below. 
 
3.3.1 Reversed Linear Mixture Model (RLMM): Giving the 
area fractions derived from the reference geodataset, the 
corresponding endmember spectra were estimated by reversing 
the linear mixture equation (1) (Verhoeye and De Wulf, 2000):  
   
 

( ) XFFFM TT ***
1−

=   (3) 
 
 
with 
M = Matrix with the endmember spectral values 
F = Matrix with the area fractions derived from the reference 
geodataset 
X = Matrix with the MNF values derived from the spectral 
reflectance values of the original VEGETATION image. 
 
3.3.2 Average of Pure Pixels (APP): Based on the area 
fractions from the reference geodataset, all pixels with an 
endmember fraction exceeding 0.95 were selected. The 
corresponding MNF spectra were averaged for both the sealed 
and non-sealed class to find the endmember spectra of these 
“pure” pixels (Quarmby et al., 1992; Foody and Cox, 1994).  
 
3.3.3 Weighted average over all pixels (WA): By multiplying 
the area fraction for the sealed endmember class, derived from 
the reference geodataset, with the corresponding values of the 
MNF bands and averaging these values over the total reference 
sealed area of the trainings pixels, a weighted average of the 
MNF values was calculated. The same process was applied for 
the non-sealed endmember. This WA method, adopted from 
Genovese et al. (2001), can be used as an estimation of the 
sealed and non-sealed endmembers and is illustrated in Figure 1 
for two pixels and two land use classes A and B. 
 
 

 
 
Figure 1. Illustration of the WA endmember selection technique 
 
Hence, three techniques for endmember estimations are used to 
linearly unmix the MNF-transformed datasets of the three 
different time periods, with the final aim to generate area 
fraction indices (AFI’s) for both ‘sealed’ and ‘non-sealed’ land 
cover over the entire study area. 
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(b) 

Endmember 'NON-SEALED' for three 
endmember selection techniques 
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Figure 2. The sealed (a) and non-sealed (b) endmember spectra 

for the Summer image 
 
 

4. RESULTS AND DISCUSSION 

The first step in the linear unmixing procedure is the estimation 
of the endmember spectra, expressed in MNF values. A 
graphical representation of the sealed and non-sealed 
endmember for the summer image as estimated by the RLMM, 
APP and WA technique is given together with their calculated 
standard deviation in Figure 2. It was found that for all 
techniques, 20% of the total training pixels had to be used for 
representative endmember spectra estimations. It is apparent 
when comparing Figure 2a with Figure 2b that the endmembers 
sealed and non-sealed can be differentiated in all bands with all 
techniques. While the non-sealed endmember estimations result 
in similar values for the three techniques, the sealed endmember 
spectra derived with the WA method differs from the other 
techniques. This is because the relative large amount of mixed 
pixels, in comparison to the small number of pure sealed pixels, 
has mutually a big influence when a simple weighted average is 
applied. 
 
A linear unmixing procedure was performed to obtain a sub-
pixel classification for every endmember selection technique. 
Before assessing the regional and the individual pixel 
performance of the sub-pixel classification, a two way ANOVA 
was executed on the difference between the reference and the  

A A 
B 

B 

MNF Value: 
 
 
Weighted MNF 
Value: 
 
Average weigthed 
MNF Value: 

4 6 

A: 2 B: 9/2 A: 3/2 B: 2 

B: 26/5 
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Endmember 
selection 
technique 

Period of 
acquisi-
tion n 

Total 
sealed 
(km2) 

Difference 
with 

reference 
data (km2) 

Difference 
with 

reference 
data (%) 

RLMM Summer 2850 768 37 
APP Summer 2218 136 7 
WA Summer 4746 2664 128 

RLMM Winter 3063 981 47 
APP Winter 2302 220 11 
WA Winter 5207 3125 150 

RLMM Winter & 
Summer 2855 773 37 

APP Winter & 
Summer 2059 -23 -1 

WA Winter & 
Summer 4914 2832 136 

 
Table 1. The sum of all estimated sealed AFI’s and the 

difference with the total reference sealed area, i.e. 
2082 km2 

 
calculated AFI’s with both the endmember selection techniques 
and the date of image acquisition as independent variables. It 
was found that both variables have significant influence on the 
outcome. 
  
A regional analysis of the estimation results is done by 
calculating the total estimated sealed area fraction and its 
difference with the total reference sealed area, i.e. 2082 km2, as 
shown in Table 1. A first look on Table 1 reveals that the 
differences between the periods of data acquisition are not as 
big as the differences between the endmember selection 
techniques. The APP technique provides a good estimation of 
the total sealed area while the RLMM and WA methods 
perform badly, and this for all periods. This can be explained by 
the location of the sealed endmember spectrum in feature space 
(Gebbinck, 1998). When the MNF bands are plotted for the 
whole study area, it is found that the APP derived sealed 
endmember is situated close to the vertices of the feature space, 
while the other techniques position the sealed endmember at a 
distance from these vertices. The variation of the difference 
between the unmixed and the reference geodataset among the 
periods of acquisition (summer, winter, winter/summer) 
indicates a better result for the summer than for the winter  
 
 

Endmember 
selection 
technique 

Period of 
acquisition 

Sum of all 
differences 

(km2) 

Average 
difference 

(km2) 
RLMM Summer 1915 0.13 

APP Summer 1650 0.12 
WA Summer 3795 0.27 

RLMM Winter 2128 0.15 
APP Winter 1750 0.12 
WA Winter 4234 0.30 

RLMM Winter & 
Summer 1910 0.13 

APP Winter & 
Summer 1568 0.11 

WA Winter & 
Summer 3950 0.28 

 
Table 2. The sum of the absolute and the average differences 

between the calculated and reference AFI’s 

period. This and the fact that the best result is generated for the 
combined winter/summer dataset might be explained by the 
appearance of bare soil in the study area. More agricultural 
areas are left under bare soil during wintertime than during the 
summer, which may explain the larger overestimation of the 
sealed cover due to the spectral similarity of bare and sealed 
soil. To the contrary, the combined response of those bare soils 
over both seasons differs sufficiently from the sealed cover 
types, having a time-independent response. However, no 
definitive conclusion should be drawn from Table 1 because 
individual estimation error is expected to be present in each 
pixel.  
 
To have a better idea on the individual performance of each 
pixel on the estimation of the fraction sealed in its area, the 
calculated AFI’s are compared with the reference AFI’s for each 
pixel individually. This is done in an absolute way, so the effect 
of negative and positive differences compensating for each 
other is discarded. The sum of all these absolute differences and 
their average difference are given in Table 2. The average 
difference calculated here is related to the Mean Absolute Error 
(MAE) (Swinnen et al., 2001), in the sense that it is the MAE 
divided by 2. The average difference per fraction of 10 % sealed 
soil was also calculated and presented in Figure 3 for the APP 
endmember selection technique. The fact that the sum of all 
differences in Table 2 is a big number in comparison to the 
corresponding values of Table 1 indicates that the compensating 
effect of negative and positive differences over the whole image 
is important.  Figure 3 reveals that this difference depends on 
the heterogeneity of the pixels. Pixels with small (0-10) and 
high (90-100) fractions of sealed soil are better estimated for all 
periods than the severely mixed pixels do. Starting from small 
percentages of sealed soil cover, the average difference 
increases in value until the percentage reaches 70-80% and then 
drops again. The fact that a small value is found when the 
difference for all pixels is averaged (Table 2), can be explained 
by the high number of pixels with a low percentage of sealed 
cover. 
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Figure 3. Average difference per fraction of 10 % sealed soil for 

the APP endmember selection technique 
 
Apart from the numerical validation of the unmixing procedure 
stands the geographical representation of the final result, i.e. the 
sealed sub-pixel classification. The reference sealed AFI image 
(a), together with the sealed AFI image calculated with the APP 
endmember technique for the winter/summer period 
combination (b) are given in Figure 4. The calculated area 
fraction classification of the sealed surface in the study area
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(a) 

 
(b) 

 

Sealed AFI value 
 

 

 
Figure 4. Sub-pixel classification at 1 km2 resolution: The reference sealed AFI image (a), and the calculated sealed AFI image of the 

APP endmember technique and summer/winter period combination 
 
does fairly well represent the actual (reference) situation, with a 
good visualisation of the big urban agglomerations. However, a 
difference map revealed that there is a clear overestimation of 
the sealed surface in the south-eastern and western coastal 
regions, were large areas of agricultural areas and bare soil are 
present. Also smaller cities scattered around in the study area 
appear to be underrepresented.  
 
As a final quality assessment of the sub-pixel classification, a 
cross-comparison was made between the two images of Figure 
4. To deal with the fuzzy character of the classification, all 
differences within a margin of 10% were set to be correctly 
classified. This resulted in an overall accuracy of 81%, which 
confirms the visual correspondence between the calculated and 
reference image. 
 
To compare the results of the sub-pixel classification with a 
traditional hard classification, a parallelepiped classification 
was performed on the winter/summer dataset, resulting in sealed 
surface estimation of 1516 km2 for the whole regional sealed 
area. While the big urban agglomerations appear as 100% 
sealed surface in the hard classification, the smaller cities in the 
study area are not detected as being sealed. The fact that a great 
amount of such small cities, interconnected with ribbon 
development, are present leads to the calculated 
underestimation of sealed soils in the study area. This analysis 
shows that a sub-pixel classification of VEGETATION imagery 
to study sealed surface is more appropriate than a hard 
classification. 
 
 
 
 
 

5. CONCLUSION AND FURURE WORK 

In order to obtain area statistics of sealed surfaces over a large 
area, LR satellite imagery (SPOT VEGETATION) was linearly 
unmixed, and the effect of the period of image acquisition and 
endmember selection technique was investigated. It was found 
that the final result was more sensitive to the endmember 
selection technique than to the period of image acquisition and 
that the Average of Pure Pixels technique (APP) resulted in the 
best AFI estimations. The bias with respect to the period of 
image acquisition may be explained by the presence of bare 
soils, spectrally similar to sealed surfaces. This problem is more 
pertinent in winter time but does not disappear during summer. 
A combination of winter/summer image together with the APP 
endmember selection technique appeared to be the best 
alternative. Looking at each pixel individually, the estimations 
have an average error of ± 0.1 km2, but increases to a maximum 
of ± 0.25 km2 when the heterogeneity of the pixel increases. 
The calculated area fraction classification of the sealed surface 
in Flanders and the district of Brussels represents the actual 
(reference) situation fairly well. This is confirmed with the 
calculation of the overall accuracy, which is 81 % for the APP 
endmember selection technique and winter/summer period 
combination.  
 
Future work should focus on the endmembers present in LR 
satellite imagery, the parameters involved in their selection and 
on other, including non-linear, unmixing methods. Also the 
usability of the calculated endmembers for extension in both the 
temporal and spatial domain and the use of other LR satellite 
imagery like MODIS and AVHRR should be investigated. 
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