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ABSTRACT: 
 
Commercially available high-resolution satellite imagery from sensors such as IKONOS and QuickBird are important data sources 
for a variety of urban area applications including infrastructure feature extraction and land cover mapping.  Land cover maps from 
medium and high-resolution imagery are typically generated through supervised spectral classification of multispectral imagery.  
Supervised classification algorithms require training data as input and are thus semi-automated approaches.  However, by automating 
the generation of training data, these supervised classifiers can be utilized in a fully automated, or self-supervised fashion to perform 
urban land cover classification.  In this paper, we present a self-supervised approach for fully automated urban land cover 
classification of high-resolution satellite imagery.  Automated feature extraction techniques are utilized to generate training data that 
are then input into supervised classification algorithms, thereby producing a self-supervised urban land cover classifier.  These 
feature extraction techniques do not seek to extract all features present in the imagery.  Instead, they are used to identify very high 
confidence instances of the different urban land cover classes.  In this way, we limit the amount of incorrect training data that is input 
into the classifier.  Because labeled training data is generated internally by the system, this classification approach is referred to as 
self-supervised.  Self-supervised classification systems differ from unsupervised classifiers in that unsupervised classifiers output an 
unlabeled classification, requiring further analysis to determine the class labels, whereas the output of a self-supervised classifier is a 
labeled classification.  Initial test results indicate that the overall accuracy of the self-supervised classification is 87-93%.  There is 
only a 2% increase in overall accuracy when manually supervised classification is performed on the same test site. 
 
 

1. INTRODUCTION 

High-resolution satellite imagery became commercially 
available in late 1999 with the launch of Space Imaging’s 
IKONOS satellite.  In subsequent years, several other high-
resolution commercial satellites were launched (DigitalGlobe’s 
QuickBird and ORBIMAGE’s OrbView-3).  The spatial 
resolution and spectral information provided by these sensors 
make them well-suited for urban area applications.  In 
particular, the high spatial resolution (0.6 – 1 m) allows for the 
delineation of fine-scale features in the urban environment, such 
as individual roads and buildings, which is not possible when 
utilizing imagery from medium resolution sensors (e.g. 
Landsat).  The large volume of data collected by these sensors 
exceeds the human capacity of training image specialists to 
analyze.  Currently, there are several additional high-resolution 
satellite sensors in the developmental stage, and when they 
become operational the problem will be further exacerbated.  
Automated upstream processing is needed to exploit the vast 
quantities of high-resolution commercial satellite imagery 
available from current and next generation sensors. 
 
The generation of urban land cover maps from remote sensing 
imagery is typically accomplished through the use of supervised 
classification techniques, such as maximum likelihood.  
Supervised classification techniques require human generated 
training data and are thus only semi-automated.  However, if the 
generation of training data is automated, supervised classifiers 
can be utilized in an unsupervised, or self-supervised fashion to 
perform urban land cover classification.  In this paper, a fully 
automated approach for classification of urban land cover is 
presented.  Feature extraction techniques are utilized to generate 
training data that are then input into the supervised 

classification algorithms, thereby producing a self-supervised 
urban land cover classifier.  These feature extraction techniques 
do not seek to extract all features present in the imagery.  
Instead, they are used to identify very high confidence instances 
of the different urban land cover classes so as to minimize the 
amount of incorrect training data input into the classifier.   
 
 

2. FULLY AUTOMATED TRAINING DATA 
GENERATION 

Utilization of classification algorithms in an unsupervised or 
self-supervised fashion requires that the training data be 
generated automatically.  Fully automated feature extraction 
techniques are used for this purpose.  Because our goal here is 
to generate training data, not produce a complete extraction of 
the features of interest, the correctness of the extracted features 
is much more important than the completeness of the features.  
If incorrectly extracted features are used as training data, the 
errors will propagate through the classification process and lead 
to poor classification accuracies.  The only concern in terms of 
the completeness of the extracted features is that a 
representative sample of the different spectral and spatial 
characteristics of the feature classes are obtained from the 
extraction.  The strategy adopted here for generating training 
data for each urban land cover class is to output a fuzzy 
membership value for each extracted feature.  The membership 
value represents a confidence level that the extracted feature is a 
valid member of the particular land cover class.  Using these 
membership values, features with high confidence are selected 
and used as training data for each land cover class. 
 



 

The urban land cover classes used in this study are: Road, 
Building, Grass, Tree, Water, and Shadow.  To generate 
training data for the Road, Building, and Shadow classes, the 
automated feature extraction algorithms described in 
(Shackelford and Davis, 2003a; Shackelford and Davis, 2004) 
have been modified to output confidence values for each of the 
extracted features.  The training data for the vegetation classes 
are generated by first identifying vegetation areas in the image 
with the NDVI (Jenson, 1996), followed by texture analysis to 
discriminate between Grass and Tree land cover classes.  
Confidence values are then assigned to the identified vegetation 
pixels.  Training data for the Water class are generated through 
analysis of the DMP and the NDVI.  The training data 
generation for each of the urban land cover classes is discussed 
in greater detail in the following subsections. 
 
2.1 Road Training Data Generation 

The fully automated road network extraction algorithm 
presented in (Shackelford and Davis, 2003a) was modified to 
output a fuzzy membership value for each extracted road, 
indicating the level of confidence in the validity of the extracted 
road.  The road network extraction algorithm is an iterative 
process that first identifies and then grows road segments using 
several features extracted from the imagery and knowledge of 
the general characteristics and topology of a road network.  
Roads are initially identified as long linear segments of non-
vegetation pixels, with longer segments having a higher 
confidence as being part of the road network than segments with 
short length.  The algorithm begins by examining the longest 
length line segment present in the imagery, progressing to 
smaller length line segments as it iterates.  Once a potential road 
segment has been identified, the algorithm examines the 
endpoints of the line segment and attempts to track the segment 
through small gaps and around curves in the road network.  As 
road segments are iteratively added to the road network, a 
buffer is set up around them to exclude any line segments that 
are similar in angle and close to previously identified road 
network segments.  This helps avoid overestimation of the road 
network and also eliminates multiple responses originating from 
a single road.  The algorithm continues to iterate, adding new 
line segments to the road network until no line segments larger 
than a minimum length can be found. 
 
The fuzzy membership confidence values are based on the 
length of the initial line segment detected for each road and the 
percentage of non-vegetative pixels present in the extracted 
road, as measured by the NDVI.  Roads consisting of long line 
segments and low percentages of vegetation receive high 
confidence values.   
 
2.2 Building and Shadow Training Data Generation 

The fully automated 2-D building footprint extraction algorithm 
presented in (Shackelford and Davis, 2004) has been modified 
to output confidence values for the extracted building footprints 
and shadows.  The building extraction algorithm is based on a 
multi-detector fusion strategy where buildings and their 
shadows are extracted from the Differential Morphological 
Profile (DMP) of panchromatic imagery and a segmentation of 
the pan-sharpened multispectral imagery.  The DMP is a multi-
scale image analysis technique where a morphological profile of 
the image is constructed through the use of morphological 
opening and closing by reconstruction operations while varying 
the size of the structuring element (SE) (Pesaresi and 
Benediktsson, 2001; Vincent, 1993).  The DMP provides 
information about both the size and contrast of multi-scale 

structures in the image, with bright structures having a strong 
response in the opening portion of the DMP and dark structures 
having a strong response in the closing portion of the DMP.  A 
multi-detector fusion approach is utilized for building extraction 
to accommodate the spatial and spectral variability in the 
appearance of urban buildings in high-resolution imagery. 
Buildings with a bright spectral response are extracted from the 
opening portion of the differential profile, while shadows are 
extracted from the closing portion of the differential profile.  
The extracted shadows are used to define search areas where the 
presence of buildings is likely.  The search areas are then 
overlaid onto a segmentation of the multispectal imagery to 
identify building objects.   
 
Fuzzy membership confidence values are computed for each 
extracted building footprint and shadow based on the geometric 
properties of the extracted objects.  Building objects with 
rectangular shape and area similar to typical urban area 
buildings receive high fuzzy confidence values. 
 
2.3 Vegetation Training Data Generation 

Training data for the Grass and Tree classes are generated using 
the NDVI statistic in conjunction with the first order entropy 
texture measure (Gonzalez and Woods, 2002).  First, the NDVI 
is used to identify pixels with vegetative land cover.  Then, the 
entropy texture measure is utilized to identify high confidence 
instances of Grass and Tree from within the pixels identified as 
containing vegetative land cover.  The first order entropy 
texture measure is calculated using an 11x11 pixel window.   
Pixels with both high NDVI values and high entropy values 
receive large membership values in the Tree class, whereas 
pixels with high NDVI values and low entropy values receive 
large membership values in the Grass class. 
 
2.4 Water Training Data Generation 

While the appearance of different bodies of water such as rivers, 
streams, lakes, and ponds varies significantly in high-resolution 
imagery, if one of these types of water bodies can be 
automatically identified, the extracted pixels can be used to train 
the classifier.  Of the above-mentioned water body types, small 
lakes and ponds have the least variability in appearance, 
typically appearing as large, dark compact objects with no 
vegetation present.  Objects fitting this profile are easily 
identified in the closing differential profile.  Confidence values 
are computed based on the strength of the DMP response, the 
amount of vegetation present in the object, and the area of the 
object. 
 
2.5 Training Data Generation 

The fully automated feature extraction algorithms described 
above output a fuzzy confidence value for each extracted 
feature.  Extracted features with high confidence values, 
indicating valid features, are utilized as training data, and the 
rest of the extracted features are discarded.  This is 
accomplished by thresholding the fuzzy confidence value of 
each extracted feature.  The thresholds are chosen such that they 
produce training data that is both accurate and representative of 
the variability within each land cover class.  The training data 
generated for the Road and Building classes in a dense urban 
area, as well as the fuzzy confidence values for the extracted 
features, are shown in Fig. 1.  The training data generated for 
the Grass and Tree classes for an area with suburban land cover, 
as well as the fuzzy confidence values for the extracted features, 
are shown in Fig. 2. 



 

3. SELF-SUPERVISED URBAN LAND COVER 
CLASSIFICATION 

Once high confidence instances of each urban land cover class 
have been identified, this data can then be utilized to train a 
supervised classification system.  Because labeled training data 
is generated internally by the system, systems of this type can 
be referred to as self-supervised.  Self-supervised classification 
systems differ from unsupervised classifiers in that 
unsupervised classifiers output an unlabeled classification, 
requiring further analysis to determine the class labels, whereas 
self-supervised classifiers output a labeled classification.  The 
supervised classification scheme utilized here follows that 
described in (Shackelford and Davis, 2003b, Shackelford and 
Davis, 2003c), where the data is passed sequentially through 
three classifiers: a maximum likelihood classifier, followed by a 
pixel-based fuzzy classifier, and finally an object-based fuzzy 
classifier.  A brief summary of the fuzzy classification 
approaches is provided below. 
 
3.1 Supervised Fuzzy Classification 

Due to the large numbers of spectrally similar land cover types 
present in the urban environment, traditional classification 
approaches such as maximum likelihood often result in 
significant numbers of misclassifications, especially between 
the Road and Building classes, and the Grass and Tree classes.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By utilizing spatial features in addition to the spectral 
information, the fuzzy pixel-based classifier is able to more 
accurately classify high-resolution imagery of urban areas.  This 
classifier uses the results of an initial maximum likelihood 
classification of the imagery to group the classes where 
significant misclassifications occur together into sets.  
Subsequent processing using spatial features is then performed 
to differentiate between the spectrally similar classes.  This 
approach allows for different groups of classes to be classified 
using the features best suited for discrimination between those 
classes.  This alleviates the problem of features simultaneously 
decreasing the confusion between one set of classes and 
increasing it for another set.   
 
The fuzzy pixel-based classification technique is significantly 
more accurate than maximum likelihood classification.  
However, more detail is needed to accurately represent the land 
cover types present in dense urban areas. A non-road, non-
building Impervious Surface class is also needed to represent 
features such as parking lots, concrete plazas, etc.  To 
distinguish between these urban land cover classes, an object-
based classification approach is used to examine features such 
as object shape and context (neighborhood) and then classify 
the image objects using a fuzzy logic rule base.  To facilitate 
object classification, the imagery is first segmented with a 
region merging segmentation technique.  Several features are 
extracted from the image objects and used by the object-based 
classifier along with the fuzzy pixel-based classification.  These 
features are the class labels of each segment’s constituent 
pixels, shape information from the image objects, neighborhood 
analysis, and spectral statistics of the object.  A shape model for 
the Building class, based on the skeleton of the image objects, is 
constructed using fuzzy membership functions, and the 
neighborhood analysis consists of examining the relationship 
between Building and Shadow segments.  The image objects are 
then classified by a fuzzy logic rule base. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Automatically generated training data 
from a) dense urban area for b) Road class, and c) 
Building class.  Training data shown in red, high 
confidence features shown in dark gray, and low 
confidence features shown in light gray. a) 

b) c) 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Unsupervised Clustering 

Because of spectral variation within individual land cover 
classes, it is necessary to train the supervised classifier on 
multiple sub-classes within each urban land cover class.  
Following classification, the sub-classes from each land cover 
class are combined.  To accommodate within class spectral 
variation, the automatically generated training data from each 
class is divided into sub-classes via unsupervised clustering 
before maximum likelihood classification is performed.  After 
maximum likelihood classification, the sub-classes are 
combined into the urban land cover classes of interest and the 
classification process continues through the fuzzy pixel-based 
and object-based approaches.  Unsupervised clustering is 
performed utilizing the standard k-means clustering algorithm 
(Theodoridis and Koutroumbas, 1999). 
 
 

4. TEST RESULTS 

The fully automated self-supervised classification scheme was 
applied to an IKONOS image of Columbia, Missouri.  The test  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
site is shown in Fig. 3 and consists primarily of dense urban 
land cover.  An accuracy assessment of the resulting 
classifications was performed making use of reference pixel 
datasets.  Accuracy assessments were performed for each of the 
classification outputs (maximum likelihood, fuzzy pixel, and 
fuzzy object) produced by the self-supervised classification 
scheme.  The individual class accuracies and the overall 
classification accuracy for each output, as well as the 
corresponding results from the semi-automated supervised 
classifiers requiring human input of the training data, are 
displayed in Tables 1 through 3.    
 
 
 
 
 

Table 1 
Accuracies of Maximum Likelihood Classifications 

 
 Supervised 

(%) 
Self-Supervised 

(%) 
Road 84.4 80.2 

Building 83.1 63.7 
Grass 92.8 93.8 
Tree 83.5 91.9 

Overall 
Accuracy 85.9 82.4 

 
 
 
 
 
 
 
 

Figure 2.  Automatically generated training data 
from a) residential area for b) Grass class, and c) 
Tree class.  Training data shown in red, high 
confidence features shown in dark gray, and low 
confidence features shown in light gray. 

a) 

c) 

b) 



 

Table 2 
Accuracies of Fuzzy Pixel-Based Classifications 

 
 Supervised 

(%) 
Self-Supervised 

(%) 
Road 97.9 97.2 

Building 90.7 93.2 
Grass 94.5 100.0 
Tree 96.2 79.6 

Overall 
Accuracy 94.8 92.5 

 
 

Table 3 
Accuracies for Fuzzy Object-Based Classifications 

 
 Supervised 

(%) 
Self-Supervised 

(%) 
Road 99.2 95.0 

Building 76.1 70.1 
Imp. Surf. 81.0 72.2 

Grass 91.3 100.0 
Tree 99.9 99.1 

Overall 
Accuracy 89.5 87.4 

 
 
For each of the classifier outputs, the overall accuracy of the 
fully automated self-supervised classification is only 2-3% 
lower than that of the semi-automated supervised classification.  
There is a significant decrease in the Building class accuracy of 
approximately 20% between the self-supervised and manually 
supervised maximum likelihood classification, as can be seen in 
Table 1.  This is due to over classification of the Road class.  
However, the problem is solved by the hierarchical fuzzy pixel-
based classification stage, where the average accuracies of the 
Road and Building classes exceed that of the manually 
supervised classification.  There is a 17% decrease in the Tree 
class between the manual and self-supervised fuzzy pixel-based 
classification due to over classification of the Grass class.  This 
error is unexpected and believed to be due to the fact that all of 
the automatically generated training data for the Tree class is 
extracted from highly textured areas.  While appropriate for the 
majority of this class, there are areas within the Tree land cover 
class that are not highly textured, possibly due to trees with very 
large and homogeneous crowns.  Because the texture of these 
instances of Tree land cover matches that of Grass, they are 
misclassified.  The problem of misclassification of Tree 
reference pixels as Grass is solved in the object-based stage of 
the self-supervised classification. As seen in Table 3, the self-
supervised classifier produces a classification with virtually no 
errors in the reference data of the vegetative classes.  The 
object-based classifier is able to correct this problem because 
the proportions of each class present in the object are used as 
features, resulting in a majority filtering type operation within 
the object.  The regions where Tree land cover are incorrectly 
identified as Grass in the self-supervised pixel-based 
classification are all quite small and are removed by the 
majority filtering effect of the object-based classifier.  
 
There are 4%, 6%, and 9% decreases in the accuracies of the 
Road, Building, and Impervious Surface class accuracies, 
respectively, between the semi-automated and self-supervised 
object-based classifiers.  It is believed that the decrease in the 
accuracy of the Building and Impervious Surface classes is 
partially due to errors in the classification of the Shadow class, 

which is used in the identification of the Building class.  The 
self-supervised fuzzy object-based classification of the urban 
test site is shown in Fig. 4.  
 
 

5. CONCLUSION 

A fully automated self-supervised classification approach for 
urban land cover classification of high-resolution multispectral 
satellite imagery is presented in this paper.  The classifier is 
based on supervised classification approaches presented in 
(Shackelford and Davis, 2003b, Shackelford and Davis, 2003c).  
However the training data is automatically generated using 
feature extraction techniques that identify high confidence 
instances of the urban land cover features.  The automated road 
network and 2-D building footprint extraction algorithms 
described in (Shackelford and Davis, 2003a; Shackelford and 
Davis, 2004) have been modified to output a fuzzy confidence 
value for each extracted feature.  Other spatially and spectrally 
based feature extraction algorithms have been developed to 
identify training data for the other urban land cover classes.  
After feature extraction and selection of high accuracy training 
data, the extracted features are subdivided into spectrally 
coherent sub-classes by unsupervised spectral clustering.  The 
training data are then used to train a maximum likelihood 
classifier, followed by the hierarchical fuzzy pixel-based 
classifier, and finally the object-based classifier.  Test results 
indicate that the self-supervised classification approach is able 
to produce urban land cover maps with overall accuracies that 
are only 2-3% less than that of the semi-automated supervised 
classifiers that require human input of training data. 
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Figure 3.  Pan-sharpened multispectral IKONOS 
image of dense urban area. 

Figure 4.  Self-supervised object-based classification 
of dense urban area test site. 


