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ABSTRACT

The differential morphological profile (DMP) can be used for automated extraction of multi-scale urban features, such as
buildings, shadows, roads, and other man-made objects. However, characterization of urban features using the DMP is
complicated by the fact that some objects will have response at multiple-scales within the DMP. This makes robust and
efficient object indexing and retrieval difficult for large-scale remote sensing image databases utilized in the defense and
intelligence communities. To address this issue, in this paper we present a novel approach called Multi-scale Extraction of
Morphological Objects (MEMO),which is fully automatic and unsupervised. MEMO contains two processing modules for
identifying urban objects: (1) Top-down object fusion: multi-scale objects from both morphological closing and opening
profiles with certain topological relationships (TR), such as overlap, equal, and inside, will be selected for candidate
objects and placed in the candidate pool. (2) Knowledge-based filtering: objects of the DMP are refined and filtered using
information present in the original panchromatic image, spectral information of the scene, and the processed DMP. For
example, areas of vegetative land cover are filtered out reducing the false labelling of tree clusters and fields candidate
objects. Additionally, size and shape analysis of candidate objects can further eliminate possible false object extraction.
The efficiency of our algorithm makes it applicable to large-scale object indexing and retrieval.

1 INTRODUCTION

Recent advances in the quality of satellite imagery and
the desire to analyze this data has spurred the develop-
ment of new image processing techniques for object ex-
traction. There are many applications for which it is use-
ful to be able to efficiently extract individual objects from
a scene for the purpose of spatial analysis and object re-
trievals from large-scale image databases. Items of in-
terest include man-made structures such as buildings and
roads. The techniques used for such analysis employ var-
ious methods to appropriately segment an image to high-
light the relevant information of the scene.

Prominent techniques in object extraction from remote sens-
ing images include the approaches presented in (Salembier
and Pardas, 1994, Stilla et al., 2003, Shackelford et al.,
2004, O’Callaghan and Bull, 2005). These approaches
roughly fall into two categories: edge-detection approaches
or region analysis approaches (Benediktsson et al., 2003).
Among the region analysis approaches, the Differential Mor-
phological Profile (DMP) (Persaresi and Benediktsson, 2001)
draws much attention recently. DMP is a multi-scale image
processing algorithm that employs a combination of mor-
phological operators and derivatives of the resulting mor-
phological profile. A multi-scale approach is required for
two reasons. For the general case of object extraction, it
is impossible to assume that all objects will always be of
a uniform size in a given image; thus, structuring elements
of multiple scales are a necessity. Additionally, even if this
assumption was possible, a multi-scale technique also al-
lows for the identification of object substructure.

By varying the size of the structuring element used in the

morphological operations, different regions corresponding
to candidate objects will provide different levels of res-
ponse. Objects with sizes varying from small to large will
show an increased level of response as the size of the struc-
turing element is changed correspondingly. The results of
applying the DMP algorithm can then be analyzed to de-
termine the position of maximum response for each pixel
in the image. This can be used to gauge the approximate
size of an object at that location and its contrast with the
surrounding area (Soille and Pesaresi, 2002, Shackelford
et al., 2004). Alternatively each pixel in the DMP can be
treated as a multi-dimensional vector for the purposes of
feature extraction. Techniques such as discriminant analy-
sis feature extraction (DAFE) and decision boundary fea-
ture extraction (DBFE) were proposed in (Benediktsson
et al., 2003). Classification techniques such as DBFE re-
quire that a neural network be trained to correctly identify
object pixels of an image with high degree of accuracy.
However, this type of approach may require a neural net-
work for each scene. In addition, pixel-based classification
is impractical for object-based information indexing and
retrieval.

The approach presented in this paper is a fully automated
technique for rapid object extraction. While previous pixel-
based methods are not practical for some information re-
trieval applications, a truly object-based approach gener-
ates information which can be used in systems that allow
for queries based on object level characteristics. Addition-
ally, our approach is a general technique that can be applied
to scenes from many different images. The experiments
presented show the results from applying our algorithm to
five scenes. Furthermore, the method presented is highly



efficient; automated object extraction occurs in a matter of
minutes. In addition, our approach does not require the
training phase that is a requisite of other techniques.

This paper is organized as follows. Section 2 describes
the algorithms used in our approach. A brief overview
of morphology principles is presented before presenting
our method. Section 3 discusses the evaluation techniques
used. The experimental results presented are analyzed with
the metrics presented in (Mariano et al., 2002). Although
no single measure can capture the complete performance
of an object extraction algorithm, the metrics presented
can allow for a comparison to a ground-truth set of objects
identified in a scene. Next, Section 4 details the results
from applying our algorithm to five scenes from two high-
resolution satellite images. Finally, Section 5 concludes
with a discussion of potential applications of our method
and ideas for future work.

2 ALGORITHMS

The core principal of the MEMO algorithm is the top-down
fusion of a differential morphological profile (DMP) (Per-
saresi and Benediktsson, 2001) response into an object set.
The DMP is generated using a set of increasing disk struc-
turing elements (SE) and grayscale morphological recon-
struction operators. Traditionally, the DMP is considered
as a vector response of each pixel to the DMP algorithm.
The resulting vector depicts the SE-size ordered differen-
tial response of opening by construction followed by the
reversed ordered differential response to closing by recon-
struction. The response of the DMP in the levels of a larger
SE reflects the presence of larger objects, and the response
in levels corresponding to a smaller SE indicates smaller
objects.

For the purpose of MEMO, the DMP is divided into two
profiles, closing morphological profile and opening mor-
phological profile. Many other approaches utilize a pixel
classification approach, and then extract objects using the
classification of a region of pixels (Benediktsson et al.,
2003). In contrast, MEMO functions at the object level
by analyzing each level of both the opening and closing
profiles separately. The final object detection is the re-
sult of top-down object fusion in each of the profiles com-
bined into a single object response set. The pseudo code of
MEMO object extraction is listed in Algorithm 1.

The input of the MEMO algorithm contains a panchro-
matic, remotely sensed urban image; near infrared spec-
tral response; and red spectral response of a scene. The
algorithm applies a series of set, morphological, and im-
age processing/computer vision operations. The first two
steps of MEMO include generating a Sobel edge detec-
tion response and a normalized difference vegetation in-
dex (NDVI) response. Next, the DMP of the panchromatic
image is generated and divided into the closing and open-
ing differential profiles, DMPC and DMPO, respectively.
Each level of the DMP forms a complete grayscale image.
Starting with the largest SE-size level, each level of both

Algorithm 1 MEMO Object Extraction
1: SOBEL ← Generate a Sobel edge detector response

map from PAN
2: NDVI ← Generate a NDVI response map from NIR

and Red-channel.
3: {DMPC ,DMPO} ← Generate DMP from PAN, orga-

nized into opening and closing profiles.
4: for all p ∈ {C,O} do
5: for all l=max level to min level do
6: DMPp,l ← Vege Filter(DMPp,l, NDVI, thresh-

old)
7: DMPp,l ←Max(DMPp,l, SOBEL)
8: {OBJECTSp,l} ← GL Connected Components(

DMPp,l)
9: Merge each {OBJECTSp,l} into MEMOp

10: end for
11: end for
12: MEMO←Merge the opening, {MEMOO}, and clos-

ing, {MEMOC}

profiles is analyzed for candidate objects in a top-down
manner.

In Algorithm 1, we use p to represent either opening or
closing profile and l for each profile level ranging from
max level to min level. We depict level l of profile p
with the notation DMPp,l. Vege Filter() in step 6 filters
DMPp,l by removing all pixels that have an NDVI response
greater than a threshold. In our work, we use 0.2 for this
threshold. The benefit of this operation is the removal of
most vegetation in the image seen, such as grass fields,
large trees and tree clusters. Each DMPp,l is then fused to
the Sobel response using point-wise maximum function,
Max(), which takes the higher value of each pixel posi-
tion from two images. This is motivated by the benefit it
provides to the decomposed gray level connected compo-
nents, Algorithm 2, by separating close-together objects
with identical DMP response.

After the DMPp,l is refined in steps 6 and 7, the challenge
is to find the connected components with a grayscale ap-
proach. When applying a traditional component labelling,
the grayscale image may result in thousands of labeled
classes in the smaller SE levels of the DMP. The amount of
computation required to resolve label equivalency classes
hinders applicability to real-time object extraction for ob-
ject retrievals. Many approaches to grayscale component
labelling have been explored in literature (Gonzalez and
Woods, 2002; Brag-Neto and Goutsias, 2004), however
we chose to develop an algorithm which exploits proper-
ties inherent in a single profile level. It can be observed
that given a particular level of the DMP, the number of
grayscale values in the response is usually quite small for
an urban image, always less than 50 distinct grayscale val-
ues in our testbed scenes. This allows us to decompose a
DMP level, DMPp,l, into a set of binary images. Each im-
age, DMPp,l,i, is composed of all pixels of intensity i from
DMPp,l.

Algorithm 2 lists the pseudo code of our specialized gray-
scale component labelling. The algorithm first initializes



Algorithm 2 GL Connected Components
1: Intialize {OBJECTSp,l}
2: Histo[]← Histogram of DMPp,l

3: for all i > 0 and Histogram[i] > 0 do
4: DMPp,l,i ← set of pixels from DMPp,l of intensity

i.
5: DMPp,l,i ← Morphological Opening of DMPp,l,i

by SEl.
6: {OBJECTSp,l,i}← Binary Connected Components

of DMPp,l,i

7: Filter {OBJECTSp,l} using size and shape mea-
sures

8: {OBJECTSp,l} ←
Max({OBJECTSp,l}, {OBJECTSp,l,i})

9: end for
10: Return {OBJECTSp,l}

an empty image. As a preprocessing step to this algorithm,
the DMPp,l,i is morphologically opened with a level-de-
pendent structuring element, SEl. This effectively elimi-
nates thin connections between components. A traditional
binary component labelling algorithm is run against each
DMPp,l,i, extracting objects that share a grayscale value.
The elements of the object-set, {OBJECTSp,l,i}, generated
from each relevant gray-level, are evaluated based on ob-
ject size and shape measures to filter out unsuitable objects.
For example, objects with unreasonably large scene cover-
age are excluded. To filter highly irregularly shaped ob-
jects, each detected object is compared to its bounding box
and those with low density are also excluded. The object-
set, {OBJECTSp,l}, for DMPp,l is accumulated from the
satisfactory objects of each {OBJECTSp,l,i}. We know
any two object sets from the same DMPp,l contain no over-
lapping objects because of the following property:
OBJECTSp,l,i ∩ OBJECTSp,l,j = ∅,∀i 6= j. This
final object-set is returned to Algorithm 1.

Each profile level, l, merges the current profile’s detected
objects, MEMOp, with any previously detected objects (i.e.
larger scale objects detected with larger SE). The final step
is to combine the objects detected in the opening morpho-
logical profile, MEMOO, with the objects detected in the
closing morphological profile, MEMOC , into a final object
set. Our output preserves DMP level information by using
increasing grayscale values for detected objects from de-
creasing profile levels. Figure 1 provides an example of
the stages of MEMO object detection. Objects detected at
lower levels are represented with higher grayscale values
in the MEMO output and may be superimposed onto ob-
jects detected at higher levels.

3 EVALUATION METHODS

The methods used for evaluating MEMO quantify several
different facets of the building detection algorithm. The
quality of the results produced by our system is measured
by comparing the detected objects to a set of ground-truth
objects. These ground-truth images were generated by a
human analyst manually identifying the polygon which sur-
rounds target objects.

There exists no single measure which can be used to eval-
uate all aspects of the performance of object detection.
The algorithms used for object detection evaluation fall
into two general categories as described in (Mariano et al.,
2002). The proposed metrics are either pixel-based or ob-
ject-based measures. Additionally, the methods used ei-
ther focus on determining the rate of true-positive or false-
positive results. A pixel or an object is identified as valid
if it was correctly identified as belonging to a object in the
ground-truth image. Conversely a false-positive response
occurs when a pixel or object was incorrectly detected.

Several of the measures used for evaluation rely upon the
following two formulas. The set UG and UD are the union
of all ground-truth and detected objects, respectively.

UG =
NG⋃
i=1

Gi UD =
ND⋃
i=1

Di (1)

Two pixel-based evaluation methods were used. The first
measure is called area-based recall. This metric determines
how well the detected pixels intersect the manually identi-
fied pixels of the ground-truth image.

PixelRecall =

{
undefined if UG = ∅
|UD∩UG|

|UG| otherwise
(2)

Area-based precision is the second pixel-based metric. This
process measures how well the the pixel regions of the de-
tected and ground-truth images overlap; it captures the ten-
dency of the object extraction algorithm to introduce false-
positives into the results.

PixelPrecision =

{
undefined if UD = ∅
1− |UD∩UG|

|UD| otherwise
(3)

Additionally, several object-based metrics were consider-
ed. The first of these measures is fragmentation. This
metric is formulated in such a way that an algorithm is
penalized for incorrectly splitting an object into multiple
objects during detection; this results in multiple objects
which overlap a single ground-truth object.

GTfrag(Gi) =
{

undefined if ND∩Gi
= 0

1
1+log(ND∩Gi

) otherwise

(4)

Conversely a second fragmentation measure calculates the
frequency with which an algorithm produces objects which
overlap multiple ground-truth objects. We found this mea-
sure is particularly useful for determining how well the al-
gorithm can distinguish adjacent objects with weak bound-
aries.



Figure 1: MEMO Step-by-step intermediate results for scene Columbia 3:(a)-(f) Objects from opening levels six through
one sequentially. (g)-(l) Objects from closing levels six through one sequentially. (m) Original panchromatic scene. (n)
Analyst identified objects. (o) MEMO identified objects



Scene Recall Precision
Columbia 1 52% 49%
Columbia 2 58% 64%
Columbia 3 76% 42%
Springfield 1 64% 42%
Springfield 2 61% 43%
Average 62% 48%

Table 1: Pixel-based Measures

DTfrag(Di) =
{

undefined if NG∩Di = 0
1

1+log(NG∩Di
) otherwise

(5)

Another object-based measure computes the percentage of
each ground-truth object that is correctly identified; this is
called the object area recall. When an absolute threshold,
ε, is applied to this value, a list of successfully detected
ground-truth objects can be created. In our experiments,
we use ε = 0.5.

ObjRecall(Gi) =
|Gi ∩ UD|
|Gi|

(6)

ObjDetected(Gi) =

{
1 if |Gi∩UD|

|Gi| > ε

0 otherwise
(7)

Similarly, a measure of the detected object area precision
is used to calculate what portion of a detected object inter-
sects the ground-truth region. This ratio is used to analyze
the number of false-positive objects generated by the algo-
rithm. Applying a threshold, ε, to this value yields a list of
those objects which were detected as matching the ground-
truth objects. Again, we used ε = 0.5 for our experiments.

DetectedObjPrecision(Di) =
|Di ∩ UG|
|Di|

(8)

DetectedObjAccepted(Di) =

{
1 if |Di∩UG|

|Di| > ε

0 otherwise

(9)

4 RESULTS

The MEMO building extraction algorithm was applied to
several scenes from 1-m panchromatic IKONOS images
of downtown Columbia and Springfield, Missouri. Each
scene is processed to generate a DMP, which is then an-
alyzed in a top-down fashion using Algorithm 1. In each
profile, candidate objects of the level corresponding to the
largest SE are continuously refined by iteratively merging
objects found in successively smaller levels of the profile.

Figure 2: (a) Original panchromatic image, (b) human
identified buildings, and (c) MEMO identified buildings
from scene Columbia 1. (d)-(f) scene Columbia 2, (g)-(i)
scene Springfield 1, (j)-(l) scene Springfield 2

The entire object extraction process, including the gener-
ation of the DMP, occurs in under 3 minutes on a modern
Pentium 4 machine.

As shown in Table 2, on average our algorithm correctly
extracts nearly 66% of the objects in the five scenes using
Eq. 7. The example depicted in Figure 1 demonstrates
a sample execution of this algorithm in which 18 of 20
buildings were successfully extracted. This example also
shows the algorithm’s low tendency to fragment buildings
into two detected objects. Ground-truth fragmentation–the
measure which corresponds to this tendency–is calculated
at 95% using Eq. 4 for this example. The average value
across all tested scenes is 83%.

However, the MEMO algorithm does have a tendency to
extract erroneous objects in some situations. In the exam-
ple shown in Figure 1, only 56 percent of the objects de-
tected correspond to ground-truth objects by Eq. 9; this is
slightly above the average for our tests. Additionally, some
of these situations correspond to cases when many detected
objects become incorrectly merged into one. Using Eq. 5,
the metric for the fragmentation of detected objects eval-
uates to 67% for the scene depicted in Figure 1, which is
also the average value of this measure.



Object Ground-truth Object Detected Fragmentation Fragmentation
Scene Area Objects Area Objects of Ground-truth of Detected

Recall Detected Precision Accepted Objects Objects
Columbia 1 54% 63% 48% 50% 81% 70%
Columbia 2 51% 54% 51% 64% 71% 56%
Columbia 3 73% 90% 52% 56% 95% 67%
Springfield 1 69% 72% 51% 61% 90% 80%
Springfield 2 49% 52% 41% 46% 77% 62%
Average 59% 66% 48% 55% 83% 67%

Table 2: Object-based Measures

5 CONCLUSIONS

Our future efforts will further refine the algorithm. Cur-
rently the object extraction employs heuristic analysis of
object size and shape features to determine candidate ob-
jects in each level. However, due to the variability of build-
ings in urban remote sensing images, current heuristics
must be complimented with additional methods. Other av-
enues to be explored would be additional image processing
and computer vision techniques. A noticeable effect of the
DMP is that larger SE-sizes tend to extract large blobs that
are composed of multiple smaller objects and sometimes
relevant objects with non relevant objects. An example of
this is seen by examining the MEMO output in Figure 2
(g)-(i), where some roads form blobs that include build-
ings and parking lots of similar intensity.

MEMO is a key part of our recently developed Geospa-
tial Information Retrieval and Indexing System (GeoIRIS)
for urban object characterization and retrieval. Successful
automatic object extraction algorithms coupled with other
geographic data allow GeoIRIS to support the following
queries for use by intelligence analysts: (1) Object query:
find database objects similar to a given query object. (2)
Nearest neighbor query: find objects spatially close to a
given object. (3) Distance scan: find objects within a cer-
tain distance of a given object, possibly with direction con-
straints. (4) Object/area query: find objects similar to a
given query object and its surrounding area.
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