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ABSTRACT: 
 
Remotely-sensed imagery has a demonstrated connection to urban demographic variables. In a previous study, frequency-based 
contextual counts of cover type classes have been related to census housing variables. A different, frequency-based contextual color type 
measure is introduced. This spectral metric, applied to a SPOT image, shows a high correlation with both housing characteristics and 
crime data compiled by census tract. The two-dimensional regression analysis of urban variation is then extended to include three 
dimensional measures of form and variation. Both spectral and morphometric measures show a strong connection to demographic 
variables, indicating a latent connection between human objectives and the spatial patterns visible in the remotely sensed urban 
landscape. 
 
 

1.   INTRODUCTION 
 

From the earliest days of remote sensing, the discipline has 
played a critical role in observing and documenting mankind’s 
effects on the landscape. Cities, with their intricate 
transportation networks and mixed cover types, have always 
presented a challenge to researchers. Yet as humanity shifts 
from a majority rural to majority urban population, 
understanding the social and spatial dynamics of urban systems 
becomes ever more essential to developing a comprehensive 
understanding of the human condition. 
 
Though often chaotic in appearance to the casual observer, 
cities are constructed with purpose and intent. To be more 
exact, the urban mosaic is an aggregate composition of the 
competing intentions of a multitude of actors, both individuals 
and groups. As such, it is not unreasonable to imagine that the 
observable features of urban neighborhoods and districts are 
indicative of underlying economic and social characteristics. 
 
Urban remote sensing has, to date, been largely focused on 
cover-type identification and feature extraction. Increasing 
spatial and spectral resolutions, coupled with advanced 
processing techniques, have delivered ever more accurate 
instantaneous representations of cities. Yet rarely have 
practitioners moved beyond identifying what is on the ground 
to examining why it is there. If the sensible characteristics of 
place are connected with underlying social structures and 
patterns, the inherent spatiality of imagery provides a useful 
tool for understanding this more human dimension of cities. 
 
In pioneering work, Forster (1980; 1983) demonstrated that 
both housing density and value measures exhibited strong 
correlation with multispectral satellite data. Lo (1986) found 
that various housing characteristics related to brightness values 
in aerial photography. Welch (1980) took a novel approach, 
connecting remotely sensed measurements of nighttime urban 

illumination with patterns of energy usage. Lo and Faber 
(1997) found that a suite of metrics derived from satellite 
imagery could be compared with census demographics to 
extract a Quality of Life index for a medium-sized city. 
Wharton (1982) first suggested the use of a frequency-based 
contextual classification procedure for the discrimination of 
land cover classes. Eyton (1993) extended this technique to the 
urban environment, exploring cover frequency counts by 
census tract, and discovered strong relationships between these 
measures and housing value as well as age and type of 
dwelling. 
 
The purpose of the present paper is to replicate and expand on 
Eyton’s previous study. Initially, the same per-census-tract 
frequency-based contextual classification procedure used 
successfully in Edmonton, Alberta was utilized to explore 
correlation with housing characteristics for the Austin, Texas 
area. Rather than using cover-type frequency analysis, the 
method was modified to a related quantitative “color-type” 
frequency concept which was drawn from experience with 
human visual interpretation models. In addition to housing 
variables alone, crime data (available on the same census tract 
basis) was also compared with color-type frequencies. Finally, 
recognizing that urban geometry has a third dimension, the 
regression model was extended to include an analysis of lidar-
derived morphometric frequencies as well. 
 
First, the paper will lay the groundwork for the “color-type” 
frequency concept, followed by examinations of the 
relationships between this metric and housing characteristics as 
well as crime variables. Next, a new morphometric measure 
will be introduced, bringing a third dimension into the 
assessment. This morphometric model will once again be 
compared with housing measures. Finally, the significance of 
the results and future avenues of research will be examined. 
 
 
 



2.   METHODS AND RESULTS 
 

2.1   Color Frequencies 
 
As previously established by Forster (1980; 1983), Lo (1986) 
and Eyton (1993), the measured reflectance of remotely-sensed 
imagery in the visible/near-visible portion of the spectrum is 
highly correlated with housing values and other demographic 
characteristics. Yet this is only quantitative confirmation of a 
fact long-recognized. Colwell (1970) pioneered both early 
multispectral remote sensing techniques and the visual 
interpretation of color composites. Image interpreters have 
recognized that certain urban features demonstrate 
characteristic color signatures in composite form. In color 
infrared composites, for instance, newer neighborhoods tend to 
exhibit an overall bright cyan coloration, indicative of their 
newly paved surfaces and lack of vegetation. Older residential 
areas, on the contrary, tend to demonstrate more of a dark cyan 
appearance from years of surface deterioration mixed with 
pinks and reds of overhanging vegetation growth.  
 
Yet if this information is visual to the naked eye in composite 
form, the same data is evident in the digital numbers of the 
three bands employed. The 16,777,216 possible colors in a 24 
bit image composite are actually quite redundant. A level-sliced 
composite delivers much the same tonal rendition while 
employing only 27 individual colors.  A SPOT multispectral 
image of Austin was converted to such a level-sliced composite 
(Figure 1). The frequency of occurrence for each of these new 
color type values was counted by census tract. This allowed a 
regression analysis to be performed comparing these color 
types with socio-demographic characteristics. 
 

 
 

Figure 1.  Level-sliced composite with tract boundaries 

 
What are the advantages of using color-type frequencies over 
cover-type frequencies? Such a measure removes one level of 
abstraction from the data, as quantitative analysis is performed 
on a derivative of the original image values rather than a 
classification product subject to ambiguities and vagaries of 
human intervention. Additionally, the regression results are 
attached directly to an image product, allowing human 
interpretation to be employed at a later step in conjunction with 
analysis. And finally, the level-sliced composite represents a 
familiar product with tones that hold intuitive meaning to 
experienced image interpreters. 
 
2.2   Housing Characteristics and Color Frequencies 
 
Color frequencies may then be compared to the spatial 
distribution of housing variables. The frequency count of the 
level-sliced image showed that six of the twenty-seven 
simplified colors did not occur in the image; six colors were 
therefore excluded. Linear regression was performed, matching 
the remaining 21 class counts (raw and percentage) as 
independent variables against four different census housing 
attributes, one at a time (Table 1). 
 

Census Variable Raw Count Percent Count 
 n=82 n=104 n=82 n=104 
Age of Home  0.65 0.56 0.67 0.67 
Home Value 0.64 0.52 0.70 0.60 
Number Homes 0.71 0.69 0.48 0.40 
Number Rooms  0.65 0.58 0.66 0.63 

 
Table 1.  Coefficients of determination (r²) for color 

frequencies vs. housing variables 
 
The results were similar to those achieved earlier in the 
Edmonton, Alberta study. Percentage of census tract covered 
by each class showed a higher correlation to the age and value 
of dwelling. In addition, the number of rooms (a new variable 
indicative of size) was also strongly correlated to percent of 
tract coverage by class. On the other hand, raw pixel counts per 
tract were again more related to the total number of individual 
homes. As stands to reason, the value, age, and to some extent 
size of homes is likely to be fairly uniform within a given area 
or district, particularly in modern suburbs. A raw frequency 
count, on the other hand, is more responsive to the number of 
homes in a census tract (especially if resolution is fine enough 
to distinguish individual structures). 
 
Further exploration of the results from this regression, in 
concert with visual analysis of the image, revealed an 
interesting fact. The 21 color type frequencies might be further 
reduced to four dominant and corresponding tone groups 
(Table 2). Infrared and combination infrared and green 
reflectors (Group 1) are largely indicative of vegetation. Red, 
green, and combination red and green reflectors are associated 
mostly with manmade materials such as concrete, asphalt, and 
roofing tile (Group 2). Combination infrared and red reflectors 
(Group 3) consist mostly of soils and dormant vegetation. And 
finally, neutral color types, showing similar low, medium, or 
high reflectance in visible and infrared portions of the 
spectrum, seemed to correspond to shadows, certain recently 
disturbed soils, very bright concretes and quarries (Group 4). 



    Group 1.  IR and IR+G Reflectors (Growing Vegetation) 
CIR Colors Level-Sliced Reflectance 
 IR R G 
Red High Low Low 
Dark Red Med Low Low 
Light Red High Med Med 
*Magenta High Low High 
Dark Magenta Med Low Med 
Light Magenta High Med High 
Pink High Low Med 
*Purple Med Low High 

 
    Group 2.  R, G, and R+G Reflectors (Concrete, Rooftops) 

CIR Colors Level-Sliced Reflectance 
 IR R G 
*Blue Low Low High 
Light Blue Med Med High 
Dark Blue Low Low Med 
*Green Low High Low 
Light Green Med High Med 
Dark Green Low Med Low 
Cyan Low High High 
Light Cyan Med High High 
Dark Cyan Low Med Med 

 
    Group 3.  IR+R Reflectors (Soils, Dormant Vegetation) 

CIR Colors Level-Sliced Reflectance 
 IR R G 
*Yellow High High Low 
Light Yellow High High Med 
Dark Yellow Med Med Low 
*Lime Med High Low 
Orange High Med Low 

 
    Group 4.  IR+R+G Reflectors (Neutrals) 

CIR Colors Level-Sliced Reflectance 
 IR R G 
White High High High 
Gray Med Med Med 
Black Low Low Low 

    *Denotes colors low in frequency in Austin image 
 

Table 2.  CIR composite color reflectance groups 
 
This qualitative analysis of the image led to a refinement of the 
quantitative model. The 21 color type classes used were further 
reduced to the four groups above. The same 4 dependent 
variables were compared, again one at a time, with the 
frequency counts of these four new groups. Following best 
results from the 21 class analysis, percentage counts were used 
against age, value, and size while frequency counts were 
calculated for number of single detached dwellings. 
 
The results show that in each case the variables were highly 
correlated with a single reflectance group (Table 3). Value and 
number of single detached dwellings were each strongly 
correlated with vegetation. People are drawn to green space, be 
it in their yard or a nearby park. Size, on the other hand, highly 
correlates with the visible reflector group. Again, this stands to 
reason. The more area covered by impervious surface, the 
higher percentage of a census tract’s area will show a manmade 

signature. Finally, age was highly correlated with the final class 
of neutral objects. The oldest areas have been widely built out. 
The few remaining houses in these regions may share their 
neighborhoods with industrial or commercial developments. 
Additionally, concrete and roofs of these older neighborhoods 
show a more neutral tone from years of deterioration. 
 

 Age Value Number Size 
Group 1 (Veg.) 0.43 0.56 0.43 0.35 
Group 2 (Visible) 0.28 0.25 0.16 0.51 
Group 3 (IR+R) 0.24 0.14 0.26 0.13 
Group 4 (Neutrals) 0.53 0.33 0.35 0.15 
All 21 Frequencies +0.67 +0.70 *0.71 +0.66 

  * Raw Count (n=82)      +Percentage Count (n=82) 
 
Table 3.  Coefficients of determination (r²) for Austin housing 

characteristics vs. group color frequencies 
 
The original 27 colors, created by the level-slicing process, 
reduced to 21 classes, and further aggregated into four visually 
representational reflectance classes account for a great deal of 
the variation of housing prices in Austin by census tract. A 
combination of exploratory statistics and visual interpretation 
was instrumental in refining the model to simplified categories, 
explained by visual analysis while retaining much in the way of 
predictive power. 
 
2.3  Crime and Color Frequencies 
 
If the level-sliced frequency classes are highly correlated with 
housing characteristics and are indicative of neighborhood 
conditions, it is not unreasonable to expect similar relationships 
to emerge when compared to other demographic data. To 
explore this theory, crime data obtained at the census tract level 
for the year 1995 were regressed against census tract counts of 
the same color type classes used in the housing study. Thirteen 
available individual and aggregate crime variables were used, 
one at a time, as dependent variables in the regression, with the 
21 color type classes serving as independent variables. 
 
In all cases, the coefficient of determination showed a 
reasonable predictability of crime occurrence based on 
contextual color type frequency counts (Table 4). These 
determination coefficients ranged from a low of .19 for arson 
all the way up to .81 for theft. If 81% of the total variation in 
the theft variable by census tract can be explained by these 21 
reflectance classes, then the level-sliced SPOT composite 
appears to be accentuating some underlying dynamic of urban 
structure. 
 
Perhaps the most interesting feature of this table is the list of 
crime types ranked by their coefficients of determination. The 
seven variables displaying greater than 50% determination in 
the regression were individual property-associated, or indexed 
crimes. Determination coefficients dropped off rapidly for the 
remaining six person-associated crime variables. In other 
words, location-dependent crimes such as property and auto 
theft show a much stronger relationship to the metric that the 
frequency-based contextual color type classifier provides. 
Indeed this measure, initially derived from qualitative visual 
interpretation techniques, seems to be delivering a quantitative 
assessment of neighborhood or regional attributes. 



 Crime Statistic r² Adjusted r² 
Theft 0.81 0.77 
Property per 1000 0.79 0.74 
Crime Index 0.78 0.73 
Total 0.75 0.69 
National Index 0.71 0.64 
Auto Theft 0.61 0.51 

 
 
Against 
Property 

Robbery 0.58 0.48 
Aggravated Burglary 0.46 0.33 
Assault 0.41 0.27 
Rape 0.39 0.25 
Armed Robbery 0.35 0.19 
Murder 0.29 0.12 

 
 
Against 
Person 

Arson 0.19 0.00 
 
Table 4. Coefficients of determination for 1995 crime statistics 

vs. image frequencies 
 
Because theft displayed the highest connection with color type 
frequency counts for the Austin area, this individual variable 
was chosen for further regression against the 4 previously 
derived reflectance groups (Table 5). The analysis provided 
startling results. A full 77% of the total variation in theft 
occurrence could be explained by the percentage counts of 
visible reflectors per census tract. By comparison, all 21 color 
type classes provided a slightly higher than .81 coefficient of 
determination. What does this mean? The portion of a census 
tract covered by human-produced surfaces (concretes, roofs) is 
highly connected with the amount of property crime 
experienced. In Austin, at least, the density of development in 
an area appears to be indicative of the levels of property-crime 
experienced by local residents. 
 

 r² 
Group 1 (Veg.) 0.13 
Group 2 (Visible) 0.77 
Group 3 (IR+R) 0.10 
Group 4 (Neutrals) 0.07 
All 21 Color Frequencies 0.81 

 
Table 5.  Coefficients of determination for Austin theft 

variation vs. group color frequencies 
 
A map of these highly visible (Group 2) reflectance areas 
overlaid with census tract boundaries (Figure 2) is useful for 
further analysis of this link. The Group 2 reflectors highlight 
the central business district, airport, large commercial 
developments, strip malls, and light industrial areas. All these 
areas have one significant thing in common—parking lots. 
These areas also tend to closely parallel primary or secondary 
transportation arteries. Finally, the densely developed areas 
tend to cluster near the edges of census tract boundaries. This is 
not surprising on reflection; the census tract boundaries are 
often delineated by major roads. 
 
Theft is occurring in areas of dense commercial development. 
Additionally, areas of dense commercial development fall near 
major thoroughfares on the boundaries of designated census 
tracts. This implies two factors at play. First, theft and property 
crime are occurring at or near the places people congregate, 
either in commercial developments themselves or in nearby 
parking lots. Second, property crimes are at some level related 

to transportation network accessibility. It appears that some 
portion of the underlying social fabric of urban development 
may manifest itself in the reflective image records of human 
constructed and influenced environments. 
 

 
 

Figure 2.  Map of visible reflectors with tract boundaries 
 
2.4   Urban Morphometry 
 
Two dimensional reflectance patterns of cityscapes, then, 
display a demonstrable relationship to certain demographic 
measures of housing and crime. Yet the urban environment 
humans experience exists in three dimensions. Limiting 
analysis to the x and y dimensions alone, as experienced from 
vertical satellite imagery, necessarily simplifies the full 
dimensionality of human city structure. Researchers have often 
focused on qualitative or descriptive assessments of urban 
morphology. Yet such assessments are quantitatively lacking. 
Moore points out that the significance of form and volume in 
urban structures has largely been ignored (2002). Grimmond 
and Oke’s  (1999) aerodynamic research represents one of the 
few attempts to link detailed three-dimensional models of city 
form with assessments of underlying spatial distributions and 
flows. 
 
The growing prevalence of lidar-derived altimetry information 
makes detailed three dimensional models of urban 
morphometry increasingly accessible. If the height component 
of urban features plays a role in demographic distributions, 
lidar-derived digital elevation models (DEMs) would provide a 
useful tool for discovering connections between human 
constructs and the social landscape. A 1.5 meter spaced DEM 
collected in 2000 and covering a portion of the earlier Austin 
study area was provided by the Bureau of Economic Geology 



at the University of Texas. While not covering the full spatial 
extent of the metropolitan area, this smaller data set still covers 
a varied portion of the cityscape at much higher resolution. In 
the interest of consistency, census tract block group level 
housing statistics, acquired in 2000 and more appropriate to the 
larger scale of the spatial data, were utilized. Once again age, 
size, value and number of single detached dwellings were 
examined for each block group. Unfortunately, matching crime 
statistics were not publicly available at this greater scale. 
 
Of the 121 block groups covered in this lidar dataset, only 55 
were completely contained within the data or had all necessary 
census statistics. The other 66 were excluded from the study. 
Local elevation variations were subtracted from the dataset to 
produce a model of buildings and landscape only, excluding 
underlying terrain. Separate elevation, slope and curvature 
datasets were computed from the lidar values. Each of these 
datasets were classified into 20 equal interval groups. The 
frequency of occurrence of all 20 classes was then calculated 
for each of the 55 relevant census tract block groups. A 
regression analysis was performed using frequency counts of 
the separate elevation, slope and curvature classes as 
independent variables and each housing variable as a separate 
dependent variable. 
 
The concept was to provide a morphological fingerprint for 
each census tract block group, exhibiting not just characteristics 
such as elevation or curvature, but a measure of the variation of 
elevation or curvature within the areal unit. Such an approach 
allows the regression model to express sensitivity to the texture 
of structural topography. 

 
2.5   Housing Characteristics and Urban Morphometry 
 
A morhpometric measure permits the comparison of housing 
characteristics and three-dimensional form. Housing age, value 
and number of homes each showed a high correlation to 
frequency counts of elevation, slope, and curvature (Table 6). 
In general, a third derivative measure of curvature displayed 
the best results for two of these variables, explaining 75% of 
the total variation in housing value and some 87% of the total 
variation in number of dwellings per census tract block group. 
While highly correlated with all three measures, age showed a 
slightly higher coefficient of determination when compared to 
elevation. On the other hand, number of rooms was much more 
related to raw elevation frequency counts, which explained 
71% of the total variation in this demographic. 
 
Census Value Elevation 

Frequency 
Count 

Slope 
Frequency 

Count 

Curvature 
Frequency 

Count 
Age of Home  0.61 (0.40) 0.69 (0.56) 0.75 (0.65) 
Home Value 0.69 (0.51) 0.57 (0.40) 0.61 (0.46) 
Number Homes 0.65 (0.45) 0.78 (0.69) 0.87 (0.82) 
Number Rooms  0.71 (0.55) 0.41 (0.18) 0.49 (0.28) 
(Values in parentheses denote adjusted r²) 
 
Table 6.  Coefficients of determination (r²) for Austin housing 
characteristics vs. classed frequencies of elevation, slope and 

curvature 
 

Analyzing these morphometric results presents a slightly more 
complicated scenario. Unlike satellite spectral reflectances, 
form measures have no traditional urban interpretation scheme 
to draw upon. Careful study of the results, however, yields 
interesting implications. The number of dwellings, especially at 
this resolution, is best evidenced in a curvature frequency 
assessment. The frequency of curvature variations within a 
block group would obviously be tied to the number of 
individual shapes or forms it contained. By logical extension, 
the same argument would hold for home value. Generally 
speaking, less densely spaced and larger domiciles have a 
higher value, as evidenced by a map of frequency counts for 
one illustrative block group (Figure 3). This particularly holds 
true for Austin, where the priciest suburban homes are perched 
on steep hills, not allowing for a high planimetric density of 
dwellings. On the other hand, neighborhoods of more modest 
means (Figure 4) show a more regular and densely spaced 
pattern of development. Conversely, age measures respond 
slightly better to raw elevation counts. One reasonable 
explanation of this pattern would be that the greater tree canopy 
cover associated with older neighborhoods displays a greater 
variation in morphometric form and texture than newer 
subdivisions with less robust vegetation development. 
 

 
 

Figure 3. Frequency distribution in a high value block group 
 

 
 

Figure 4.  Frequency distribution in a low value block group 



Slightly more perplexing is the observation that the surrogate 
measure of size (average number of rooms) shows a 
significantly higher amount of variance described by raw 
elevation rather than either slope or curvature measures. 
Perhaps the answer is as simple as the fact that taller structures 
are likely to contain more rooms. Regardless, raw counts of 
elevation frequency per census tract block group will clearly be 
a more sensitive measure of enclosed volume than variations in 
either slope or form. When dealing with size in three 
dimensional space, volume would certainly be the relevant 
factor. 
 
While less analytically accessible than spectral reflectance 
contextual frequency counts, morphometric frequencies add a 
new level of dimensionality to the remotely sensed assessment 
of urban spaces. Humans do not interact and live their lives in 
two dimensions. A comprehensive remote sensing exploration 
of the physical structure of cityscapes and the social spaces 
within which populations operate would be incomplete without 
accounting for volume and measures of texture. 
 
 

3.   CONCLUSIONS 
 
Cities have long been a focus of remote sensing study. Beyond 
the transformation of imagery to thematic maps and feature 
delineation, quantitative analysis has demonstrated great 
promise in spotlighting underlying urban sociodemographic 
forms. This research seeks to expand these techniques, 
introducing the concept of contextual color type frequencies 
derived from traditional qualitative imagery analysis 
techniques. Color type frequencies derived from level-sliced, 
color infrared composite SPOT satellite imagery demonstrate a 
high correlation to several representative housing and crime 
variables. Additionally, at a larger scale, urban morphometric 
form measures (as derived from lidar-extracted DEMs) show a 
strong connection to housing value, size, age, and dwelling 
counts. 
 
By highlighting the pattern of sociodemographic trends on the 
mapped urban landscape, measures of spectral or morphometric 
variance uncover the spatial commonalities between the 
experienced, social world of humans and the objective, 
observed physical urban environment. For instance, by 
discovering a link between land cover and crime such a study 
might suggest areas to focus law enforcement efforts. More 
importantly, an understanding of why these particular locations 
are conducive to criminal activity could be useful in addressing 
the causes of crime prior to its occurrence. Likewise, 
discovering a link between housing characteristics and 
morphometric measures could provide urban planners a useful 
tool to aid in the mitigation of current problems and the design 
of more successful cities for the future. 
 
Following from the techniques utilized in this study, several 
paths for further research present themselves. Because crime 
appears to have a strong relation to place, comparing crime 
measures to quantitative morphometric models seems a logical 
progression of the research. Additionally, given the utility of 
both reflectance and form measures in explaining the variation 
in certain sociodemographic variables, combining these 
separate metrics into an interacting suite could provide a 

powerful urban analysis tool. By expanding the dimensionality 
of the data utilized, more robust measures of variance within 
cityscapes might be achieved. Finally, expanding the study to a 
larger urban area with more complete lidar coverage (the 
authors are currently examining Houston, Texas) would subject 
the methods and models proposed to a more rigorous 
assessment. 
 
Remote sensing has always been a useful tool for displaying 
the complexity and heterogeneity of urban patterns. If cities are 
truly the collaborative compositions of diverse actors, social 
and economic as well as individual and group in nature, then 
their palettes of spectral signatures and brush strokes of 
morphometric form are not just inert swaths on the landscape 
but expressions of human meaning and intent. Learning to read 
and appreciate these intricate patterns teaches us not just of 
specific city structures but of the humans who live there.  
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