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ABSTRACT: 
 
In order to adequately model ecosystems services of the urban environment, it is necessary to accu-
rately inventory urban vegetation abundance and spatial distribution. An object-based, methodological 
design for estimating urban vegetation structure within the metropolis of Phoenix, Arizona using re-
mote sensing techniques on high-resolution (0.6m2) aerial photography was derived utilizing a hybrid 
of image segmentation and spectral classification. Within the arid urban environment, vegetation is 
controlled at a very fine scale and is best analyzed at extremely high spatial resolution. Since at a local 
scale the urban environment is composed of discretely heterogeneous patches, it is necessary to quan-
tify landscape pattern at this scale. An object-oriented approach was taken utilizing a segmentation al-
gorithm that transposes imagery into distinct polygons by incorporating a combination of spectral 
properties and neighborhood characteristics. This segmentation process was parameterized to isolate 
vegetation patches with a minimum diameter of 2m, which incorporates typologies from shrubs to 
large trees. Once segmentation was completed, the image was then analyzed and classified based on 
the cadastral and topological characteristics. Accuracy assessment of land cover classification was then 
conducted at 200 random points throughout the metropolis. The intent of this methodology is to allow 
for regular monitoring of vegetation change at a broad extent with fine resolution in the Phoenix basin.  
 
 

1. INTRODUCTION 
 

True-color aerial photography has been regularly 
used through photointerpretation as a method for 
groundtruthing coarser scale imagery, typically 
from satellites. Many of these imaging systems 
have much greater spectral resolution than aerial 
photography, which is used in the discrimination 
of many different types of land cover. Until re-
cently, analysis of many fine-scale ecological 
phenomena have had limited functionality due to 
coarse spatial resolution of these imagery. A 
prime example is classifying urban vegetative 
cover. We are primarily interested in urban forest 

structure within the entire metropolitan region of 
Phoenix, Arizona encompassing over 200 km2. 
Urban forest structure is controlled at a discretely 
heterogeneous scale, which is dominated by a 
combination of land use planning and individual 
decision making. Thus we proposed using im-
agery with very high spatial resolution. Private 
remote sensing satellites have begun to provide 
high-resolution multi-spectral imagery, such as 
IKONOS© and Quickbird©. However, accessibil-
ity to these imagery can be quite cost prohibitive 
if researchers are interested in a very large study 
area. True-color aerial photography, with filters 
representing red (650 nm), green (510 nm), & 



blue (475 nm) are typically cultivated for use in 
the real estate market allowing agents to assess 
the layout of neighborhoods. High resolution is 
necessary for creating quality images sought after 
by this market. Another noteworthy advantage of 
this type of imagery is they are considerably 
more cost-effective relative to satellite imagery. 
In addition extensive analyses of multiple cities 
could be done on with these imagery, as they are 
collected in most medium to large cities and col-
lected on average of once per annum, and up to 
3x for quickly developing cities, such as the 
Phoenix metropolitan. 
 
The key disadvantage of using these imagery for 
vegetative analyses is the absence of the near in-
frared band typically used to calculate common 
vegetation indices, such as Normalized Differ-
ence Vegetation Index (NDVI) and Soil Adjusted 
Vegetation Index (SAVI). However, we feel this 
is not detrimental as these fine scale data can be 
aggregated to be able to compare with these more 
common procedures estimating vegetation den-
sity.  

 
 

2. METHODS 
 
2.1. Imagery 
 
True-color aerial photography of the entire Phoe-
nix metropolitan and outlying rural areas was ob-
tained from Landiscor©. Imagery was collected in 
April 2004. The sensor was flown at an altitude 
of 6,100 m producing an image with approxi-
mately 0.61 m resolution. The images were ob-
tained orthorectified as a single tile into North 
American Datum of 1983 State Plane, Central 
Arizona.  
 
2.2. Object Oriented Approach 
 
An object-oriented approach is ideal for conduct-
ing an analysis of vegetation cover with this im-
agery, as the resolution of imagery is greater than 
most vegetation. Classification of individual pix-

els is a very common and useful method for ana-
lyzing broad scenes with coarse resolution (i.e. 
Landsat). These imagery are plagued with sub-
pixel mixing of fine-scale phenomena within a 
single pixel. It is theoretically and empirically 
possible to obtain compositional information 
about that pixel (Ridd 1995, Foody 2000). How-
ever, important spatial relationships are lost dur-
ing sub-pixel analysis (Blaschke & Strobl 2001). 
An object-oriented approach initially completes a 
process of image segmentation effectively creat-
ing polygonal objects representing spectrally 
homogeneous units at a specified scale (Blaschke 
& Hay 2001). These objects can then be analyzed 
and put into a classification scheme in order for 
landcover extraction (Fig. 1).  
 
2.2. Segmentation 
 
Before classification can occur, the image must 
be apportioned into basic units for analysis. New 
technology allows for an object-oriented ap-
proach through a procedure of segmentation, 
which subdivides the entire image into regions at 
a user-defined scale, in essence creating patches 
as the fundamental unit of analysis (Definiens 
2004). The proper level of segmentation is de-
termined by the size of the object in question. 
This approach takes into account within-pixel 
spectra values as well as neighborhood charac-
teristics making possible the extraction accu-
rately shaped real-world objects as the basic units 
for analysis. Vegetation is typically dominated at 
a very fine resolution. Thus, the imagery was 
segmented at the respective scale parameter with 
weighted emphasis on the red and blue band, 
which visually appeared to segment vegetation 
best.  
 
2.3. Object Discrimination / Classification 
 
For classification to be meaningful, these seg-
mented patches must be locally trained by in situ 
classification. A sample study area was estab-
lished in northern Tempe as a proxy for the met-
ropolitan, since most dominant types of landscap-



ing are present, mesic yards to desert landscaping 
and bare soil. One hundred sampling points were 
randomly distributed in the study area and then 
assessed and classified as either “woody vegeta-

tion” or “other” through groundtruthing using a 
GPS unit with sub-meter precision. These plots 
were cross referenced with true-color imagery 
and the classified segments were isolated creating 

(a) 

(b)

(c) 
Figure 1. Procedure for urban forest mapping using aerial photography. (a) High-resolution raw true-
color imagery (0.6m2). (b) Segmentation: creating the basic units for classification. (c)  Classified im-
age estimating urban forest structure.  
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a sample library. This library serves as the foun-
dation for image classification. A principal com-
ponents analysis was then conducted to ascertain 
the most appropriate features to discriminate be-
tween the two classes. Interestingly the shape 
metrics contributed nothing to the analysis. This 
is likely due to the fine scale segmentation neces-
sary for analysis of individual trees. If one in-
creases the scale parameter too high then pixels 
are aggregated above the resolution of much ur-
ban vegetation. Three features contributed to the 
best discrimination power: mean value of the 
blue band, the mean value of the red band, and 
the ratio of the mean value of the green band to 
the standard deviation of the green band. The pa-
rameters of these features were then scaled to en-
hance the classification accuracy.   
 

3. RESULTS 
 

3.1. Testing Set 
 
Within the sampling study area of northern 
Tempe, 500 points were randomly generated. In 
situ groundtruthing was then conducted with a 
GPS unit with sub-meter precision to determine 
classification. Access was prohibited at 55 sites 
and thus no classification was assigned to those 
points. Of the remaining points, 197 were classi-
fied as “woody vegetation” if there was a shrub 
or tree at the location with a diameter greater 
than 2 m. The “non-woody” category included 
other locations with all other land cover classifi-
cations, 248 in all, and vegetation less than 2 m. 
 
3.2. Error assessment 
 
The image was classified and then compared 
with the testing set, generating an error matrix 
(table 1). The error matrix effectively illustrates 
the general robustness of the classification errors. 
Errors of inclusion, commission errors, are very 
small for objects classified as woody with only 2 
out of 175, but are larger for the non-woody clas-
sification.).  

This matrix can be used to compute more mean-
ingful accuracy assessment measures (table 1) , 
such as producer’s accuracy, user’s accuracy, & 
overall accuracy (Story & Congalton 1986, 
Congalton 1991). The producer’s accuracy esti-
mates the probability that a point in the ground-
truthed reference library was correctly classified. 
Thus, 88% of the objects classified as “woody” 
and 99% of the object classified as “non-woody” 
agreed with the reference collection. User’s accu-
racy provides an estimated probability to how 
well the classification of the segmented objects 
correctly predicts the proper class. Thus the user 
of the classified image can be 99% certain that an 
object classified as “woody”, and 91% certain 
that an object classified as “non-woody”, is cor-
rectly classified relative to the objects on the 
ground.  
 
Overall accuracy is calculated by summing the 
correct classifications and dividing by the total, 
in effect giving how many object were correctly 
identified, 94% in this classification. The Kappa 
statistic, 0.88 for this classification, is preferred 
over overall accuracy as it takes into account the 
probability that classification and reference may 
agree by mere chance, and is typically a preferred 
estimate of general accuracy (Congalton & Green 
1999). 
 

  Referenced as:  
 Classified as: Woody Non-woody  
 Woody 173 2 17
 Non-woody 24 246 27
  197 248  
     
  Woody Non-woody  
 Producer’s accuracy 0.88 0.99  
 User’s accuracy 0.99 0.91  
     
 Overall accuracy 0.94   
 KIA 0.88   

  
Table 1. Error matrix showing ground reference data versus 
the image classification of urban woody vegetation; and 
classification error assessment statistics. 
 



 
4. DISCUSSION 

 
We have clearly shown that common aerial pho-
tography is capable of being used to classify the 
urban forest in an accurate and repeatable fash-
ion. It is our hope that this process is equally as 
valuable in more mesic urban environments. It 
does appear that classification of other objects of 
interest may be difficult, as many of the impervi-
ous surfaces, roads and roofing material are con-
structed of nearby geologic materials which make 
discrimination among natural and man-made dif-
ficult (Stefanov 2001). Additionally, discrimina-
tion among different man-made items (i.e. roads 
& buildings) has proven difficult due to the simi-
larity of source materials. 

 
 

5. CONCLUSIONS 
 
Aerial photography, especially with very high 
spatial resolution, has shown great promise in 
classifying Phoenix’s arid urban forest in this pa-
per. Additional error assessment will be con-
ducted to analyze the accuracy nuances between 
types of vegetation and canopy size. With the 
promise of strong robustness of this classification 
procedure, spatially explicit data will now be able 
to be collected across the Phoenix metropolitan 
in order to analyze other ecological phenomena 
that occur within the city, such as human impacts 
of urban forest coverage and animal diversity 
patterns. 
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