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ABSTRACT: 
 
Estimating crop yields is critical for regions in the Aral Sea Basin, where agriculture, predominantly cotton (Gossypium hirsutum 
L.) production, is the main source of income. Monitoring the spatial distribution of cotton yields helps identifying sites with yield 
constraints, so that appropriate counteractions such as the application of targeted agricultural inputs or land use restructuring can be 
taken. An agro-meteorological model evolved from Monteith’s biomass production model was developed for estimating spatially 
distributed cotton yield in Uzbekistan using multi-temporal MODIS-derived parameters from 2002 as primary data inputs. Local 
meteorological data was used for estimating the photosynthetically active radiation (PAR) and the environmental stress scalars, 
including air temperature stress and vapor pressure deficit stress on crop development. High spatial resolution Landsat 7 ETM+ 
images were applied to extract the area under cotton cultivation within the landscape and to determine the cotton fraction among 
other land uses within the coarse spatial resolution MODIS pixels. The spatial resolution of the MODIS FPAR data was upgraded by 
using an established relationship to the higher resolution MODIS NDVI data. The estimated raw cotton yield reached an average of 
2.38 t ha-1 and ranged from 1.09 to 3.76 t ha-1. The pixel-based modeling revealed a general spatial trend of higher yield in 
upstream areas and in locations closer to the irrigation channels and lower yields in downstream area and sites more distant to 
irrigation channels. The validated yield estimations showed a ca. 10 % deviation from official governmental statistics at district 
level. The established agro-meteorological model with minimum data input, and mainly based on multi-temporal, freely available 
MODIS data is a promising strategy for economic and operational late season estimation of spatially distributed cotton yield over 
large regions.  
 
 

                                                                 
*  Corresponding author.   

1. INTRODUCTION 

In Uzbekistan cotton production plays a dominant role in the 
economy and covers 46 % of all irrigated land in the country. 
However, the volume of water from the Amu Darya River, 
which is one of the major sources of water for irrigation, 
gradually becomes limited due to increasing water demand in 
upstream irrigation regions and in neighbouring countries 
(Ressl et al., 1998, Vlek et al., 2003). The estimation of cotton 
yield is of importance for better targeting water allocation and 
planning of land use restructuring. 
 
Remote sensing is the one technology that can give an unbiased 
view of large areas, with spatially explicit information 
distribution and time repetition, and has thus been widely used 
to estimate crop yields at a regional scale (Quarmby et al., 
1993; Baez-Gonzalez et al., 2002; Doraiswamy et al., 2003). 
The agro-meteorological model based on solar radiation and 
leaf development (Monteith, 1972) has great potential for 
estimating crop yield using mainly satellite and agro-

metereological data as inputs (Moulin et al., 1998; Lobell et al., 
2003). Satellite data such as those from NOAA-AVHRR 
(National Oceanic and Atmospheric Administration - Advanced 
Very High Resolution Radiometer) and MODIS (Moderate 
Resolution Imaging Spectroradiometer) with high temporal 
frequency have so far mainly been used for model runs at a 
daily time step. Bastiaanssen and Ali (2003), for example, 
applied the linear relationship between the fraction of 
photosynthetically active radiation (FPAR) and NDVI derived 
from AVHRR to estimate the fraction of photosynthetically 
active radiation absorbed (FPAR) for the Monteith model.  
 
The newly available satellite images from the MODIS sensor 
provide enhanced atmospheric correction, cloud detection, 
improved geo-referencing, comprehensive data quality control 
and the enhanced ability to monitor vegetation development 
(Running et al., 1999; Huete et al., 2002). Moreover, a series of 
standard MODIS products such as FPAR, vegetation index 
(VI), leaf area index (LAI), and net primary productivity (NPP) 
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is provided by the MODIS land science team. The MODIS land 
data have mainly been the focus in global scale change 
research, but the regional application and validation of these 
data are only in the initial stage (Justice et al., 2002).  

2.2 

2.3 

The aim of this research is to estimate the spatially distributed 
cotton yields in the Khorezm region located in Northwest 
Uzbekistan by an agro-meteorological model that uses remote 
sensing and field data. More specific research objectives are: 1) 
to upgrade the spatial resolution of the MODIS FPAR data by 
using an established relationship with the higher resolution 
MODIS NDVI data and cotton area information derived from 
Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 
classification; and 2) to integrate from these pixels time series 
of the FPAR MODIS product, crop and climatic specific 
information in an agro-meteorological model for estimating 
spatially distributed cotton yield in Khorezm in 2002.  
 
 

2. DATA AND METHODS  

Study Area 2.1 

The study area, the Khorezm region of Uzbekistan, is located at 
the lower Amu Darya River at about 250 km south of the 
present shores of the Aral Sea. The irrigated area covers 
approximately 275,000 ha, is bounded by latitudes 40° 34´N - 
42°59´N and longitudes 60°02´E – 62° 28´°E, at 113-138 m 
above sea level and has 11 rayons (districts in Uzbekistan; 
Figure 1). 

 
 

Figure 1.  Study area 
 

Agriculture plays a dominant role in the economy of the 
Khorezm region. The most important crop of Khorezm is 
cotton, which covered ca. 60 % of the irrigated land (ca. 
165,000 of 275,000 ha) in 1999, while rice, winter wheat and 
other crops have a markedly smaller area share (OblStat, 2002). 
These crops are grown on a patchwork of fields that vary in size 
from ca. 1 ha to ca. 25 ha. Generally, the cotton growing season 
in Khorezm extends from mid-April to the end of September. 
With an average annual precipitation of only 92 mm, crop 
cultivation in Khorezm requires intensive irrigation using water 
from the Amu Darya River. During the cotton season of 2002 
there was only 78 mm of precipitation, whereas the total daily 
potential evapotranspiration (ET0), calculated with the Penman-
Monteith equation (Smith et al., 1991), amounted to 460 mm. 
 

Data 

In this study data from the MODIS land discipline group 
product comprising biophysical parameters such as the FPAR 
(MOD15) and vegetation indices (MOD13) (Justice et al., 
2002) were used. MOD15A2 products are 8-day composites 
with 1 km nadir resolution at global scale. These products were 
generated from the atmospherically corrected surface 
reflectance product (MOD09), the six biome map which is 
stored in the land cover product (MOD12) and ancillary 
information on surface characteristics using a three dimensional 
radiative transfer model (Myneni et al. 2002). MODIS 
MOD13Q1 products contain 250 m ground resolution 16-day 
composites of the NDVI. A bidirectional reflectance 
distribution function (BRDF) composition algorithm is used to 
obtain NDVI values based on couple of optimum atmospheric 
conditions within 16 days. Otherwise a maximum value 
composition is performed on the highest quality MOD09 data 
within this period to generate the NDVI product (Huete et al., 
2002). Both MODIS FPAR 8-day composite scenes from April 
7 till September 30, 2002 and all MODIS MOD 13 NDVI 16-
day composites from 2002 were downloaded from the Earth 
Observing System data gateway. The analysis of the quality 
assessment science data sets assigned to each MODIS product 
resulted in the selection and linear temporal interpolation of 
pixel values with minimum atmospheric or other influences 
(Conrad et al., 2004).  
 

Concept for Crop Yield Modeling 

The conceptual framework for modeling cotton yields within 
the Khorezm region includes the following five principal 
components: 1) data input; 2) cotton area detection; 3) cotton 
yield estimation per pixel; 4) cotton yield estimation per 
administrative unit and validation; 5) data output. 
 
 The data on cotton area was extracted from an existing land 
use classification of 2002 (Schweitzer et al., 2002). This 
classification was generated by using multi-temporal MODIS 
and Landsat 7 ETM+ NDVI data and polygon boundaries on 
the spatially different hydrological conditions in Khorezm in a 
knowledge-based classification approach. From the NDVI time 
series, reference temporal signatures of the major land uses 
were extracted based on 478 training data of the main land uses, 
which were collected in Khorezm during 2002. Investigations 
of the leaf area index development and field observations 
indicated that the crops’ phenological development varies 
spatially within Khorezm. This might be due to temporal 
variations in water supply depending on the distance of the 
fields to the Amu Darya and the major irrigation channels 
(Ruecker and Conrad, 2003). Another often reported reason for 
different LAI development is due to different planting time 
within the region which is again mainly determined by water 
availability. Thus, the spatial knowledge on different water 
supply was incorporated into the classification by a GIS-based 
pre-stratification of Khorezm into hydrological zones, using the 
major drainage channels as boundary criteria. The satellite 
images, stratification boundaries and ground truth data were 
combined with expert knowledge on phenological crop 
development to design specific rules for land use classification 
and for the detection of cotton fields. The total classification 
accuracy was calculated by confusion matrix and amounted to 
81.6 % with an accuracy of 89.5 % regarding the classification 
of cotton (Schweitzer, 2005). The detailed land use 
classification approach and resulting map are described 
elsewhere (Ruecker and Conrad, 2003). 
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The yield for the extracted cotton area was estimated by 
assimilating multi-temporal MODIS, meteorological and crop 
specific data into an agro-meteorological model (see below). 
The pixel-based cotton yield was aggregated to the 
administrative levels of rayons, validated against existing yield 
statistics and presented in the form of maps. 
2.4 

i )(ε

Crop Yield Model Description 

Crop growth and yield were considered to be dependent on the 
radiation received by the crop throughout the growth cycle. 
According to Monteith (1977), there is a strong relationship 
between the cumulative radiation quantity absorbed by the 
foliage during the crop growth period and the biomass 
production. Based on this relationship, a model for estimating 
yield was elaborated as shown elsewhere (Lobell et al., 2003). 
 
 

                Y  (1) ∑ Δ×××= tFPARPARH
 
 
where Y is the cotton lint yield (g m-2), Hi represents the harvest 
index, ε is the light-use efficiency in units of g biomass MJ-1 
PAR. PAR is the photosynthetically active radiation (MJ m-2). 
FPAR is the fraction of PAR absorbed by the plants. FPAR 
values were derived from MODIS data. Δt represents the daily 
time step during the whole cotton growth period. 
 
PAR (0.4–0.7 μm) is part of the short-wave solar radiation (0.3–
3.0 μm), which is absorbed by chlorophyll for photosynthesis in 
the crops. PAR is thus a fraction of the incoming global solar 
radiation Rg. The value of PAR/Rg fraction does not vary much 
with place, climatic conditions and integration time over the 
growing period; generally a constant of 0.48 is used (Varlet-
Grancher, et al.1982). Rg is calculated using the formula of 
Hargreaves (1985). The value of the light-use efficiency was 
adjusted to local conditions by including the environmental 
stress terms ambient air temperature, vapor pressure deficit 
(VPD) and soil moisture cumulative stress index (Goetz, et al., 
1999). The simplified algorithm used for the generation of 
MODIS net primary production data was adopted (Eq.(3)) 
(MODIS land team, 2003). 
 
 
                                   ''' VT ××= εε                     (2) 
 
 
where ε’ is the maximum light-use efficiency, T’ is a daily 
minimum temperature (TMIN) scalar value (°C), V’ is a VPD 
scalar value (Pa). The attenuation scalars are linear ramp 
functions of TMIN and VPD. VPD is the difference between 
saturated vapor pressure and actual vapor pressure. The daily 
saturated vapor pressure is related to air temperature and the 
daily actual vapor pressure can be approximated from the daily 
relative humidity data (Allen et al, 1998). The details on the 
model parameterization can be found elsewhere (Shi et al., 
2007) 
 
2.5 Spatial Downscaling of MODIS FPAR Data 

Due to the spatially fragmented land use distribution and the 
relatively small field sizes in the agricultural landscape of 
Khorezm, the 1 km resolution MODIS time-series FPAR data is 
rather coarse, so that every pixel covers several different land 

uses (Figure 2). This was confirmed by a spatial overlay of 
MODIS pixels on the Landsat 7 ETM+ classified land use map 
of 30 m pixel resolution, which revealed only 32 MODIS pixels 
at a 1 km resolution covering cotton fields with more than 50 % 
area share. Thus, the coarse MODIS data resolution required a 
spatial downscaling for a more accurate estimation of cotton 
yield that is adjusted to the field sizes (Moulin et al., 1998). 
 
 

 
  Legend to a) 

  
  
 Legend to b) 

  
 
Figure 2.  The land use map at 30m pixel resolution (a) and one 
enlarged landscape overlaid with MODIS pixel cell of ca. 1 km 
resolution (dark grid, a) and selected pixels with fractional area 

larger than 50% (red  cross lattice, b). 
 
The empirically determined relationship between the coarse 
MODIS FPAR (1 km resolution) and the more detailed MODIS 
NDVI (250 m resolution) data for green vegetation was applied 
as spatial downscaling strategy (Prince and Goward, 1995; 
Fensholt et al., 2004) to the MODIS data covering the Khorezm 
region. The spatial overlay of the MODIS NDVI pixels on the 
30 m resolution land use map revealed 1187 MODIS NDVI 
pixels covering more than 80 % of the area share of cotton 
fields. Therefore, the MODIS FPAR pixels with greater than 50 
% cotton area were selected as the primary sampling points (N 
= 32). Within each FPAR pixel the corresponding MODIS 
NDVI pixels with 250 m resolution were determined and the 
mean NDVI value per FPAR pixel was calculated.  
 
2.6 

3.1 

Cotton Yield Validation Approach  

In order to validate the model, the modeled yield outputs were 
tested against actual cotton yields in Khorezm based on official 
data for yields of raw cotton  
 
 
 

3. RESULTS AND DISCUSSION 

Spatial Downscaling and Selection of FPAR Data  

In the spatially fragmented agricultural area of Khorezm with 
different land uses and land covers, a direct application of the 
cotton yield estimation model to the relatively coarse MODIS 
pixels at 1 km resolution would cause yield estimations of low 
accuracy. Most 1 km MODIS pixels represented a mixed land 

a) b) 
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surface reflectance from cotton, rice, wheat areas or bare soil. 
There were only 32 FPAR MODIS pixels at 1 km resolution 
which covered > 50 % of the area share of cotton fields. 
However considering NDVI MODIS pixels of 250 m 
resolution, there were 1187 pixels with > 80 % cotton area. In 
the rayons closer to the Amu Darya River (northeast) and in the 
lower central area of Khorezm where the main irrigation 
channels pass through, generally larger cotton fields are found 
than in the more desert-like areas or areas further downstream 
of irrigation channels (compare Figure 1). 
For establishing the relationship between the coarse MODIS 
FPAR data with the more detailed MODIS NDVI data, the 
FPAR values and corresponding NDVI values were extracted 
from 32 selected pixels in twelve 16-day intervals during the 
cotton growth period (Figure 3).  
           

 
Figure 3.  Scattergram of MODIS NDVI and FPAR data for 
different days of year (DOY) during the cotton growth period in 
Khorezm, and their linear fitted model and regression 95% 
confidence intervals. 
 
The scattergram shows a good linear relationship between 
MODIS NDVI and FPAR data (N = 384) with: 
 
 
             (3) NDVI*1799.10187.0FPAR +−=

In this study, the whole FPAR and NDVI data of the selected 
pixels during the cotton growth period were used to predict the 
linear model. Meanwhile, the spatial resolution of the 
estimation unit for the agro-meteorological model was 
downscaled. In the following, only 1187 MODIS pixels with 
250 m resolution and a fractional cover of more than 80 % 
cotton were used for the yield estimation in the crop yield 
estimation model. 
 
 
3.2 

3.3 

Parameterization of Model Input Data  

The yield model parameters Hi (harvest index) and ε’ (light use 
efficiency) were determined based on consultations with local 
agronomists and international references. The values may vary 
depending on climatic and soil conditions in each season, crop 
variety and applied fertilizers. This makes it difficult to choose 
an average factor that is representative for the whole region of 
Khorezm in the considered year, 2002. For lint cotton, several 
researchers defined Hi to be 0.06-0.12 (Sys et al., 1991), 0.08-

0.12 (FAO, 1979) and 0.12 (Bastiaanssen and Ali, 2003). 
Generally, lint cotton yield is considered one-third of the raw 
cotton yield, if no specific conversion factor is known (FAO, 
2005). According to Uzbek agricultural ministry statistics in 
2003, Uzbek farmers harvested 2,900,000 t of raw cotton of 
which 930,000 t of lint cotton were measured, thus, a turnout of 
approximately 32 % is estimated in Uzbekistan (BISNIS, 2004). 
Consequently, an average Hi of 0.36 for raw cotton and 0.12 for 
lint cotton were used. Regarding the value for light use 
efficiency of cotton, Bastiaanssen and Ali (2003) specified the 
permitted range to be 1.5-2.5 g MJ-1 and Rosenthal and Gerik 
(1991) recommended 1.44 g MJ-1. In this study, a field 
experiment carried out in the Khiva district of the study area 
was used to calculate the approximate ε’ value. Under optimum 
water supply practice with five irrigation events during cotton 
growth in 2002, the average yield of raw cotton was 2.99 t ha-1 
(Forkutsa, 2006). Using the meteorological data and FPAR 
values from MODIS pixels in Khiva district in 2002, the 
Monteith model was applied to calculate the maximum light-
use efficiency ε’ = 1.37g MJ-1, and the mean of light-use 
efficiency within cotton growth period is approximately 1.16 g 
MJ-1. Since Khorezm is a flat plain with little spatial variability 
of the general weather conditions, the daily meteorological data 
from the Urgench weather station was used to represent the 
whole region and used to estimate the daily PAR, T’ and V’ 
values. 
 

Spatial Cotton Yield Estimation in Khorezm 

The agro-meteorological model was run to calculate cotton 
yield on the 1187 selected MODIS pixels. The estimated yield 
of raw cotton within 1187 MODIS pixels ranged from 1.09 t ha-

1 to 3.76 t ha-1, with an average of 2.38 t ha-1. A final cotton 
yield map was masked by the cotton area image retrieved from 
the Landsat 7 ETM+ land use classification (Figure 4). 
 

      
Figure 4.  Cotton yield variation across Khorezm in 2002 after 

block-kriging interpolation from selected MODIS pixels. 
 
In Khorezm, all irrigation water that is supplied by a canal 
system originates from the Amu Darya River. Therefore, the 
general spatial distribution of cotton yield coincides with the 
water supply pattern. Figure 4 shows that cotton growth is 
better in two types of rayons. Either, rayons such as Urgench 
(URG) and Khanka (KHA) have more efficient and plentiful 
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water supply as they are closer to the Amu Darya River, or, 
rayons such as Khiva (KHI) which are connected to the distant 
river through a strong canal system. In contrast, cotton yield is 
much lower in downstream areas (e.g. Shavat (SHA) or the 
northern parts of Gurlen (GUR)) or in areas farther away from 
the Amu Darya River where no strong primary irrigation water 
supply exists (e.g. Kushkupyr (KUS), Yangiarik (YA)).  
 
3.4 Data Validation  

Actual cotton yield data from the government statistics were 
used to validate the modeled yield data in Khorezm (Table 1).  

 
‡ Δ: difference (%) = (modelled value – reported value) / 

reported value;  

§ average of Δ is calculated on the absolute value of Δ. 

Table 1 shows that the average differences between modeled 
yield and official reported yield are 10.7 % and 10.6 % for 
selected cotton pixels and the whole cotton area, respectively. 
However, in two rayons in the western region bordering the 
desert, Kushkupir and Khiva, the yield was significantly 
underestimated by the simulation, with -18.9 % and -22.2 %, 
respectively. In contrast the yield was, with 17 % and 13.4 %, 
moderately overestimated in two rayons that are bordering the 
Amu Darya River, Urgench and Yangibazar, respectively. The 
contrasting yield differences can be attributed to the spatial 
variability of MODIS FPAR data reflecting spatially variable 
crop growth within Khorezm. FPAR values which have a good 
relationship to NDVI values have mainly higher values in the 
areas near the Amu Darya River. As was stated above, these 
latter areas benefit from higher water availability than the 
desert-near regions (Figure 1).  
 
Timely and adequate supply of water certainly will result in 
good and homogeneous cotton growth whereas on the marginal 

land, often late planting, retarded crop development, and 
heterogeneous cotton growth and field coverage are being 
observed (cf. also similar spatial plant coverage patterns 
observed in an assessment of leaf area index by Ruecker and 
Conrad (2003)). As a result, the FPAR value of the MODIS 
pixels and therefore also the yield estimated by the agro-
meteorological model is greater in favorable than in marginal 
land. Since the yield estimations in Khorezm so far rely on the 
spatial distribution of the FPAR data, the focus of future 
research will be to further adapt the model by including more 
field-based spatially distributed information such as cotton 
varieties, agricultural practices, and irrigation procedures that 
all influence yields. 
 
 

4. CONCLUSIONS 

In this study, an agro-meteorological model with minimum 
field-based input data and freely available multi-temporal 
MODIS data was applied to estimate cotton yield in the 
Khorezm region of Uzbekistan. The modeled yield data showed 
a good correspondence with the actual yield values provided by 
government statistics at district level. The spatial yield 
distribution coincided with the overall pattern of the irrigation 
system and reflected dependencies on hydrological conditions 
upstream and downstream. A practical application of this 
approach is e.g. to provide yield distribution maps as basis for 
efficient land use planning. Thus, this yield estimation approach 
can be regarded as an economical and feasible way to achieve 
spatially distributed crop monitoring and yield estimation on a 
regional scale. 
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ABSTRACT: 
 
Some years ago the MARS-FOOD group was established to support the Food Aid and Food Security policies of the European 
Commission. The activities are aimed at improving methods and information on crop yield prospects. Russia, Central Asia, and non-
European Mediterranean countries (MECA region), Eastern Africa (IGAD sub-region) and the MERCOSUR region in South 
America were selected as pilot areas. Crop growth indicators are produced based on low resolution remote sensing data, global 
meteorological modelling outputs (ECMWF model) and crop growth simulation models (CGMS and FAO-WSI). Crop yield 
forecasting is done using predictors selected from the crop growth indicators. Dekadal SPOT-VEGETATION data are used as a 
basis for calculation of remote sensing indicators of crop growth. The Normalized Difference Vegetation Index (NDVI) and results 
of Dry Matter Production modelling (DMP) applying the Monteith approach (Monteith, 1972) are used as a main source of remote 
sensing indicators for the MECA region. The indicators are used in aggregated for sub-national administrative unit form applying 
crop mask. Some indicators are derived for a network of representative points. The current dekadal indicators are compared with 
previous year dekadal values or with long-term average dekadal data. Additionally relative time mosaics of indicators are used as a 
tool for crop growth monitoring (Savin, Nègre, 2002). We analyze additionally seasonal cumulative values of indicators by 
comparing seasonal time profiles. As a result, near 10 remote sensing indicators can be derived for each crop for each dekad of 
growing season in aggregated form and the same amount for representative points. Crop yield forecasting starts from an attempt to 
build simple regression equation between statistical crop yield and crop growth indicators. We found that regression with high R2 
can be built for many administrative units of MECA region. During the second phase of crop yield prediction the similarity analysis 
is applied. The aim of analysis is to define a year-analogue for indicator time profiles. This operation is conducted mainly for the 
administrative units where regression analysis does not give acceptable results. The last phase is devoted to comparison of 
indicator’s value with previous year or long-term average value. Final yield prediction is made by expert taking into consideration 
the results of all phases of indicators analysis. The crop yield can be predicted quantitatively based only on remote sensing 
indicators for many administrative units of the region. For some units only a sign of crop yield changes can be predicted. In some 
cases it is impossible to predict crop yield based only on remote sensing indicators. The time when crop yield prediction can be 
made differs from region to region. For the most part of administrative units of the region the best time for crop yield prediction is 
allocated near crop flowering. However, for some units the best time is shifted to earlier or to later period of crop growing season. 
The results of the crop growth monitoring and yield prediction are summarized in the form of agro-meteorological bulletins, issued 
bimonthly for Russia and Central Asia, and for the Mediterranean countries. 

 
 
 

1. INTRODUCTION  

In 2001, the MARS project started what is now called the 
MARS-FOOD Action aimed at giving support to the EU Food 
Security and Food Aid policy by improving information on 
crop prospects, particularly in regions of the world stricken by 
frequent food shortages. The main end users are the European 
Commission services directly involved in food aid (DG DEV, 
DG AIDCO and EU delegations). The activities are carried out 
in close collaboration with the Food and Agriculture 
Organization (FAO) of United Nations. After the initial 
development and demonstration phase (2003-2004) the 
developed methods and systems are now being tested on a pre-
operational basis (2005-2006). One of the test areas includes 
non-European countries of Mediterranean basin, Russia, and 
Central Asian countries (MECA region). 
 

A common problem in crop monitoring and yield forecasting in 
many countries of the world is generally represented by the 
difficulties in extending locally calibrated forecasting methods 
to other areas or to other scales. Several agro-meteorological 
and remote sensing based indicators have proven to be highly 
correlated with yield (Rasmussen 1997; Lewis et al., 1998; 
Reynolds et al. 2000) for certain crops in specific areas. 
Recommendations on how to use multiple regression analysis 
have been released by international organizations like FAO 
(Gommes 2001), but due to the large geographic variability of 
all yield indicators, no synthetic procedure is available yet for a 
general and simple operational yield estimation procedure, 
based on the data available for each single site or country.  
 
The purpose of the method elaborated and used by MARS-
FOOD (Rembold et al., 2006) is not to solve the dilemma of 
geographic variability in yield estimation, but to develop a 
simple method, which for any place of the world combines the 
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