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ABSTRACT: 
 
Operational crop yield forecasting is mostly achieved with empirical statistical regression equations relating regional yield with 
predictor variables, termed “factors”.  Regional yield (the “dependent variable”) refers to average yield over districts, provinces or, 
more rarely, whole countries; they are provided by national statistical services. The factors can be any combination of raw 
environmental variables such as weather variables or indices,  satellite indices such as Normalised Difference Vegetation Indices 
(NDVI), farm inputs (fertiliser use) or outputs from simulation models, for instance water transpired over a given phenological 
phase, maximum leaf area index (LAI), average soil moisture, etc. The approach above is termed “parametric” for two reasons: (1) it 
derives or requires a number of parameters, for instance regression coefficients and the parameters characterise crop simulation 
models and (2) it attempts to identify the factors that condition yields and to understand their action. The difference between 
“parametric” and “non-parametric” methods is not clear-cut; it is mostly operational. Parametric forecasting approaches derive a  
“model” (through a process known as “calibration”) based on historical yield and climatic data. The model is subsequently applied to 
current crops and within season data to issue a forecast of yields. A number of calculations are performed; they are basically the 
same in the calibration and in the forecasting phases. Non-parametric crop yield forecasting techniques attempt to establish a 
typology (qualitative description) of the environmental conditions that occur during the growing season, assuming that similar types 
of seasons lead to similar yields. Similar years are grouped in classes. During the calibration phase, the types of seasons are defined 
in such a way as to minimize the variability of yields within classes and maximise between-classes variance. The forecast proper is 
done by categorizing the current year into one of the classes, and by assigning the class yield to the current forecast. Depending on 
the actual method, the forecast itself may require little more than comparing some variables with reference values, e.g. a threshold. 
This paper offers a rough comparison of simple yet classical parametric approaches with two different non-parametric methods, 
applied to national maize yields in Zimbabwe. The conclusion suggests that the simple non-parametric approaches are not inferior, in 
terms of accuracy and ease of use to the more complex parametric models 
 
 
.

1. INTRODUCTION 

Operational crop yield forecasting is mostly done with crop 
simulation models and empirical statistical regression equations 
relating yield with predictor variables, usually termed “factors”. 
For the purpose of this paper, crop forecasting and crop yield 
forecasting refer to operational within-season regional yield 
forecasts, i.e. forecasting of average crop yield (tons of 
agricultural product per ha) over large areas. The areas are  
administrative units, as this is the scale at which most socio-
economic data and crop statistics are available to decision 
makers.  
It is stressed that crop forecasts are eventually calibrated against 
crop statistics, so that, strictly speaking, crop forecasts are 
actually forecasts of agricultural statistics; they incorporate all 
the errors and biases that affect statistics. 
Crop forecasts are typically issued between the time of planting 
and the time of harvest. They use past data (data between 
planting or before, and the time of the forecast) and “future” 
data. Future data can be implicit or explicit. In the first case, the 
future is assumed to be “normal” whereas the second requires 
that   numerical values be actually specified, for instance 
historical data or stochastic weather generator outputs (Lawless 
and Semenov, 2005; Hansen et al., 2006).  

There is a variety of generic forecasting methods, of which 
most can somehow be applied to crop forecasting as well (Petr, 
1991). According to Armstrong (2001b), “judgement pervades 
all aspects of forecasting”, which is close to a definition which 
the author has frequently applied to crop yield forecasting, 
which can be seen as  “the art of identifying the factors that 
determine the spatial and inter-annual variability of crop yields” 
(Gommes, 2003). In fact, given the same set of input data, 
different experts frequently come up with rather different 
forecasts of which, however, some are demonstrably better than 
others, hence the use of the word “art”. 
There appears to be no standard classification of forecasting 
methods (Makridadis et al., 1998; Armstrong, 2001a). 
Forecasting methods can be subdivided into various categories 
according to the relative share of judgement, statistics, models 
and data used in the process. Armstrong identifies 11 types of 
methods that can be roughly grouped as judgemental, based on 
stakeholders’ intentions or on the forecaster’s or other experts’ 
opinions or intentions, and statistical, including univariate (or 
extrapolation), multivariate (statistical “models”) and theory-
based methods. Intermediate types include expert systems, 
basically a variant of extrapolation with some admixture of 
expert opinion, and analogies, which Armstrong places between 
expert opinions and extrapolation models.  
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2.1 

                                                                

In this paper, we consider “parametric models” to be those that 
attempt to interpret and to quantify the causality links that exist 
between crop yields and environmental factors – mainly 
weather-, farm management and technology. They include 
essentially crop simulation models and statistical “models” 
which relate crop yield with assumed impacting factors. 
Obviously, crop-yield-weather simulation belongs to 
Armstrong’s Theory-based Models. Non-parametric forecasting 
methods are those that rely more on the qualitative description 
of environmental conditions and do not involve any simulation 
as such (Armstrong’s expert systems and analogies). 
There are few explicit applications of non-parametric 
forecasting methods to agricultural yields, among others 
because of differing usage of the term “non-parametric (e.g. in 
Orlandini et al., 2004). Some methods are described by 
Gommes et al., 2007. 
The paper provides a rapid comparison of four forecasting 
methods in the specific case of maize in Zimbabwe (Southern 
Africa). After a short introduction to climate and cropping in 
the country (2.1), two parametric methods are illustrated first  
(regression, in section 2.2, and model and regression based, 
section 2.3). The two non-parametric methods that are 
described next include a threshold-oriented approach (2.4) and 
an approach using the statistical clustering of annual rainfall 
profiles (2.5).     The overall performance of the four methods is 
summarised in table 2. 
 

2.  A SIMPLE CASE STUDY FOR MAIZE IN 
ZIMBABWE 

General setting and removal of yield trends 

To illustrate and compare some non-parametric methods, a 
didactic example was prepared to estimate yields in Zimbabwe 
(Southern Africa) covering 41 years from 1960-61 to 2001-
2002 (21 years from 1982-82 to 2001-02 for the simulation 
approach in 2.3).  
 

 
Figure 1: Map of Southern Africa. The hatched area 
corresponds to the main maize growing areas. The background 
map shows vegetation densities as estimated from satellite 
indices (light, medium and heavy vegetation) 
 

Rainfall over the main maize growing area was extracted from 
NOAA monthly rainfall grids* using the WINDISP** software 
after the grids were converted to WINDISP format. All climate 
and crop statistics given hereafter refer to the maize growing 
area of NE Zimbabwe illustrated in Figure 1.  
 

 
Figure 2: : Rainfall and ETP (evapotranspiration potential)  
patterns in Zimbabwe between 1960-61 and 2001-2002: 
average monthly values, maximum and minimum recorded for 
each month, as well as rainfall profiles of driest and wettest 
years.  
 

Figure 3: Maize yields in Zimbabwe, together with their trend 
and the and detrended value (departure of actual values from 
the trend). 
 
Average rainfall amounts to 812 mm per year, but the driest 
year (1991-92, an El Niño year) recorded only 462 mm, while 
the wettest experienced 1278 mm in 1973-74. Note, 
incidentally, that 1973-74 corresponds to a severe drought in 
the West African Sahel; this “correlation” derives directly from 
the movements of the Inter-Tropical Convergence Zone (ITCZ).     
In Zimbabwe, the growing season roughly covers the period 
from November to March-April (Figure 2), and is also 

 
 

 
* The data are available upon request from the website 

ftp://ftpprd.ncep.noaa.gov/pub/precip/50yr/gauge/0.5deg/ 
** WINDISP is a software developed by FAO and other 

agencies (USGS, USFS, FEWS, SADC) to process satellite 
imagery in food security projects. The latest version can be 
used for a number of gridded data, including rainfall. The 
software is available at 

  ftp://ext-ftp.fao.org/sd/reserved/agromet/windisp 
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2.2 

2.3 

                                                                

dependent on the different behaviours of the two main sectors 
of the Zimbabwean agriculture, i.e. large-scale commercial 
farms on the most suitable soils and subsistence farmers in so-
called “communal lands”. Part of the country being semi-arid 
with a marked dry season, water is the dominant factor driving 
the inter-annual variability of crop yield. 
Since independence in 1980 but particularly after 1990, the 
country has been affected by a somewhat disorderly land 
reform aiming at redistributing part of the land under large-
scale farms. The combination of land reform and changes that 
were made to the national agricultural statistical system, in 
particular the inclusion of “communal lands” in the statistics, 
results in figure 3. A curvilinear trend had to be fitted to the 
data. Clearly, the trend itself is due to a combination of factors 
where weather plays only a minor part. The trend must be 
removed before any agrometeorological analysis can be carried 
out. This was done for the lowermost curve in Figure 3, where 
yield is expressed as the difference between the observed values 
and the trend. The trend accounts for 13 % of the interannual 
yield variability, which is in line with the fact that parts of the 
country are semi-arid. 

 
Figure 4: Relation between detrended maize yield (expressed as 
standard deviations from average)  and average July-June 
rainfall in maize growing areas of Zimbabwe between the 
cropping seasons of 1961-62 and 2001-02. 
 
Water balance parameters, in particular ETA, are ideal “value-
added” variables to be used in crop forecasting (Gommes, 
1998), and they are at the heart of the FAO crop forecasting 
approach. Water balance parameters include actual crop 
evapotranspiration, water surplus and water deficit over main 
crop stages (e.g. emergence, vegetative phase, flowering).  

 
 First parametric approach: yield-rainfall relations 

between 1961-62 and 2001-02  

The simplest possible parametric method to estimate crop yields 
is to regress them against rainfall, particularly in areas where 
water is the dominant limiting factor to agricultural production 
(Palm, 1997). Figure 4 shows the roughly linear relation 
between yield and rainfall, with a coefficient of determination 
amounting to 0.4563, i.e. about 46% of the variability of 
detrended yields can be assigned to rainfall (Table 2).  

 

 
 Second parametric approach: simple simulation of 

maize yields in Zimbabwe (1981-82 to 2001-02) 

The second parametric approach that is being illustrated uses 
the standard FAO methodology (Gommes et al., 1998; 
Gommes, 2003) and the AMS* software. A crop specific soil 
water balance was computed for the years 1981-82 to 2001-02 
using 10-daily data from 25 meteorological stations in 
Zimbabwe and 245 in the surrounding countries. Actual maize 
crop evapotranspiration (ETA, mm) was computed for all the 
stations, gridded over the region and averaged for the maize 
growing areas.  
 

 
2.4 

* AMS, the AgroMetShell is the standard FAO software used 
for crop forecasting at the national level. It can be 
downloaded from 

 ftp://ext-ftp.fao.org/sd/reserved/agromet/agrometshell 

Figure 5: Relation between detrended yield and actual maize 
evapotranspiration in maize growing areas of Zimbabwe 
between 1982 and 2002. 

 
 

 
The basic idea behind the methodology adopted by FAO is that, 
as de Wit was among the first to recognise in the mid fifties, 
there is a direct link between plant transpiration and 
productivity (van Keulen and van Laar, 1986). For “not too 
severe” water stresses, yields are rather linearly correlated with 
actual evapotranspiration. Interestingly, this relation holds 
across  various spatial scales, from leave to plant to field to 
administrative region. The relation between ETA and maize 
yield is shown in Figure 5 Altogether, ETA and trend account 
for about 73.75 % of the interannual variability of maize yields 
(Table 2). 
 

 First non-parametric approach: threshold based yield 
forecasting (1961-62 to 2001-02) 

The first non-parametric method is a simple threshold-based 
crop-forecasting table. 
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2.5 

                                                                

In Zimbabwe, like in most of southern-central Africa, there is a 
tendency for rainfall distribution to be bimodal, with a dry 
period in January or February, as can be seen in Figure 2.  In 
fact, when correlating yields with monthly rainfall, the 
coefficient turns out to be highest in January (R=0.656) and 
February (0.500). The next highest value corresponds to March 
(R=0.367)   
 

 
Table 1: Example of a threshold-based crop forecasting table 
for maize in Zimbabwe, based on yields recorded during the 
period 1961-62  to 2000-2001. Yields are expressed in standard 
deviations about the average for the period. 
 
It was found that a good separation of yield categories could be 
achieved when grouping years by January and February rainfall 
totals as shown in Table 1.    
For instance, yields fall in the range of  –0. 05 to 0.55 standard 
deviations from average when January rainfall is between 156 
and 249 mm: they are about average (0.25 standard deviations 
higher than the average). When we now separately examine the 
group of years characterized by January rainfall from 75 to 155 
mm (Group 1, Table 1), 156 to 249 mm (Group 2) and 250 to 
327 (Group 3) rather contrasting correlations are found between 
yields and monthly rainfall.  
In Groups 1 and 2, the highest correlation is between yield and 
February rainfall  while in Group 3, we find a negative highest 
correlation between yield and December rainfall. This results 
from the fact that high January rain will not have a detrimental 
effect on yield only if December is relatively dry. 
The described method will of course forecast only the six yield 
values that appear in Table 1, together with their confidence 
interval. Yet, the strength of the correlation remains comparable 
with the one obtained with the less empirical simulation 
approach (Figure 6). 
The threshold-based approach also illustrates the fact that this 
non-parametric method can somehow be seen as a discrete 
variant of 2.2: two regression equations between yield and 
rainfall could be developed, one using January and February 
rainfall during relatively dry years, and another based on 
January and December precipitation during wetter years.     
 

 
Figure 6: Comparison of estimated and observed yields in 
Zimbabwe between 1961-62 and 2001-02 using the threshold 
method described in Table 1. Yields are expressed in standard 
deviations from the average.  

 

 
 Second non-parametric method: rainfall profile 

clustering method (1961-62 to 2001-02) 

For this second non-parametric method, the basic assumption is 
that similar rainfall profiles (July to June) will on average result 
in similar yield categories.  

*The profiles were obtained using the ADDATI  multivariate 
statistical package developed by Griguolo at the university of 
Venice. The number of classes to adopt is somewhat arbitrary. 
In this case, 12 were found to be a good compromise. Some 
typical rainfall profiles are shown in Figure 7.  
They can all be described in terms of rainfall distributions and 
amounts. For instance class 1 stands for “low but well 
distributed rainfall”, class 3 for “abundant and well distributed 
rainfall with a mid-season dry spell”, etc. 
Regarding the potential value of the method as a crop-

forecasting tool, the coefficient of determination R
2
 of 0.5692 is 

amazingly close to the one obtained with the crop specific soil 
water balance (0.5653, Figure 5). 
With the classification method, the number of different yields is 
obviously the same as the number of classes. To use the 
approach for crop forecasting in operational mode, a given 
season is compared with the 12 classes and assigned to one of 
them. The yield for the year is then taken as the average yield 
(with confidence interval) of the class.  
 

Figure 7: Some typical rainfall profiles for Zimbabwe. Each 
 

* The latest update can be downloaded from the website given 
hereafter: http://cidoc.iuav.it/~silvio/addati_en.html 
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profile is the average of a number of different years that have 
been assigned to that class by the clustering programme. 
Rainfall is expressed in mm. 

The reason why, in spite of their conceptual simplicity, non-
parametric approaches yield good results lies in the fact that 
weather variables are correlated, and the fact that they do not 
vary randomly over space and time. Therefore, one variable, 
especially a seasonal time-profile, can indirectly capture a 
number of environmental factors. It is certainly worth 
remembering the classical work of Cane et al  (1994) on the 
relations between El Niño-Southern Oscillation (ENSO) indices 
and maize yields in southern Africa:  better correlations are 
obtained between ENSO indices and yields than between 
rainfall and yield. ENSO is a more comprehensive variable that 
describes, albeit indirectly, the overall behaviour of weather 
conditions during the growing season better than a single 
variable.    

 

Figure 8: Comparison of estimated and observed yields in 
Zimbabwe between 1961-62 and 2001-02 using the rainfall 
profile method. Yields are expressed in standard deviations 
from the average. 

Timeliness, cost and spatial scale are some of the criteria that 
are adopted when selecting crop-forecasting methods. In view 
of the ease of implementation of the non-parametric methods, it 
is certainly worth exploring their potential further. 
It appears further that non-parametric methods are as accurate 
as the deterministic ones, and that they are comparable in terms 
of timeliness. Non-parametric approaches, however, are much 
less demanding in terms of inputs and “technology” (processing 
power), so that some of them can even be applied at village 
level (the “threshold-based”  approach).  
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