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ABSTRACT:

The latest very high resolution satellites have an important impact in geoinformatic industry. As an alternative for the aerial
photos, detailed maps in multiple scales can frequently and easily generated or updated from images with a gain in cost and time of
operations. Here, we review different methods that we used to correct a very high resolution image of ORAN (ALEGERIA), in this
application we used SPOT 5 Super Mode image with 2.5m ground sample distance, we test seven geometric models for the
orthorectification. And we deduce the applicability of different geometric models for the orthorectification of SPOT 5 images and

the reachable accuracy.

1. INTRODUCTION

The development of the society is directly related to the
accessibility and the quality of the map, which is considered
like a fundamental document for several applications such as
natural resources exploitation, disaster ~management,
commerce... Many other social interactions are simplified if
maps are more detailed and widely distributed.

Before, the only solution for medium and large scale maps
production was by exploitation of the aerial photography, but at
the end of 1999 the very high resolution satellite imagery is
commercially available for civil applications, this product is
becoming rapidly a real concurrent of the aerial photography.

Many providers of very high resolution satellite images exist
and they offer images with a ground sample distance (GSD)
from 0.7 to 5 meters, Table 1 shows some very high resolution
satellite and their characteristics:

Satellite Altitude | Swath | Revisit time GSD
Spot 830km | 60km | 3-26 Day 5-2.5m
Eros-al 480 km | 12.5k 3 Day 1.8m

m
Orbview3 | 740km | 8 km 1-3 Day Im
Ikonos 680km | 11km | 1-3 Day Im
Quickbird | 600km | 16 km | 1-5 Day 0.61-2.4m

Table 1. Very high resolution satellites. (A. Puissant, 2003)

This type of images gives us all the advantages of satellite
imagery technology like revisit time, it hasn’t a geographical or
political frontier and relatively low cost ..., in the other hand
different problems appear with this new technology such
difficulty in the application of classic methods of classification,
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occlusion, shadow, textural characteristic of the objects is more
important...

All these problems are related to the extraction of information.
Before the use of this information for GIS or mapping
applications first we must consider the geometric aspect of this
new satellite imagery technology, this is equivalent to give a
response to the question “how the imaging system transform
the location of the pixels on the earth to the image?”. Figure 1.
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Figure 1. Geometric modelling.

Several authors were studied this problem, generally we have
two categories of geometric models: physical and empirical
models. The physical called also rigorous or deterministic



models which reflect the physical reality of the viewing
geometry (platform, sensor, Earth and sometimes map
projection); generally in the optical imagery these models are
based on the well-known collinearity condition. The empirical,
implicit or non parametric models can be used when the
parameters of the acquisition systems or a rigorous 3D physical
model are not available. Since they do not reflect the source of
distortions (Toutin, 2003), these models represent the
acquisition system as a mathematical transformation between
object and image spaces.

2. RATIONAL FUNCTION MODEL

As an alternative for the physical model, 3D rational functions
are widely used as a geometric model for very high satellite
images, this approximation of physical model is given as a set
of rational polynomials expressing the normalized row and
column values, as a function of normalized geodetic latitude,
longitude, and height (NIMA, 2000),

The rational function polynomial equations are defined as:

r= [)I'I(Xa KZ)j
[)I'Z(Xa KZ)j
[)1'4(X5 KZ)j
Where ¢, r=1image coordinates

X Y Z= object coordinates

The rational function polynomial equation numerators and
denominators each are 20-term cubic polynomial functions of
the form:
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Where a; = polynomial coefficients
Y X Z = geodetic latitude, longitude, and

height

The parameter a; for the denominators is equal to 1, In order to
solve the RF coefficients (78 coefficients); at least 39 control
points are required (K. Di, R. Ma and R. Li, 2002).

Space Imaging and DigitalGlobe provide with the image in
TIFF format an ASCII file that contains the translation and
scale factor used for coordinates normalisation and the eighty
coefficients. These RPC files (Rational Polynomial
Coefficients or Rapid Positioning Capability) are used by the

software that supports IKONOS and QUICKBIRD geometric
model for georeferencing and the orthorectification. Some other
software derives Rational Polynomial Coefficients directly
form ephemeris provided with the satellite images and uses the
same orthorectification process as IKONOS or QUICKBIRD.

These “intelligent” polynomial functions reflect then better
the geometry in both axes and reduce the over-
parameterization and the correlation between terms (Toutin,
2003).

3. GEOMETRIC MODELS
3.1 Direct Linear Transformation

Direct linear Transformation known as DLT, it was developed
in 1971 by Abdel-Aziz and Karara for close-rang
photogrammetry applications. This model can also be used for
image rectification (C. vincent Tao and Yong Hu 2001).

The DLT represents a special case of the Rational Function
Model, with first-degree  polynomials and common
denominators. It can be expressed as:

_LX+ LY+ LZ+ L,
T L X+ LY+ L, Z+1
LX+ LY+ LZ+ L
L Xt L Y+ L, Z+1

Where ¢, r=1image coordinates
X Y Z= object coordinates

L,...L;=DLT parameters

With eleven parameters this model can be solved with 6 points
minimum.

3.2 3D Affine Model

This model can be use to express the relationship between
object and image coordinates for scanners with a narrow
AFOV (Angular Field Of View) and moving with constant-
velocity and constant attitude (M. Morgan , 2004).

r=LX+LY+LZ+1L,
c=L X+ LY+ L Z+ L

It has eight parameters: translation (two), rotation (three), and
non-uniform scaling and skew distortion within image space
(three). (C.S.Fraser & T. Yamakawa 2003).

3.3 The Parallel Perspective Model

Since the acquisition instruments are line scanning systems, a
simplification of the DLT which limits the above equation to
one line seems to be justified (Vozikis, G., Fraser, C., Jansa,
J., 2003).



L X+ LY+ LZ+ L
r =

L X+ LY+ L, Z+1
c=LX+LY+LZ+1L,

This may be interpreted as if the image has the perspective
projection in rows (scan line direction) and affine in columns
(along-track).

3.4 2D Affine model

When the image area is flat, low-order polynomials can offer
good results, in the case of 2D affine transformation the Z
coordinate is set to 0 so the expression become:

r=L X+ LY+ L
c=L X+ LY+ L

3.5 Projective transformation

This transformation describe the projectivity between tow
plans
(H.B. HANLEY and C.S. FRASER, 2001).

_LX+ L)Y+ L
L x+Ly+

_LX+ LY+ L

O LX+LY+1

The object plane and the image plane do not have to be
parallel. 2-D DLT guarantees accurate plane- to-plane mapping
regardless of the orientation of the planes. The control points
must not be collinear and must form a plane. (Y.H Kwon.
1998)

4. EXPERIMENTS

4.1 Overview

The data used in this study is an image of Oran (Algeria) that
was acquired at 10:50am local time on April 24th, 2004. A
subset has been taken over the area of ARZEW, this subset has
a size of 5105%2825 pixels (Figure 2.), the south of this region
is relatively flat, and the northern zone is mountainous with an
elevation range from 0 to 310 meters above mean sea level.

Figure 2. The sub-set over ARZEW.

A raster DTM used for the orthorectification was been
generated form a digitalisation of contours from a
georeferenced map in 1/25 000 scale, and also 19 Points was
been extracted from this map used as control and check points.

4.2 Tests and results

The geometric models that we evaluate in this study are: DLT
(Direct linear Transformation), 3D affine model, parallel

Xmax | Xmin | Xrms | Ymax | Ymin | Y rms
DLT |3.3513]0.3769 | 1.6872 | 1.7639 | 0.0977 | 0.8177
3D 15 6404 | 0.0129 | 13502 | 2.4752 | 0.3384 | 1.3405
Affine
Parallel | 2.2661 | 0.0378 | 0.9207 | 2.4752 | 0.3384 | 1.3405
2nd
order | 1.1775 | 0.0087 | 0.5651 | 0.9488 | 0.0138 | 0.4653
Poly
Ist
order | 2.2661 | 0.0378 | 0.9207 | 1.2764 | 0.0081 | 0.5397
REM
2D 47977 | 0.2881 | 2.5731 | 2.9848 | 0.0545 | 1.427
Affine
pll‘rl(‘)lje 3.1274 | 0.0189 | 1.6281 | 2.9251 | 0.1207 | 1.4853

perspective model, 3D Second -Order Polynomial model, first
order 3D RF (Rational Function) Model, plan projective model
and plan aftine model.

The first test is realized with 15 control points and 4 check
points (Table 2., Table 3.), we note that the perspective
parallel model provide a RMS of 0.9 pixel in the x direction
and 1.3 pixels in the y direction; the RFM and 3D Second-
Order Polynomial gave an RMS of 0.5-0.4 pixel for the control
points but 0.4 -0.9 for check points. About plan projective
model we have 1.6 pixels in x and 1.4 pixels in y direction, a
weak precision, but only 6 point without elevation are needed
to extract the model parameters.

Table 2. First test results for control points.




Table 3. First test results for check points.

In the second test (Table 4.) we use all the 19 points as control
points, the best RMS is given by 3D Second Order Polynomial
model (0.6 pixel) and RFM, the projective parallel model gave
0.9 and 1.2 pixels and for plan projective model 1.6 and 1.4
pixels in x and y direction respectively.

Xmax | Xmin | Xemq | Ymax | Ymin | Yemq
DLT |2.6246 | 0.0073 | 1.6665 | 2.4259 | 0.0296 | 1.0269
3D 15 6537 | 0.0806 | 1.4218 | 27017 | 0.1839 | 1.2811
Affine
Parallel | 2.1603 | 0.049 | 0.9035 | 2.7017 | 0.1839 | 1.2811
2nd
order | 1.5275 | 0.0144 | 0.692 | 1.5233 | 0.0123 | 0.6423
Poly
Ist
order | 2.1603 | 0.049 | 0.9035 | 1.7346 | 0.0663 | 0.7642
REM
2Dy 7977 | 02881 | 2.5731 | 2.9848 | 0.0545 | 1.427
Affine
pli‘rl(‘:je 3.1274 | 0.0189 | 1.6281 | 2.9251 | 0.1207 | 1.4853

Table 4. Second test results.

In the third test (Table 5.) we use the 19 control points, and
same 19 points for check points but we set their elevation as 0,
this give us an idea about the influence of z variation in the
different models, in this test we deduce that the 3D Second-
Order Polynomial model is very sensitive to the variation in
elevation, the maximum displacement in points position is 41
and 59 pixels in x and y respectively; The RFM and the
perspective parallel mod el gives 19 pixels in x direction but
for y the first give 18 pixels and the second 7 pixels for the
same point.

Xmax | Xmin | Xemq | Ymax | Ymin | Yemq
DLT | 31.159|0.7229 | 10.212 | 10.451 | 0.1106 | 3.2949
3D 18.931 | 0.0396 | 5.4018 | 7.2066 | 0.0002 | 1.9935
Affine
Parallel | 19.244 | 0.1863 | 7.2005 | 7.2066 | 0.0002 | 1.9935
2nd
order | 41.233 | 0.011 | 14.453 | 59.698 | 0.4521 | 19.922
Poly
Ist
order | 19.244 | 0.1863 | 7.2005 | 18.931 | 0.0244 | 8.3472
RFM

Table 5. Third test results for check points.

In the final test (Table 4.) we change the latitude and longitude
of one of 19 points about 0°0°1” to study the ability of these
models to detect the erroneous point; here we can see that all
these models are able to detect the erroneous point.

Xmax | Xmin | Xrms | Ymax | Ymin | Y rms
DLT 3.4377 | 0.1019 | 2.6753 | 2.4259 | 0.046 | 1.3479
3D 2.2346 | 0.5809 | 1.6926 | 2.2487 | 0.0898 | 0.95
Affine
Parallel | 1.527 | 0.2323 | 0.9644 | 2.2487 | 0.0898 | 0.95
2nd
order | 2.3421 | 0.2139 | 1.1051 | 2.119 | 0.3491 | 1.5289
Poly
Ist
order 1.527 | 0.2323 | 0.9644 | 1.9363 | 0.9517 | 1.5138
RFM
2D 4.7977 | 1.8701 | 3.1151 | 1.5091 | 0.0545 | 0.9277
Affine
pli‘rl(‘:je 3.1274 | 0.3895 | 1.6281 | 1.128 | 0.2751 | 0.7643
Dmax Demq Derr
DLT 6.1591 1.2447 6.1591
3D Affine 5.9015 1.2752 5.9015
Parallel 4.9593 1.1618 4.9593
2nd order Poly 2.7873 0.7551 2.7873
Ist order RFM 4.7701 1.1005 4.7701
2D Affine 6.1130 1.4339 6.1130
plane Projective 5.4888 1.1347 5.4888

Table 6. Last test results (Dmax is the maximum displacement
and Derr the displacement of the erroneous point).

Since the third order 3D FRM is the general case of all the
precedent models, the module that calculate each model
generate an equivalent RPC file by giving 0 to all the
coefficient that must be removed , for example for the second
order 3D polynomial all the coefficients of third order terms
are set to 0.

This file is loaded with the SPOT5 image as an IKONOS or
QUICKBIRD image in images processing software that support
these satellites models (RFM).

Finally the first order model is used to generate an orthoimage
using the DTM generated from 1/25 000 map, the resulted
orthoimage is superimposed with the map to facilitate the
updating (Figure 3.)



Figure 3. Superimposition with transparency of the map and
orthoimage.

5. CONCLUSION

In this paper we studied the applicability and the accuracy that
we can achieve with different geometric models for the
orthorectification SPOTS5 images and we can deduce that:

The parallel projective model gave better results then the 3D
affine and DLT model.

The second order 3D polynomial and first order 3D RFM gave
are better but we must have at least 10 and 8 points uniformly
distributed over the image.

The 2D affine and projective transformation gives an
interesting since we haven’t to measure the elevation of the
points.

The second order 3D polynomial is the most sensitive to the
variation in elevation.

The creation of RPC files can be an intermediary solution for
geometric modelling, because it represente the general case of
many models, reflect then better the geometry in both axes
and it is supported by many software.

Future work will be focused on the matching and the extraction
of DTM from VHRS imagery and more detailed study for
geometric modelling using large set of images.
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