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ABSTRACT: 
 
In this paper a major improvement of the generic rigorous sensor model for along track stereo optical satellite sensors which has been 
developed at UCL over the last three years is introduced, in detail. This improved model is implemented for satellite images where 
information of the orbit (state vectors) of the acquired satellite is provided, as is usual nowadays. The main achievement is that the 
precision of the solution is improved along with the accuracy, as the correlation between the exterior parameters is dramatically 
eliminated. Moreover, it is possible to carry out self calibration without correlation of the exterior orientation parameters with the 
interior orientation parameters (even for the calculation of the focal length).  This model can be solved directly if the attitude 
information needed for a photogrammetric solution is given or after a calibration process using a small number of GCPs, in order to 
calculate missing information. The model is evaluated using SPOT5-HRS imagery. 
 
 

1. INTRODUCTION 
In recent years, CCD linear array sensors have been widely used 
to acquire panchromatic and multispectral imagery in 
pushbroom mode for remote sensing applications. Sensors like 
SPOT, IKONOS and Quickbird provide not only high 
resolution, but also along track stereo capability. Moreover 
these satellites have on-board instruments and autonomous 
system of positioning and attitude control that will enable high 
absolute location accuracy.  
However, the metadata provided together with the images are 
focus on solving the orientation of the sensor using specific 
models which are not compatible with the well known 
photogrammetry solution based on collinearity equations. As an 
example, IKONOS and Quickbird use the rational function 
polynomial model for orientation while SPOT uses the ‘viewing 
geometry model’. These models are something like ‘black box’ 
for the researchers because mainly the interior orientation of the 
sensors is not known at all or is not well established.  Moreover, 
because of the high correlation between the exterior and interior 
orientation parameters in a photogrammetric solution it is not 
possible to achieve a precise and more importantly an accurate 
solution without knowledge of the interior orientation 
parameters.  
But, why a photogrammetric solution is the subject? In a few 
words, it is a very well known and examined procedure along 
with the ability of producing more accurate and precise results 
than the other procedures using less reference data. As a 
example for SPOT-HRS viewing model it is needed to be 
known the viewing angles of each of 12000 CCDs while in a 
photogrammetric solution the rotation angles of the central CCD 
is enough. Moreover, is more general model and can be used in 
every optical sensor. Finally, if it is well establish can be used in 
in-flight and in self-calibration processes.  
In this paper an attempt is done in order to achieve a 
photogrammetric solution which can be used for every optical 
pushbroom sensor even in case where the interior orientation 
parameters are not known. This means that we try to develop a 
model where it is possible not only to calculate the exterior 
orientation but also the interior orientation of the satellite with 
acceptable precision and accuracy. It can be done only in case 
where high accurate navigation data (state vectors) are provided 
during the acquisition of the images.  It is an improvement of 

the UCL model (Michalis and Dowman, 2005) which has been 
developed in UCL since 2002. 
 

2. MODEL DESCRIPTION 
The simulation of the pushbroom sensor is more complicated 
than the frame camera model. The scanning effect on the 
ground is due to the motion of the satellite. The pushbroom 
model is a kinematic model. A single image consists of a 
number of framelets which are independent one-dimensional 
images with their own exterior orientation parameters (Dowman 
and Michalis, 2003). Thus, in a rigorous sensor model the 
satellite motion in space should be described as accurately as 
possible. In other words, a rigorous sensor model should 
describe the state of the satellite during the acquisition time of 
the images. Six parameters are enough to establish the state of 
the satellite at an epoch (time stamp), which are the state vector 
associated with position and velocity vectors. This final 
statement leads to the conclusion that for a single pushbroom 
sensor the simplest model has nine unknown parameters; six to 
describe the state and three the attitude of the satellite.  
On the other hand the model should be a generic one capable to 
be used in various sensors. Thus, it is based on the collinearity 
equations which are generic equations relating the image space 
with the ground space. However, for the simulation of the 
acquisition geometry of pushbroom images the collinearity 
equations should be modified as it has already been mentioned.   

2.1. Modified collinearity equations of pushbroom scanners 
A pushbroom image consists of a number of consecutive 
framelets which are acquired due to the satellite motion. Thus, 
the collinearity equations are modified in a way where the 
ground coordinates and the rotations of the perspective center 
are modelled as a function of time.  
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where 
c  is the focal length 
t  is the acquisition time of a framelet which is defined in terms 
of image coordinates  



X, Y, Z are the ground coordinates of a point 
Xc(t), Yc(t), Zc(t) are the ground coordinates of the framelet 
perspective center as a function of time  
λ is a scale factor which varies from point to point  
M(t) is a 3x3 rotation matrix which brings the ground coordinate 
system parallel to the framelet coordinate system  as a function 
of time.  
y is the y-framelet coordinates of the corresponding point 
yo is a small offset from the perspective center origin 
 
2.2. Fundamental point in the sensor modeling development 

In this section the fundamental point in the sensor modelling 
research is introduced. If a thorough examination is taken, to the 
form of the second order polynomials (e.g.Xc(t)=Xo+α1t+b1t2 ), 
it is clearly understood that because the results should be in 
meters, the units of the coefficient α1 should be in meters/sec 
and the b1 units should be in meters/sec2. Definitely this means 
that the first order coefficient represents the velocity of the 
satellite on the reference axis and in the same way the second 
order represents the acceleration on the same axis. For the same 
reason, the first and the second order coefficients in the rotation 
angles polynomials, represent the angular velocity and the 
angular acceleration, accordingly.  
As a conclusion, using the notation of equation 1 the 
Xc(t),Yc(t),Zc(t) should be at least, first order  polynomials, 
representing the position and the velocity of the base point (state 
vector) while the polynomials ωc(t),φc(t),κc(t) at least, constant.  
 
2.3. UCL model in Inertial Coordinate system 
In this paragraph the UCL sensor model is described in a few 
words as its results along with the improved model is involved 
in the evaluation process. The UCL sensor model is developed 
in Inertial Coordinate where the collinearity equations are 
modified and combined with orbit determination-propagation 
methods (Michalis and Dowman, 2005). The fundamental 
assumption is that Kepler motion is maintained for the 
acquisition time of the along track images. Different versions of 
the model are developed based on different orbit determination-
propagation methods. In the evaluation process only the version 
which is based on the Kepler problem (orbit propagation) is 
used. Using Kepler’s equation is the future state of a satellite 
can be found given the last known position and velocity vectors 
at a particular time (Bate et al.,1971). In the sensor modeling 
this equation can be used as follows: Assuming that, the state 
vector of the principal point of the base framelet of the first 
image of the along track images sequence is known. Then, using 
this equation the state vector of the base framelet of the first 
image is related to the state vectors of principal point of the base 
framelet of each along track images and even more to the state 
vectors of all the other framelets in every image. The number of 
unknown parameters is reduced, as only the state vector of the 
first along track image should be defined.  
 
2.4. Improved UCL model in Geocentric Coordinate system 
In the improved model the orbit of the satellite is simulated 
based on the provided navigation data. The initial research 
achievements what the improved sensor model should be reach 
are the following:  

• Fitting of the satellite orbit as accurate as possible. The 
simulation should be carried out in a geocentric coordinate 
system in order to avoid distortions caused by earth curvature 
and map projection and to facilitate integration with sources of 
metadata information that may be available.  

• The acquisition time of sensor line is constant. It should be 
examined if it is possible to calculate it. 

• Calculation of the rotation angles of the sensor expressed 
within the Satellite Coordinate System. As the simulation of the 
satellite is a geocentric coordinate system the attitude of the 
satellite regarding this earth system is known.  

• The order of the rotations are decided based on a work 
assumption which is introduced in § 3.2. 

• Calculation of the focal length.  

• Calculation of the yo  (offset from the perspective center).  

2.5. Methodology of the solution of the improved model 

2.5.1. Exterior orientation 
The solution of the model regarding the exterior orientation 
should be done in two steps. 
 In the first step the orbit of satellite is simulated taking into 
consideration the ephemeris of the satellite where the state 
vectors are given in constant time intervals before, during and 
after the acquisition time of the images with sufficient accuracy 
(better than a meter), based on DORIS system (SPOT IMAGE, 
2002, page 10) in ITRF90 Coordinate system which is almost 
identical to WGS84 (for now on WGS84 and ITRF90 means the 
same). In this step the images themselves are not involved in the 
solution. The mathematical model of the simulation is based 
initially in Kepler equation, although the state vectors in 
IRTF90 are used instead of Inertial Coordinate System. This is a 
second order equation which is extended in the improved model 
in sixth order equation trying to involve the perturbations of the 
orbit along with the difference in motion from Inertial to 
ITRF90 system.  When the Kepler equation is used by itself in 
ITRF90 the accuracy of the position of the satellite after 90 
seconds, which the time interval of the acquisition of the HRS 
stereo images, is about 3000m (Michalis, 2005), while with the 
modified model is better than one centimeter. At this moment it 
should be mentioned here that in Inertial Coordinate System the 
accuracy of Kepler model is about 30m (Michalis 2005). To 
conclude the calculated orbit of the satellite in the improved 
model simulates the  

• The Keplerian motion 
• Pertubations of the orbit 
• The motion on ITRF90 Coordinate system (not 

Inertial).  
 
After this process the position and the velocity of each line of 
each image along with the attitude of the navigation satellite 
system in WGS84 are known.  
This means that only the rotation angles of the sensor expressed 
within the Satellite Coordinate System images are unknowns in 
the solution. This means also that the well known correlation 
between X,Y position coordinates and phi and omega rotations 
respectively does not exist because the position vectors are 
already known from the above procedure.  
The second step is the calculation of the rotation angles. In this 
process there are two alternatives. The first one is to take the 
rotation angles directly from the metadata file if the attitude 
information given can be converted to the rotation angles 
needed for a photogrammetric solution. In the alternative, GCPs 
should be used in order to calculate the rotation angles. The 
number of GCPs is perpendicular to the order of the rotation 
polynomials. 
As an example, in case of SPOT HRS data, the metadata 
information focuses on solving a specific direct orientation 
method which is proposed by SPOT IMAGE. Some important 
information is missing in order to establish a direct 



photogrammetric solution. This information comprises the 
offsets and the rotation angles from the navigation coordinate 
system to the framelet coordinate system.  
 
2.5.2. Interior orientation 
On the other hand, having in mind that in the first step the 
position vector of each line of the along track image is known, it 
is possible to calculate the interior orientation parameters as it 
has already mentioned. In this process the focal length the offset 
of the principal point and the acquisition time of each line is 
calculated. It is included in the second part of the solution trying 
to avoid the correlation between the flight height of the satellite 
and the focal length does not existed, as the flight height is 
known. Moreover, the strong correlation between state vectors 
and the acquisition time is also eliminated. As a result a 
accurate solution of the interior orientation parameter can be 
established.  

3. MODEL EVALUATION 
In the evaluation process of the improved model SPOT5-HRS 
images are used. The High Resolution Stereoscopic instrument 
(HRS) has two telescopes and acquires stereopairs at a 90-
second interval, of 120-km swath, with viewing angles of ±20° 
along the track of the satellite, with a B/H ratio of about 0.8 
(Bouillon and Gigord, 2004)   

3.1. Data sets-Reference data 
Two SPOT-HRS data sets are used for this evaluation which is 
provided under the SPOT Assessment Project (SAP) set up by 
CNES and ISPRS. 
The first one covers an area located around Aix-en-Provence in 
SE France (Michalis and Dowman, 2004). The ground control 
points were originally provided by IGN for the OEEPE test of 
SPOT data and were mainly extracted from 1:25000 maps. A 
total of 33 reference points were measured in HRS images 
having a good distribution on the images (Figure 1). The image 
coordinates are measured manually in 2D. Twelve of them are 
used as Ground Control Points in this evaluation process while 
the remaining 21 are used as Check Points. 
The second data set covers an area in Bavaria and Austria. A 
total of 81 points measured with surveying methods are 
provided where only 41 points have been identified in the 
images (Poli D, et al., 2005). The exact image coordinates of the 
points have been measured with unconstrained Least Square 
Matching, by measuring the points in the master image 
manually. The distribution on the images is shown in Figure 2. 
 

3.2. First step-Orbit simulation accuracy 
An accuracy assessment of the orbit simulation used in the 
improved model compared with the orbit which comes from the 
Kepler equation, is introduced. This evaluation process takes 
place in WGS84 coordinate system. It should be mentioned here 
that in order to meet the fundamental assumption of the 
Keplerian motion in Inertial Coordinate system should be used. 
However for convenience in the improved model, WGS84 
coordinate system is chosen as all the navigation data are 
provided in this coordinate system and it does not needed to 
convert all the navigation data to Inertial Coordinate System, 
which is very tough procedure. Moreover the transformation of 
the GCPs to the Inertial Coordinate system is also avoided. The 
navigation data which are used in this calculation of the satellite 
orbit is the position and velocity vectors of the satellite 
measured by the DORIS system every 30 seconds with respect 
to ITRF90 (almost identical to WGS84). In the improved 
model, instead of Lagrange interpolation as suggested in the 

SPOT SATELLITE GEOMETRY HANDBOOK, (SPOT, 
2002), sixth order polynomials are used.  
 
 

 
Figure 1. Distribution of Reference Points of Aix-En-Provence 

test site 

 

 

Figure 2. Distribution of Reference Points of Bavaria test site 

 
For evaluation it is used four state vectors of both test sites 
metadata (90 sec time interval between first and four). Having 
the first vector as initial value the forth state vector is calculated 
using the six order polynomial and the Kepler equation. In table 
1 the results from Aix-en-Provence as the results of Bavaria test 
site are almost the same. 
 
It is obvious that six polynomial model which is extracted for 
the navigation data themselves can represent very accurately the 
satellite orbit during the acquisition time than the Kepler model 
especially in WGS84 coordinate system which is an Earth fixed 
coordinate system. It should be mentioned again that in inertial 
coordinate system the difference from the true values in Kepler 
model is much better (close to 30 meters). 
 
 
 



 Difference from the 

true values-Kepler 

model 

Difference from the 

true values in 

improved model 

X (m) 539.72 .001 
Y (m) 3688.57 .001 
Z (m) -13.76 .005 
Vx (m/sec) 12.756 .00002 
Vy (m/sec) 81.060 .00001 
Vz (m/sec) -.226 .00003 

Table 1. Kepler and six polynomial model accuracy for 90sec 
interval in WGS84 coordinate system 

 
Having in mind that the difference on the values of the Kepler 
compared in WGS84 which is an Earth fixed and the Inertial 
coordinate system we conclude that the main phenomenon that 
is additionally simulated in the sixth order polynomials is the 
rotation of the earth relative to the satellite. This means that the 
rotation angles ω and φ (table 1), which are changed due to this 
relative motion and brings the Earth system parallel to the 
satellite navigation system is involved in orbit simulation.  
From table 1 it seems that the ω rotation which is correlated to 
Y coordinate has been influenced more than the other rotations. 
This statement will be used in the next paragraph where the 
order of the rotation angles is decided. 

3.3. Second step-Rotation angles and interior orientation 
calculation 
3.3.1. Rotation angles order 
As it has already been mentioned, in the previous paragraph the 
rotation angle which is influnced more in the is the ω rotation.  
On the other hand, it is known that SPOT satellite is a heavy 
and quite stable satellite platform which is not need to rotate 
itself in order to take images in different angles. Moreover, it 
seems that the HRS subsystem is not rotated during the 
aqusition of the stereo images. Thus, the following work 
assumption is done trying to keep the solution as uncorrelated 
as possible.  The assumption is that the rotation angles which 
bring the navigation satellite system parallel to the framelet 
coordinate system are constant instead of the rotation ω which is 
a first order rotation.  
 
3.3.2. Unknown parameters 
At this stage the images themselves are involved in the solution 
in order to calculate the unknown parameters. The unknowns 
are: 

• Four coefficients represent the rotation angles (φ,κ 
constant while ω is represented with first order 
polynomial). 

• The focal length 
• The acquisition time of each line which is assumed 

constant 
• The yo offset (across the track).  

 
Thus, the unknown parameters are 7 in total. Four GCPs is 
needed at least in order to have a solution.  
 
3.3.3. Correlation study of interior orientation parameters 
Before going further it is important to make a correlation study 
of the unknown parameters. For this reason the model is solved 
in both test sites using as more GCPs as possible. Thus, in case 
of Aix-en-Provence 33 GCPs are used while in case of Bavaria 

39. The correlation coefficients of yo, f and time interval are 
shown in tables 2,3 and 4 respectively.  
From table 2 it is obvious that the offset across the track is high 
correlated to the focal length and the rotations. It seems that can 
not be calculated accurately using this model without additional 
information.  
 

Aix-en-Provence 
test site (33 GCPs) 

Bavaria test site (39 
GCPs) 

Unknown 
(offset across 

track) HRS-1 HRS-2 HRS-1 HRS-2 
f -0.9344 -0.8542 -0.9822 -0.9859 
ω 0.9966 0.9920 0.9995 0.9989 
φ -0.9999 -0.9999 0.9988 -0.9991 
κ -0.9985 -0.9999 -0.9986 -0.9999 

1st order ω 0.3171 0.3137 0.1779 0.16771 
Line interval 0.0258 0.0672 -0.0052 -0.0147 

Table 2. Correlation coefficients of the across track offset 

 
Aix-en-Provence 

test site (33 GCPs) 
Bavaria test site (39 

GCPs) 
Unknown 

(f) 
HRS-1 HRS-2 HRS-1 HRS-2 

ω 0.3592 0.3869 -0.0368 -0.0154 
φ 0.0451 0.1147 -0.0175 -0.0227 
κ 0.0042 0.0328 0.0076 0.0448 

1st order ω -0.3637 -0.3898 0.0230 0.0067 
Line 

interval -0.0254 -0.0825 -0.0009 -0.0004 

Table 3. Correlation coefficients of the focal length 

 
Aix-en-Provence 

test site (33 GCPs) 
Bavaria test site (39 

GCPs) 
Unknown 

(time 
interval) HRS-1 HRS-2 HRS-1 HRS-2 

f -0.0254 -0.0825 -0.0009 -0.0004 
ω -0.0811 -0.2055 0.0347 0.0745 
φ -0.2456 -0.2515 0.1421 0.1135 
κ -0.3627 -0.3777 0.0231 0.0059 

1st order ω 0.0808 0.2051 -0.3484 -0.0745 

Table 4.  Correlation coefficients of the time interval 

On the other hand from tables 3 and 4, that the focal length and 
the time acquisition of one line are uncorrelated to the other 
unknown parameters. It seems that they can be calculated 
accurately.  

3.3.3. Accuracy of interior orientation parameters 
In case of SPOT HRS it is known that the focal length of both 
lens are 580mm while the time interval is 0.752 msec. Trying to 
find if using this model is possible to calculate the focal length 
and the time interval together with the calculation of the roation 
angles. In this evaluation the model is solved in both test sites 
using different number of GCPs. Thus, in case of Aix-en-
Provence 3,4,6,12,20 and 33 GCPs are used while in case of 
Bavaria 4,6,8,9,12,39. The calculated value of the focal length 
along with the accuracy of this unknown parameter is shown in 
table 5 for Aix-en-Provence test site and in table 6 for Bavaria 
test site. 
 
The calculated value of the time interval along with the 
accuracy of this unknown parameter is shown in table 7 for Aix-
en-Provence test site and in table 8 for Bavaria test site. 
 
In both cases the results are quit well. The calculated values are 
close enough to the true values. The calculated accuracy of 



unknown parameters defines this approximation. However the 
following remarks could be made:  
 

• In Aix-en-Provence test site the calculated values are 
more accurate and more stable than in Bavaria test site.  
• Also the accuracy of the calculated values is not 
perpendicular to the number of the GCPs in general.  

 
Having in mind that in Bavaria test site the GCPs are not 
distributed in the whole image we reach the conclusion tat in 
order to calculate accurately an unknown parameter a few good 
but well distributed GCPs in whole image are needed.  
 

HRS-1 focal length 
(mm) 

HRS-2 focal length 
(mm) 

No of 
GCPs 

value accuracy value accuracy 
3 579.852 - 580.115 - 
4 579.752 0.118 580.075 0.058 
6 579.746 0.083 580.141 0.037 
12 579.793 0.119 580.167 0.060 
20 580.004 0.059 580.078 0.074 
33 579.935 0.071 580.169 0.080 

Table 5. Calculated value and accuracy of focal lenght with 
various combination of GCPs in Aix-en-Provence test site 

 
HRS-1 focal length 

(mm) 
HRS-2 focal length 

(mm) 
No of 
GCPs 

value accuracy value accuracy 
4 580.056 0.144 580.326 0.470 
6 579.958 0.216 580.271 0.265 
8 580.148 0.119 580.244 0.212 
9 580.114 0.119 580.239 0.191 
12 580.203 0.139 579.837 0.129 
39 580.251 0.075 579.986 0.075 

Table 6. Calculated value and accuracy of focal lenght with 
various combination of GCPs in Bavaria test site 

Acquisition time of 
line (msec) 

Acquisition time of 
line (msec) 

No of 
GCPs 

value accuracy value accuracy 
3 0.752448 - 0.752552 - 
4 0.752190 0.000462 0.724459 0.000144
6 0.752147 0.000269 0.752420 0.000133
12 0.752475 0.000285 0.752690 0.000186
20 0.752575 0.000287 0.753203 0.000350
33 0.752320 0.000163 0.752952 0.000184

Table 7. Calculated value and accuracy of time interval with 
various combination of GCPs in Aix-en-Provence test site 

 
Acquisition time of 

line (µm) 
Acquisition time of 

line (µm) 
No of 
GCPs 

value accuracy value accuracy 
4 0.752474 0.000200 0.752410 0.000656 
6 0.752777 0.000387 0.724279 0.000369
8 0.752497 0.000157 0.752414 0.000282
9 0.752497 0.000156 0.752417 0.000251
12 0.752418 0.000204 0.752349 0.000192
39 0.752248 0.000102 0.752236 0.000103

Table 8. Calculated value and accuracy of time interval with 
various combination of GCPs in Bavaria test site 

3.3.3. Accuracy of Independent Check Points 
In table 9 the RMSE of Independent Check Points (ICP), in 
Bavaria test site using various combination of GCPs is 
introduced in order to compare with other scientists which are 
use the same data set. This improved model produced better 
results from the  
 

No of 
GCPs  4 6 12 

X (m) 5.75 5.36 5.02 
Y (m) 7.21 4.92 4.68 
Z (m) 6.32 6.28 4.53 

Table 9. RMSE of Independent Check Points (ICP) in WGS84 
 
Daniela Poli (Poli, 2004) which is use the same test site and also 
the same GCPS (but perhaps not the same combination) gives 
better results than the above in her paper. However about 19 
unknown parameters are involved in the solution while in this 
model the unknowns are just 6. This leads to the conclusion that 
the accuracy of the ICP could be improved more as the self-
calibration could be involved in the solution.  

 

4. CONCLUSIONS-FURTHER WORK 
In this paper a methodology based on a photogrammetry based 
model which can be used for every optical pushbroom sensor 
even in case where the interior orientation parameters are not 
known, is introduced. It can be done only in case where high 
accurate navigation data (state vectors) are provided during the 
acquisition of the images.  It is an improvement of the UCL 
model (Michalis and Dowman, 2005) which has been developed 
in UCL since 2002. 
This means that we develop a model where it is possible not 
only to calculate the exterior orientation but also the interior 
orientation of the satellite with good accuracy. 
 
The next step is in-depth investigation of the self-calibration 
process. Another very important step is to test the model on the 
ALOS-PRISM high resolution three line scanner where it is 
believed that the stability of the solution is increased with the 
three line geometry. This model will also be tested with 
Cartosat images.  
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