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ABSTRACT: 

 

The problem addressed is this: most environmental issues require context to solve them. Is the ocean getting warmer? Is the desert 

growing? Is the forest declining? Solution: measure the temperature / size / leaf area. But such measurements only have significance 

if there are other comparable historical measurements to compare them too. This paper is about that word comparable. Can we really 

compare landscape generalisations gathered at different times and at different spatial scales? Today we have the ability to produce 

land cover maps at a very high spatial resolution (grid cell sizes of 10, 5 or even 1 m). Historically, data has typically been collected 

at coarser spatial scales (grid cell sizes of 50, 100 or even 1000 m). To facilitate comparison, modern data is often re-scaled to match 

the historical data. To evaluate the validity of this process, a series of synthetic landscapes were created. These landscapes included 

the full range of possible dispersion from a random spatial distribution of scene elements to a highly clustered spatial pattern. Each 

simulated landscape was firstly classified and then degraded to four levels of generalisation (simulating a range of spatial 

resolutions). In parallel, the process was reversed and the simulated landscapes were degraded and then classified. The resultant 

classifications were then compared. In all cases the integrity of the data was best preserved when the image was more highly 

spatially autocorrelated. Changing the spatial scale (i.e. degrading) of classifications resulted in a rapid decline in information 

content, particularly in more random landscapes. The implications of these results are then discussed. 

 

 

                                                                    
*  Corresponding author.   
1)  Convention on Biological Diversity, Articles 7, 8, & 9.   
2) Convention on Biological Diversity, Articles 7, 8, & 9.   
3)   Convention on Biological Diversity, Articles 8(f). 
4) United Nations Framework Convention on Climate Change, Article 4, para. 3.   
5) Kyoto Protocol, Article 5.   

1. THE CHALLENGE 

1.1 The need for long term databases 

Land cover change mapping is an increasingly important 

activity. Many international treaties and protocols mandate a 

monitoring or repeat mapping process. For example, the key 

questions of: ‘how much?’ and ‘how fast?’ environmental 

degradations are proceeding is addressed in a number of United 

Nation (UN) conventions: The Convention on Biological 

Diversity (CBD), requires parties to: (i) regularly report how 

much landscape diversity and natural habitat is being lost
1)

; (ii) 

Report how much ecosystem diversity (quality) is being lost
2)

; 

(iii) "Rehabilitate and restore degraded ecosystems and promote 

the recovery of threatened species..."
3)

 The UN Framework 

Convention on Climate Change (UNFCCC) emphasises the 

need for comprehensive policies and measures to address issues 

related to the sources, sinks, and reservoirs of greenhouse gases, 

taking into account different socioeconomic contexts
4)

. The 

Kyoto Protocol calls for national reporting systems for Carbon 

sinks and sources
5)

.  
 

Such monitoring or repeat mapping processes imply the creation 

and maintenance of long term spatial data sets. These can be 

created from interpolated observations, modelled predictions, 

and / or extrapolation. Remotely sensed imagery, from aircraft 

or satellite-based sensors, is increasingly used to aide in this 

process, or to independently to derive ‘total-sample’ thematic 

layers or classifications. 

 
 

1.2 An Australian example 

Australia’s National Carbon Accounting System provides 

information on land-based sources and sinks of greenhouse 

gases to fulfil international reporting obligations under the 

Kyoto Protocol, as well as providing annual estimates to 

Australia's National Greenhouse Gas Inventory. Fundamental to 

accounting for Carbon change is an understanding of the change 

in land cover. The impact of an event associated with land cover 

change may continue over many years and vary with time since 

the event took place. It is, therefore, necessary to monitor 

change in land cover over extended periods of time.  

 

In Australia, ~370 Landsat Thematic Mapper (TM) scenes were 

used to create a continent-wide (690 million hectares) database 

of Forest / Non-Forest land cover for 12 time periods, spanning 

1972 to 2002. Forests were defined as having a minimum of 

20% tree crown cover and a minimum height of 2 metres at 

maturity. A minimum area of 0.2 hectares is also imposed 

(Furby, 2002, Jones et al., 2004). However, the spatial 

resolution of this dataset is not constant over the thirty year 

archive period. The initial (1972) grid cell resolution is 50m
2
 

whereas the more recent spatial data layers (e.g. 2002) have a 

grid cell size of 25m
2
. Comparison of these two epochs requires 

the rescaling of the modern dataset to that of the initial 1972 

spatial resolution. 
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1.3 Remote sensing data 

As spatial scientists we are familiar with the concept of scale. 

We are used to ordering or classifying landscapes into 

convenient land cover / land use units at a variety of application 

specific spatial scales. Indeed, there are many mapping 

standards that suggest or impose a scale. For example, the US 

Federal Geographic Data Committee (FGDC) have Content 

Standards for Digital Geospatial Metadata (that relate to 

cadastral, soil or vegetation mapping etc.).  

 

In practise, we use technologies to derive land cover maps. 

Remote sensing is a common method of deriving land cover 

datasets. Earth observation technologies have evolved rapidly in 

the past thirty years and continue to do so. There are now a 

multitude of satellite earth observing systems (see the CEOS –

Committee for Earth Observation Satellites online database: 

http://alto-stratus.wmo.ch/sat/stations/SatSystem.html) for a 

comprehensive listing. Much of this data is in use for 

monitoring or repeat mapping processes. Such remotely sensed 

images are not uniform however, and vary markedly according 

to platform used, sensor (spatial, radiometric, spectral and 

temporal resolutions) and scene illumination / viewing 

geometry (Lillesand and Kiefer, 2004). Internationally de facto 

standards have emerged: the International Geosphere-Biosphere 

programme (IGBP) has created a standard global land cover 

classification (at 1km
2
); whilst the ESA GLOBCOVER 

initiative will produce a 300m global land cover classification 

for 2005 based on the MERIS sensor.  

 

Image analytical algorithms (such as classifications), and 

temporal analyses, are often carried out without any reference to 

the spatial scale of the study. Users assume, for example, that 

image classification will work equally well on 1.1km AVHRR 

(Advanced Very High Resolution Radiometer onboard the 

NOAA satellites) data as it does on 28.5m TM (Landsat 

Thematic Mapper 4 / 5) or 4m multi-spectral IKONOS data. But 

is this the case? The spatial composition of a pixel’s various 

spectral ‘components’ and their mixing will vary on a per 

landscape basis but also as a function of spatial resolution. The 

spectral composition and mixing of a pixel is a function of not 

only the spectral resolution but also of the spatial resolution 

afforded by the sensor in addition to the distribution and 

organisation of the land cover units being mapped (Moody and 

Woodcock, 1994). Marcaeu and Hay (1999) and Turner et al. 

(1989) also note that as aggregation occurs information is lost at 

coarser scales and that measurements made at different scales 

may not be directly comparable.  

 

The data used in monitoring or repeat mapping processes is very 

diverse. Integrations and comparisons between these diverse 

datasets are problematic but becoming increasingly frequent. 

 

 
2. METHOD  

2.1 Purpose 

The aim of this experiment was to determine whether multi-

scale land cover images can support accurate comparisons. This 

was explored by varying (i) the spatial resolution, (ii) the degree 

of landscape spatial autocorrelation and (iii) the order of 

processing (i.e. classification and resampling). 

 

2.2 Simulating landscapes 

A series of eight synthetic landscapes were generated using the 

Grid Cell Uncertainty Model (GCUM) (Hunter et al., 1994 for a 

detailed description). The GCUM generates synthetic 

landscapes that vary from a completely random distribution of 

landscape elements to a highly clustered or spatially auto-

correlated pattern. Spatial autocorrelation describes the 

probability for the attributes of geographically neighbouring 

grid cells to be more similar than distant ones. The GCUM 

model creates a set of random landscape elements (r = 0 or 

random, where r is the degree of spatial autocorrelation). These 

can then be grouped or clustered into progressively more 

spatially autocorrelated landscapes (increasing r values) using 

the spatial autocorrelation index of Cliff and Ord (1981). The 

simulated landscapes can be conceptualised as being any 

biophysical variable (ocean temperature, desert or forest extent, 

biodiversity etc.).  

 
2.3 Simulating historical / spatial resolution changes 

To simulate the imaging of the landscapes at various spatial 

resolutions over an extended period of time, four levels of 

landscape aggregation were created (Figure 1). The original 

landscape (A1) contains all of the data and could be considered 

comparable to a 10m spatial resolution image. Level 2 (L2) has 

been resampled or degraded and can be considered comparable 

to a 20m spatial resolution image. Level 4 (L4) has been 

degraded from the original image to an equivalent pixel size of 

40m. Level 8 (L8) is the coarsest level presented here and has 

an 80m spatial resolution. Each of the degraded landscapes was 

then classified using the Iterative Self-Organising Data Analysis 

Technique (ISODATA) (Tou and Gonzalez, 1977) to yield a  

2-class binary result (Figures 1, B2, B3, B4) The process was 

then repeated but reversing the order of tasks so that the 

classification was performed first on the original un-degraded 

landscape and the resultant classified images then resampled to 

the aforementioned four levels of generalisation (Figures 1, C2, 

C3, C4). These images represent the landscapes as they would 

appear if classified first at a higher spatial resolution and then 

degraded to match a historical dataset.  

 

 

Figure 1. Processing method 
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Figure 2. Synthetic landscapes created (at eight levels of spatial autocorrelation). Each was: degraded to four levels  

of aggregation and classified; and, classified and then degraded 

 

 

 

 

 
 

Figure 3. Percentage change between categories in the synthetic landscapes
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3. RESULTS AND DISCUSSION 

3.1 Differences and changes between the evaluations 
 

The first point to note here is that the two ‘creation processes’ 

(degraded and then classified; and, classified and then 

degraded – Figure 1) do not result in the same landscape 

representation. This is particularly the case for random 

landscapes (r = 0) and even moderately clustered ones (r > 2). 

Visual inspection of Figure 2 confirms this with gross 

differences evident. 

 

To investigate these resolution induced landscape changes 

further, the changes in class memberships between the two 

process outputs were calculated for each landscape (Figure 3). 

The top row (Figure 3a-c) illustrates the percentage change 

when landscapes were first classified and then degraded. The 

bottom row (Figure 3d-e) the percentage change when 

landscapes were first degraded and then classified. Random (r = 

0) landscapes showed the most change, with 30-45% of pixels 

changing class. For all levels of aggregation a steady decline in 

the number of pixels changing class occurred as the spatial 

autocorrelation increased (and landscapes become more 

clustered). At a spatial autocorrelation of ~r = 0.21 all 

landscapes became much less susceptible to class changes 

showing marked increases in no percentage change (Figure 3b 

and 3e). Changes from class 1 to class 2 (and vice-versa) were 

also plotted (Figure 3c & g and 3a & d). Changes from class 1 

to class 2 were marginally greater in landscapes that were 

classified and then degraded; whilst changes from class 2 to 

class 1 occurred more frequently in degraded and then classified 

landscapes. Again, landscapes with a spatial autocorrelation of  

r = 0.21 and above (i.e. highly clustered scene elements) seemed 

to exhibit far fewer changes. 

 

Almost without exception, higher spatial resolution 

classifications, regardless of their creation process, produced 

lower landscape change scores. That is to say, Level 2 

aggregations produced a lower percentage change than Level 4 

and Level 8 and Level 4 aggregations fewer than Level 8. 

 

3.2 Implications for comparing landscape generalisations 

gathered at different spatial scales 

 

Earlier we posed the question: Can we really compare landscape 

generalisations gathered at different temporal and spatial scales? 

In a way the question is mute, since we will be forced to make 

these comparisons regardless of how dubious they may be. 

Perhaps a more pertinent question is: Can we facilitate and 

enhance land cover change mapping by ensuring the 

measurements really are comparable?  

 

Results obtained using the synthesised landscapes suggest that it 

is best practice to acquire a landscape (regardless of its spatial 

autocorrelation) at the spatial resolution it is to be mapped at. In 

all cases the integrity of the data was best preserved when the 

landscape was more highly spatially autocorrelated. Changing 

the spatial scale (degrading) of classifications resulted in a rapid 

decline in information content, particularly in more random 

landscapes. If degradation (resampling) is required, for example 

for comparison with historical datasets, imagery should be 

resampled to the appropriate resolution and then classified. 

Unfortunately this involves considerable effort, since the 

original data must be reprocessed, rather than just results (or 

outputs) being compared. Comparisons of classifications of 

different lineages (instrument / sensors) and degradations of 

existing classifications should only be used as a last resort and 

appropriate metadata information provided to the data user. 

4. CONCLUSIONS 

Today we can map our ocean, desert or forest attribute from 

space, with IKONOS or Quickbird imagery, with a high degree 

of accuracy, to within ~1-5m. If we wish to understand and 

compare it with historical data, as mandated in a number of UN 

treaties and conventions, we would be often forced into using 

episodic and discontinuous data with a much poorer spatial 

resolution. The results from this paper suggest making such 

comparisons between datasets derived at different times using 

different sensing systems is perilous. Even simple binary 

classifications in highly clustered landscapes (the best case 

scenario) can result in some errors. In landscapes with low 

spatial autocorrelation (i.e. disaggregation in the attribute 

measured), and / or where the differences in spatial resolution 

between the systems is large, the errors may impede coherent 

analysis. There is however, a lack of research into the theory 

behind these integrations and spatial scale changes (Jensen et 

al., 1998). 

 

Further work: This paper has examined class changes in only 

the most simple of classifications (a two class image or binary 

matrix). Subsequent investigations will examine the effects of 

spatial resolution and classification accuracy on multi-class 

classification schemes. 
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