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ABSTRACT:

Digital Terrain Models (DTM) are frequently used to make important decisions. In order to judge these decisions DTM quality must
be known. The quality of a DTM consists of several components like precision, accuracy, and reliability. This article presents several
methods to assess the quality of a DTM, commencing with the data it is based on and proceeding with quality measures for the model
itself. These methods are compared to each other and their application is discussed. The outlined techniques are designed for DTM that
describe the terrain height as a bivariate function (2.5-dimensional DTM). However, some of them may be extended for application to
three-dimensional DTM.

1. INTRODUCTION

The emergence of automatic measurement methods like airborne
laserscanning (ALS), image matching and interferometric syn-
thetic aperture radar (InSAR) pushed the spread of digital terrain
models (DTM). However, all of these techniques imply the risk of
gross errors and ill determined areas. For ALS data, the filtering
of off-terrain points is critical (cf. Sithole and Vosselman (2004),
and Kraus and Pfeifer (1998)), and may result in large data voids.
The same holds for image matching (Bauerhansl et al. 2004) and
InSAR (Mercer 2004). Image matching may furthermore gen-
erate blunders through mismatched points, and the point density
decreases in poorly textured areas. DTM derived from InSAR ad-
ditionally suffer e.g. from phase ambiguities. This paper focuses
on the evaluation of DTM from ALS data and photogrammetric
imagery, providing data of potentially higher quality.

In general, DTM are deduced from observations of the terrain
surface and represent the bare earth at some level of detail. Ac-
cording to Artuso et al. (2003) and Elberink et al. (2003), the
demands on DTM are still growing steadily and the necessity of
quality control is evident.

DTM are used in numerous disciplines, ranging from geoinfor-
mation to civil engineering. In the course of various applications,
DTMs serve as input for decision making, e.g. they are employed
for flood hazard analyses. In order to judge these decisions, DTM
quality must be quantified using adequate methods and measures.
Furthermore, these measures must be communicated to the users.
Unfortunately, this is rarely done (Wood and Fisher 1993), and
if so, merely global quality measures are provided. However,
the spatial variation of DTM quality is of interest for various ap-
plications, e.g. for the accuracy estimation of a volume computa-
tion based on a DTM. Therefore, this article concentrates on local
measures.

However, the simple question for the accuracy of a DTM at some
position cannot be answered in general, since the question is de-
fined imprecisely. Accuracy may be measured in height, in hori-
zontal position (e.g. for breaklines), or along the surface normal.
Furthermore, accuracies exist for the derivatives of the DTM sur-
face.
∗ corresponding author

Even the standard deviation, as the most common deviation de-
scriptor, has to be differentiated (Mikhail 1971). Standard de-
viations of the DTM estimated through error propagation of the
input data represent interior quality i.e. precision. The redun-
dancy of data gives a statement on the reliability of a DTM, and
on the control of observations. The exterior quality i.e. accuracy
is computed through comparison with uncorrelated data that did
not participate in the generation of the DTM.

In addition to the standard deviation, various other measures exist
that answer the following questions:

• “How dense is the data?” Data density represents the amount
of discretisation of the terrain surface.

• “To which category belong the nearest data, and what is
the distance to them?” In the course of manual measure-
ment processes, data are usually classified, e.g. into lines
and points of different quality and meaning. Automatic tech-
niques provide different classes e.g. through provenience
from different flight strips.

• “How is the accuracy of the DTM distributed?” Depending
on the spatial variation of the accuracy and density of the
data, and on the suitability of the interpolation method for
a certain relief, DTM quality varies locally and regionally.
Depending on the requirements, users may or may not be
interested in a homogeneous (and isotropic) distribution of
DTM accuracy.

• “What is the accuracy of derived products (Kraus 1994)?”
All derived products like lines of equal slope, or borderlines
of flood risk areas hold their own accuracy measures.

Before the estimation of model quality, a description of the data
quality is necessary, which is illustrated in Section 2. Subse-
quently, diverse measures for the quantification of DTM quality
are presented (Section 3.). Furthermore, empirical formulas are
given that allow for the estimation of model accuracy both a pri-
ori and a posteriori.

1.1 Related Work

Numerous publications exist on the topic of global DTM quality
that compile all well-established approaches, e.g. by Li (1993)
and McCullagh (1988).
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A sound alternative originating from the field of signal processing
is the application of spectral analysis for DTM accuracy estima-
tion, cf. Tempfli (1980) or Frederiksen (1980). The global accu-
racy is derived from the measurement accuracy and the transfer
function of the interpolation method. This function describes the
ratio of the amplitudes of the input and output signal i.e. the ob-
served data and the DTM. The method may be used for DTM that
were interpolated with a linear estimator (e.g. triangulation, Krig-
ing). However, the computation is time-consuming, especially in
case the transfer function is not known beforehand.

2. QUALITY OF THE INPUT DATA

The input data form the basis for the computation of the DTM,
consisting of points and / or lines. Automatic measurement tech-
niques like image matching and airborne laserscanning usually
output bulk points only, but may be enriched with structure in-
formation in a post processing phase (Briese 2004). These input
data may hold information on the accuracy of the matching pro-
cess or the distance determination of the laser range finder. Cur-
rently, full-waveform airborne laserscanners offer high potential
concerning the quality estimation of ALS points (Wagner et al.
2004). In addition to the accuracy in height, there may be given
the horizontal accuracy. Supplementary meta data like the date
of flight, the flying altitude, or the sensor model further describe
the quality of the input data. However, in the simplest case there
will only be one single estimation available for the height accu-
racy of all data. Typically, manual measurements result in differ-
ent data classes with different qualities: spot heights, breaklines,
formlines, coastlines, bulk points, etc. Also, the combination of
different data sets yields a classification.

In the following, quality measures are presented which allow to
describe the input data. Naturally, they hold a limited expres-
siveness concerning the quality of the DTM, as the process of
interpolation is not regarded.

Three aspects of data quality are investigated. First, the distribu-
tion of the data is examined, concerning density, completeness,
and type. In the following subsection, the accuracy of the mea-
surements is discussed. While in the first case, only the position-
ing, or parametrization, respectively, of the measurements is con-
sidered, the actual observations are examined in the latter case.
Finally, the consistency of the data is analysed in the third sub-
section, which may reveal discrepancies between different groups
within the data.

2.1 Data Distribution

2.1.1 Density Map Data density solely depends on the hor-
izontal positions of the data. A density map may be computed
as the number of points per unit area. Therefore, it can be de-
termined easily as a digital image, where the pixel value corre-
sponds to the number of points within the area covered by the
pixel. A density map depicts the amount of discretisation of the
terrain surface. Regions covered by few or no data become dis-
tinguishable. The completeness of the data may be inspected, as
density amounts to zero in data voids. Moreover, large data sets
can be overviewed better through a density map than by the dis-
play of the data themselves. That is, because the higher the data
density and the smaller the image scale, the less the data become
discriminable. An example for a density map is given in Figure 1.

Areas with low data density may be determined automatically by
threshold operations. Alternatively, small areas without data may

Figure 1. Density map of an ALS data set, computed with a cell size of 100m2.
Horizontally along the lower side, and upright in the centre, bands of high density
are observable. They originate from overlapping ALS strips. Cells that do not
contain any data are coloured black

be detected through mathematical morphology (Serra 1982): hav-
ing binarised the density map, the operator ‘Closing’ (‘Erosion’
followed by ‘Dilation’) is applied. In doing so, the size of the
structure element determines the smallest reported data void. The
density map again can be aggregated to a histogram of densities
that allows for a quick inspection of the homogeneity of data dis-
tribution, see Figure 2.

Figure 2. Histogram of the data density pictured in Figure 1

2.1.2 Distance Map A distance map indicates the distance
between the centre of each depicted pixel and its nearest data
point. It may be computed efficiently using the Chamfer func-
tion (Borgefors 1986). The areas that are closest to a certain data
point form the Voronoı̈ regions (Okabe et al. 2000). Figure 3
(centre) presents the distance map of an MBES (multi beam echo
sounding) data set. Outside the convex hull of the data, distances
grow to infinity. This map permits the estimation of model re-
liability, since reliability is the higher, the smaller the distance
between the interpolated position and its nearest data point is.

Furthermore, this representation allows for a simple classification
into areas of ‘interpolation’ and ‘extrapolation’. Areas where the
distance to the nearest data point is larger than a certain threshold
may be declared as extrapolation regions. Naturally, the position-
ing in- or outside the convex hull may be considered, too.

The concept of the distance map can be extended from a point-
wise to a regional representation. For instance, the mean of the
distances to the n nearest neighbours, or the distance to the nth

generation of a Delaunay triangulation may be used. Figure 3
(bottom) shows the mean distances from each pixel centre to its
10 nearest data points.

2.1.3 Data Class Map A data class map shows for each pixel
centre the class of the most accurate data inside the area covered
by the pixel. The concept may also be used to visualize data
classes of different reliability, e.g. manual vs. automatic mea-
surements. However, the quality of interpolated heights can be
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Figure 3. Top: Shaded DSM (digital surface model) of an MBES (multi beam
echo sounding) data set featuring two crossing pipelines on the sea bottom. Centre:
Distance map of the data. Bottom: Regionalised distance map of the data. For each
pixel centre, the mean distance to its 10 nearest data points is visualized. In both
distance maps, the area covered by the DSM is indicated with a black rectangle

deduced only to a limited extent, since most interpolation meth-
ods employ more than one data point. An example for a data class
map of a photogrammetric data set is shown in Figure 4.

Figure 4. Data class map of a photogrammetric data set consisting of various data
types.

2.2 Accuracy of Measurement
The accuracy of the original observations is of crucial importance
for the quality of the interpolated DTM. The measurements usu-
ally consist of distances and directions, whereof the point coor-
dinates are deduced. The respective computation yields corre-
lations that typically are neglected frequently, only the accuracy
in height is considered. This simplification is admissible, if the
horizontal position is determined much better than the elevation,
which is the case for e.g. photogrammetric data.

A sigma-z map depicts the distribution of the accuracy of mea-
surement in height. It may be created in case the (automatic)
measurement method generated the respective measure, or if the
accuracy can be estimated through empirical formulas. This mea-
sure holds a limited amount of information about the model qual-
ity, since model quality depends on data density, surface com-
plexity, and the interpolation method, too. Similarly, a map of
horizontal measurement accuracy may be compiled (sigma-xy).
However, these data are rarely available, although the horizontal
uncertainty may very well be worse than the one in height (e.g.
airborne laserscanner points typically hold the following standard
deviations: σz ≈ 0.15m, σxy ≈ 0.5m).

2.3 Consistency

In case a DTM is computed from different, overlapping data sets
(e.g. overlapping laserscanner strips), a quality statement can be
given within the common areas. Even within a data set different
groups of data may be tested for consistency, e.g. photogrammet-
ric profile measurements observed uphill and downhill. The con-
sistency check shows up systematic errors, which are usually not
eliminated in the course of DTM generation. Figure 5 depicts dif-
ferences between overlapping airborne laserscanner strips origi-
nating mainly from imprecise sensor orientation (Kager 2004).
Figure 6 shows discrepancies as a result of a sensor deficiency.

Figure 5. Inconsistencies between different data sets: discrepancies between 2
overlapping airborne laserscanner strips. The differences on roofs and in open areas
mainly owe to imprecise sensor orientation. Very large discrepancies are caused by
vegetation and occlusion effects (Kager 2004)

Figure 6. Inconsistencies within a single data set due to a sensor deficiency. The
data were captured using a laserscanner with oscillating mirror, which registered
the measurements of angles and distances asynchronously (time lag). Because of
the mirror’s oscillating nature, the systematic difference between points observed
on the mirror’s way to the left and those on the way to the right could be detected
within a single flight strip. The picture illustrates the difference between the surface
models derived from the two groups of points

3. MODEL QUALITY

In addition to a check on the input data quality, the DTM itself
may be inspected, whereupon the distinction between the interior
(precision) and the exterior quality (accuracy) must be consid-
ered. While the first measure describes how well the model fits to
the input data, the latter one gives information on its conformity
with external data.

3.1 Interior Quality

Besides the quality of the input data and the terrain complexity,
model quality also depends on the modelling calculus employed
(to a smaller extent, however (Tempfli 1980)). In order to deter-
mine the precision, redundancy in the data and its utilization are
necessary. Redundancy is a precondition for the control and re-
duction of random errors in the modelling process. It may be veri-
fied through the sample theorem (cf. Nyquist (1928) and Shannon
(1949)). Redundancy is present, if the interval of discretisation is
smaller than half the smallest wave length that is contained in the
input signal. Practically, this means that the interval of discretisa-
tion must be smaller than the radius of the smallest terrain feature
to be reconstructed.
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An example for an interpolation method that does not take advan-
tage of redundancy is the triangulation of the original data. Thus,
this method does not provide accuracy estimations for the model.
Furthermore, the data are not controlled i.e. gross errors cannot
be detected. These deficiencies may be remedied by smoothing
the triangulation, e.g. by using local surface models (Mokhtarian
et al. 2001). More common methods that employ redundancy for
the elimination of random measurement errors are Kriging and
methods applying the theory of finite elements. Even by averag-
ing the height of data inside the cells of a grid, redundancy can be
taken advantage of, leading to information about the distribution
of heights inside each cell.

3.1.1 Error Propagation Using error propagation, the stan-
dard deviation in height may be estimated. This estimation can
be used to predict the precision of derivatives of the DTM, e.g.
slope, curvature, etc. As an alternative for the distinction between
extrapolation and interpolation areas described in section 2.1.2, a
threshold for the predicted accuracy in height may be applied to
classify insufficiently determined areas.

Kriging or linear prediction, respectively (Kraus 1998), consti-
tutes a popular interpolation method that allows for the estimation
of prediction errors. However, this precision solely is a function
of the distance to the neighbouring data, see Figure 7. The mag-
nitude and variation of the error is deduced from the variogram
in use, which basically is the same for the whole interpolation
area. If the variogram is fitted to the data, it contains the aggrega-
tion of characteristics of the actual observations. Concerning the
predicted errors, Kriging hence considers the alignment of the lo-
cal neighbourhood, but disregards the observed elevations. A ba-
sic precondition for Kriging is the stationary randomness of the
terrain height. Nevertheless, for most landscapes this obviously
does not hold true. Thus, either a trend model has to be separated,
or a non-stationary variogram has to be used (van den Boogaart
2003). However, there is no definition of the correct trend model;
the same holds for the non-stationarity of the variogram. As this
free choice affects the predicted errors, they imply some amount
of arbitrariness, too.

Figure 7. Kriging facilitates the estimation of the standard deviation in height.
However, the predicted errors imply some amount of arbitrariness

3.1.2 Evaluation of Residuals Another measure for the inte-
rior accuracy may be generated by computing the residuals i.e.
the differences in height between the original points and the in-
terpolated surface. Regarding large data sets and good graphical
representation, these residuals should be analysed in a cell struc-
ture, too. For each cell, the maximum, root mean square, mean,
or median residual may be inspected, see Figure 8. The maxi-
mum residuals indicate large deviations from the DTM surface.
Concerning gross error detection, it has to be considered that the
largest residuals do not necessarily need to occur at erroneous
observations. Furthermore, the analysis of residuals normalized
by their standard deviation a priori has to be preferred in case of
observations holding different weights, or accuracies a priori, re-
spectively. The median of the residuals is a robust indicator for
systematic errors in height, also their mean value is practical in

this context. The RMSE (root mean square error) forms a local
measure for the interior quality of the DTM that aggregates the
variation of all data contained in each cell.

Figure 8. Shaded views of an ALS-DTM, colour coded with a residual map. Left:
RMSE (root mean square error). Right: maximum residual per cell

If the persistent data structure of a DTM is merely an approxima-
tion of the interpolated surface, then the terrain is reconstructed
in two tiers: a surface is determined by a first (sophisticated) in-
terpolation method (e.g. Kriging, finite elements). This surface is
stored in a simplified way, frequently in the form of heights at the
points of a regular grid. The actual DTM height is then computed
by a second (simple) interpolation method (e.g. bilinear interpo-
lation, adjusting cubic surface patches), using the neighbouring
grid point heights. The simplification to the storage format af-
fects DTM quality. Thus, for these two-tiered DTMs, the quality
of the surface predicted by the first interpolation method must be
distinguished from the quality of the surface deduced from the
DTM grid. A significant difference between the residuals of the
data to the first surface and the residuals to the surface deduced
from the grid is an indication for the grid size being too large.
This grid structure may be enhanced with vector data (e.g. spot
heights, breaklines, etc.), leading to a hybrid DTM (Kraus 2000b)
with a better representation of the terrain relief.

3.2 Exterior Quality

The exterior quality of a DTM can only be determined exactly us-
ing external, additional data. These external data must not have
been used for DTM generation. In addition, those data are sup-
posed to hold much better accuracy than the input data. The exte-
rior quality describes both the input data and the modelling pro-
cess. This way, systematic errors of the DTM may be revealed.
The residuals between the check points and the DTM may be
evaluated like in Section 3.1.2.

Occasionally, a small part of the original data is omitted in the
DTM creation process. Subsequently, these point heights are
tested against the DTM height. However, this form of cross-
validation generates information about the interior accuracy that
should be interpreted and evaluated using the methods described
in Section 3.1.

For well-established measurement and modelling techniques there
additionally exist empiric models that allow for the estimation of
accuracy.

3.2.1 Empirical formulas External data of superior quality
usually require additional, costly observations in the field. For
that reason, empirical formulas have been defined that allow for
the estimation of DTM accuracy in height, basically a posteri-
ori. These formulas have been fitted for specific, well-established
measurement techniques, setups, filtering and interpolation meth-
ods. It is presumed that systematic errors in the data have been
minimized using advanced georeferencing (cf. Jacobsen (2004)
and Kager (2004)).
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For photogrammetric data, the following formula is in use (Kraus
2000a):

σz = ±
(
0.15hh +

0.15

c
h tan α

)
(1)

Herein, tan α denotes the terrain slope, c[mm] is the focal length,
and h is the flying altitude, which holds the same unit of length
as σz . Hence, h

c
represents the image scale. Knowing the ap-

proximate maximum terrain slope, the optimum flying altitude
and image scale to meet the requirements for the DTM may be
determined a priori.

Karel and Kraus (2006) propose the estimation of the accuracy in
height of DTMs derived from airborne laserscanning data as:

σz[cm] = ±
(

6√
n

+ 30 tan α

)
(2)

Where n[points/m2] denotes the point density, and tan α again
is the terrain slope. The flying altitude is not contained in the
formula, as it does not affect the accuracy in height of ALS points
noteworthy. However, data density is related to the flying altitude,
depending on the angle step width of the scanner. Therefore, the
formula may also be utilized to determine the optimum flying
altitude, given the scanner model and the maximum terrain slope.

A more detailed, a posteriori alternative for ALS data is de-
scribed by Kraus et al. (2006). It estimates DTM accuracy, based
on the original data and the DTM itself. It is applicable regardless
of the interpolation method employed for DTM generation. The
calculus takes into account the following characteristics:

• the alignment of the data,

• the residuals of the point heights, and

• the DTM curvature.

The DTM standard deviation in height is computed as:

σDTM = ±σ0
√

qa0 (3)

Herein, σ0 describes a representative precision of the surrounding
original data. In its estimation, the neighbours are weighted ac-
cording to their distance and the local DTM curvature. qa0 is the
cofactor in height of an adjusting plane through the neighbour-
ing original points. Within this adjustment, the same weighting is
applied as in the estimation of data precision. In addition, areas
of the DTM where the original data is too distant are marked as
unusable. Have a look at Figure 9 for an example of the estimated
accuracy.

4. DISCUSSION AND CONCLUSIONS

Various methods to assess the quality of a DTM are presented
above, but the matter of their application, the redundancy among
them, and the consequences to take based on them have remained
unanswered so far.

In the majority of cases, DTM users require simply applicable
information on exterior quality. The topic of accuracy is easy to
communicate, but frequently the issue of reliability is not. Hence,
a combination of a threshold for a minimum amount of reliability
and an accuracy measure seems practical.

Areas of the DTM that do not reach the threshold of reliability
should be masked appropriately. These regions may either be de-
tected using the method to determine areas of low density (2.1.1),

Figure 9. Perspective, shaded view of an ALS-DTM of an alpine landscape.
Colour coding with σ̂DT M , computed with the calculus presented in (Kraus et al.
2006)

or through the method to distinguish between ‘inter’- and ‘extrap-
olation’ areas presented in section 2.1.2.

Concerning the accuracy information, the evaluation of residuals
to external data of superior quality appears to be convincing, but
is too costly for an area-wide evaluation. Moreover, this method
merely provides pointwise results. As an alternative, the appli-
cation of the empirical, a posteriori method (3.2.1, (Kraus et al.
2006)) is recommended, as it regards all major factors that in-
fluence local DTM accuracy. In case a respective routine is not
available, the computation of RMSE (3.1.2), or the accuracy esti-
mation through error propagation (3.1.1) constitute viable meth-
ods, too. Besides, data class maps (2.1.3) are used in practice.

DTM quality information may be employed by users in several
ways, depending on the application. Flood risk can be modelled
in hydrological studies, resulting in border lines of a certain inun-
dation scenario. In case such a line comes out to reside in a DTM
area masked as not reliable, then e.g. additional surveys have to
be carried out, in order to increase reliability.

During the creation of a DTM, deeper insights into data and model
quality are needed in order to guarantee acceptable results. Be-
sides a check on the alignment of flight strips and control data, the
completeness of data should be inspected by a distance (2.1.2) or
density map (2.1.1), or a histogram of densities. If this test fails,
the processing has to be stopped until additional data has been
gathered. Subsequently, inconsistencies within different groups
of data must be explored through difference models (2.3). Even-
tually, system calibration must further be enhanced. The filter-
ing of off-terrain points should be checked then by inspecting the
residuals (3.1.2), whereupon the maximum absolute value is a
good indicator of single blunders, and RMSE detects extended
failures of the filtering process.

All methods to assess DTM quality presented in this paper have
either already been implemented in SCOP++ (SCOP++ 2005), or
this is scheduled for the near future. The results of the respective
tests are condensed in this article.
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