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ABSTRACT:  
 
Three dimensional building models have become important during the past for various applications like urban planning, enhanced 
navigation or visualization of touristy or historic objects. 3D models can increase the understanding and explanation of complex 
urban scenes and support decision processes. A 3D model of the urban environment gives the possibility for simulation and 
rehearsal, to "fly through" the local urban terrain on different paths, and to visualize the scene from different viewpoints. The 
automatic generation of 3D models using Laser height data is one challenge for actual research. 
In many proposals for 3D model generation the process is starting by extraction of the border lines of man made objects. In our paper 
we are presenting an automatic generation method for lines based on the analysis of the 3D point clouds in the Laser height data. For 
each 3D point additional features considering the neighborhood are calculated. Invariance with respect to position, scale and rotation 
is achieved. Investigations concerning the required point density to get reliable results are accomplished. Comparing the new 
features with analytical results of typical point configurations provide discriminating features to select points which may belong to a 
line. Assembling these points to lines the borders of the objects were achieved. First results are presented. 
Possibilities for the enhancement of the calculation of the covariance matrix by including the intensity of the Laser signal and a 
refined consideration of the neighborhood are discussed. 
 
 

1. INTRODUCTION 

Three-dimensional building models have become important 
during the past for various applications like urban planning, 
enhanced navigation or visualization of touristy or historic 
objects (Brenner et al., 2001). They can increase the 
understanding and explanation of complex scenes and support 
the decision process. The benefit for several applications like 
urban planning or the virtual sightseeing walk was 
demonstrated utilizing LIDAR data. 
For decision support and operation planning the real urban 
environment should be available. In most cases the necessary 
object models are not present in the simulation data base. 
Especially in time critical situations the 3D models must be 
generated as fast as possible to be available for the simulation 
process. 
Different approaches to generate the necessary models of the 
urban scene are discussed in the literature. Building models are 
typically acquired by (semi-) automatic processing of Laser 
scanner elevation data or aerial imagery (Baillard et al., 1999; 
Geibel & Stilla, 2000). For large urban scenes LIDAR data can 
be utilized (Gross & Thoennessen, 2005). Pollefeys (1999) uses 
projective geometry for a 3D reconstruction from image 
sequences. Fraser et al. (2002) use stereo approaches for 3D 
building reconstruction. Vosselman et al. (2004) describes a 
scan line segmentation method grouping points in a 3D 
proximity. 
Airborne systems are widely used but also terrestrial Laser 
scanners are increasingly available. The latter ones provide a 
much higher geometrical resolution and accuracy (mm vs. dm) 
and they are able to acquire building facade details which are a 
requirement for realistic virtual worlds. Whereas in the orthogo-
nal Nadir view of an airborne system the data can be interpreted 
as 2D image this is not possible for terrestrial Laser scanners. 

We are presenting an approach for the segmentation of building 
parts like 3D edges. Analytical considerations give hints to ex-
tract these characteristic objects. We have realized and tested 
the detection of 3D edges as well as their approximation by 
lines. Also quality measures for the lines are determined. The 
capability of the algorithm is additionally demonstrated on the 
detection of overhead wires of a tram. 
In chapter 2 the calculation of additional point features is 
described. The features are normalized with respect to 
translation, scale and rotation. The dependencies between 
covariance matrix and the tensor of momentum of inertia are 
discussed. Investigations on the sensitivity of the specified 
features deliver constraints concerning their usage. 
In chapter 3 typical constellations of points are discussed and 
discriminating features are presented. Examples for the 
combination of eigenvalues and structure tensor are shown. For 
typical situations analytical feature values are derived.  
The importance of a precise registration of Laser point clouds if 
different data sets have to be fused is illustrated in chapter 4. 
The generation of lines is described in chapter 5. Points with 
the same eigenvectors are assembled and approximated by 
lines. Resulting 3D boundaries of objects are shown for 
different data sets.  
In chapter 6 the possibilities using additional features are 
summarized. Outstanding topics and aspects of the realized 
method are discussed. 
 

2. ADDITIONAL POINT FEATURES 

A Laser scanner delivers 3D point measurements in an 
Euclidian coordinate system. For airborne systems mostly the 
height information is stored in a raster grid with a predefined 
resolution. Image cells without a measurement are interpolated 
by considering their neighborhood.  
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Figure 1.  Point clouds from Toposys® Laser scanner  
 a) colored by height 
 Raster image based on point clouds:   

b) without, c) with interpolated values 
 
An example data set gathered by an airborne Laser scanner 
system as 3D points is shown in Figure 1a. The color 
corresponds to the height. A transformation to a raster image 
selecting the highest value for each pixel yields the Figure 1b. 
After filling missing pixels we are able to detect more details in 
Figure 1c. Due to the preprocessing steps the image does not 
represent the original 3D information anymore. The horizontal 
position is slightly different and some of the height values are 
calculated not measured. Additionally, sometimes more than 
one measurement for a resolution cell exists considering first 
and last echo or combining data of several measurement 
campaigns.  
An example for a dense point cloud of a terrestrial Laser 
scanner is shown in Figure 2 representing the intensity of the 
signal. 
 

 
Figure 2.  Point clouds colored by intensity 
 
In contrary to the airborne data the projection of terrestrial 
Laser data along any direction is not very reasonable. 
Especially the combination of airborne (Figure. 1) and 
terrestrial (Figure. 2) Laser scanning data requires directly the 
analysis in the 3D data. 
 
2.1 

v

Moments 

A 3D spherical volume cell with radius  is assigned to each 
point of the cloud. All points in a spherical cell will be 

analyzed. 3D moments as described by Maas & Vosselman 
(1999) are discussed and improved.  

R

In a continuous domain, moments are defined by: 
 , (1) ( ), ,= ∫ i j k
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where , , ∈i j k , and i j k+ +  is the order of the moment 
integrated over a predefined volume weighted by ( ), ,f x y z . 
As weighting function the mass density can be used. It reduces 
to a constant value if homogeneous material is assumed.  
Another possibility is to use the intensity of the reflected Laser 
beam (s. Figure 2, Figure 11) as weighting function. Some 
aspects of using the intensity signal were discussed in (Jutzi et 
al., 2005).  
We restrict the order of moments to . This delivers 
the weight, the center of gravity and the matrix of covariance. 
To be invariant against translation we calculate the center of 
gravity  
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and the centralized moments  
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We need two normalizations because ( , , )f x y z  can take a 
different physical unit (other than length).  
In the discrete case the integral (3) is approximated by the sum 
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including all points inside the sphere with radius  centered at 
an actual point 

R
( )a a ax y z  with the constraint 
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Under the assumption that the incremental volume vΔ  is 
constant and due to the dependency of the moments from the 
number of points inside the sphere and the selected radius  
we get the normalized moments  
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For constant weighting function ( , , )f x y z  as used in many 
cases we get  
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Neither the number of points nor the chosen physical unit for 
the coordinates, the radius and the weighting factor influences 
the values of the moments. 
Finally we calculate for each point of the whole data set a 
symmetrical covariance matrix 
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The calculation of the eigenvalues iλ  and eigenvectors 

 delivers features for each point. The 
eigenvalues are invariant concerning rotation. 

   with  1,2,3ie i =

If we calculate the tensor of momentum of inertia by 
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instead of the moments M of order two we will get the same 
eigenvectors. The sum of the eigenvalues belonging to the same 
eigenvector is constant for each eigenvector. 
 
 ( ) ( ) 200 020 002    1,2,3i iM T m m m const i+ = + + = ∀ =λ λ  (11) 
 
Due to the non contiguous (discrete) calculation of the moments 
the quality of the resulting numerical invariants can be discus-
sed in a statistical (as moments M ) or a physical (as moments 
of inertia T ) way considering each point not only as a point 
but as a representative physical part of its surrounding. 
 
2.2 Point distribution in 3D space 

In this section we discuss the influence of the distribution of 
point measurements concerning the proposed features. 

a  b  
Figure 3.  Point clouds of a terrestrial Laser scanner:   

a) vertical view, b) horizontal view; color indicates 
the distance to the sensor (blue=near, red=far away) 

 
Figure 3 shows as an example for the dependency of the point 
density of the Zoller+Fröhlich Laser scanner concerning the 
distance to the sensor.  
The comparable scan pattern of the Toposys sensor is shown in 
Figure 4a for a regular pattern and in Figure 4b for a wavy 
pattern. The point density in flight direction is usually much 
higher than in the perpendicular direction. In both cases there is 
no uniform distribution of the measured points.  
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Figure 4.  Scan pattern similar to the Toposys Laser scanner:   

a) regular pattern, b) wavy pattern  
 
For non uniform distribution equations (1) and (5) imply to 
weight each point by the volume around this point without 
other points like inside a cell of a Voronoi diagram 

(Aurenhammer, 2000) or to correct the moments by integration 
over each cell of the diagram separately. To avoid such a time 
consuming but more precise calculation we have discussed the 
behavior of the eigenvalues of M  dependent on the radius of 
the sphere and the density of the points. To investigate the 
behavior of the eigenvalues we have generated synthetically 
regular scans and also wavy scans (Figure 4) for a plane. After 
calculating covariance and eigenvalues taking all points inside 
the green circle we consider the ratio 2 1/λ λ  of the second and 
the greatest eigenvalue. The third eigenvalue is 3 0λ = . 
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Figure 5.  Ratio of 2 1/λ λ  dependent on the smaller point 

density : blue: regular pattern; green: wavy 
pattern 

/dy R

 
Figure 5 shows the ratio of the non zero eigenvalues dependent 
on the density of the points in the y-direction. Nearly the same 
behavior is calculated for both the regular and the wavy scan. 
The ratio for the regular pattern (blue) is slightly greater than 
for the wave pattern (green). The variations of the function are 
caused by the digitalization (Figure 4). For / 0.5dy R < ,  
point distance in y-direction, we got acceptable results. 
Weighting each point by the same factor we have to select the 
radius of the sphere as

dy

2R dy>  (two times of the largest point 
distance.) Under this constraint 2 1/λ λ  is greater than  (e.g. 0.75

0.1   0.5     1dx m dy m R m= = ⇒ > ). 
 

3. FILTERING OF POINTS 

After calculation of the covariance matrix for each point in the 
data set considering a local environment defined by a sphere we 
have additional features for each point.  
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Table 1. Eigenvalues for some typical situations 



 
 
 

These features are the center of gravity, the distance between 
center of gravity to the point, the eigenvectors, the eigenvalues 
and the number of points inside the sphere. They can be used 
for determination of object characteristics. 
Table 1 shows the eigenvalues of the covariance matrix of some 
special point configurations. The first six rows present 2D cases 
the last two 3D ones.  
The ratios are based on typical situations and analytically 
calculated. For an ideal line two eigenvalues are zero and one 
of it is greater than zero. For straight edges at the border of a 
half-plane one eigenvalue is zero and the ratio of  
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the both non zero eigenvalues. If we are looking for points 
inside a plane we have to compare the eigenvalues 

 with the values for a plane. For the 
edge points at the intersection line of two orthogonal planes the 

ratios are 
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Figure 6a shows all points with eigenvalues satisfying the 
criteria for planes. The color indicates the object height. In 
Figure 6b only the edge points are drawn corresponding to 
Table 1 row 4. 

a   

b  
Figure 6.  a) Points identified as plane points      

b) Points with one high and two small eigenvalues 
 
For object classification especially for region growing West 
(2004) uses the following features which depends on the 
eigenvalues: 
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a  

b  
Figure 7.  Points marked by a) Omnivariance b) Linearity 

 
Figure 7 shows the points classified and colored by the features 
a) Omnivariance and b) Linearity. A detailed analysis of these 
features for point classification is under investigation. 
 

4. REQUIREMENT FOR REGISTRATION 

The enhancement of resolution is possible combining multiple 
scans of the same scene. We have investigated this approach for 
airborne Laser scan data (Toposys). Especially the 
reconstruction of gabled roofs was considered. A precise 
registration of the data sets is necessary.  
The application of the filter process mentioned before delivered 
the result shown in Figure 8a. A detailed analysis shows some 
discrepancy in the registration of different scan data. Viewing 
along the ridge of the gabled roof, Figure 8a, demonstrates the 
gap between two flights. 

a  b  
Figure 8.  Gabled roof a) before and b) after fine registration 

 
Using the Iterative Closest Point (ICP) algorithms (Besl 1992, 
Fitzgibbon, 2001) the registration was refined (Figure 8b). This 
method uses data of two point clouds inside a common region 
and determines translation, rotation and scaling to minimize the 
distance between the point clouds. Based on the transformed 
data acceptable eigenvalues for the classification of the planes 
of the gabled roof are achieved. 

5. LINE GENERATION 

All points marked as edge point may belong to a line. These 
points are assembled to lines by a grouping process. We 
consider the greatest eigenvalue 1λ  and its eigenvector 1e . 
Consecutive points with a similar eigenvector, lying inside a 
small cylinder are grouped together and approximated by a line. 
Let  be the set of all points of the cloud. Starting with any 

point 

Cl

p Cl∈  with eigenvector p
1e as feature. This point is 



 
 
 

called the trigger point. Now we are looking for all points c  
and determine the set  

 { }1 1 min_ cosp cC c Cl e e= ∈ > . (18) 

This set contains all points with nearly the same or opposite 
direction for the first eigenvector tested comparing the inner 
product of two vectors against a given threshold . We 
construct a line through the trigger point along its first 
eigenvector: 

min_ cos
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The scalar components for c C∈  to each eigenvector are 
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Due to the normalization of the eigenvectors these components 
describe the distances along each direction. The distance of the 
point c  to the line is  
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Let ( ){ }, max_ dD c Cl d c p= ∈ ≤  be the set of edge points 

inside the cylinder given by g  with the given radius . 
The intersection GP  includes all edge points with 
nearly the same first eigenvector as the trigger point and not far 
away from the straight line given by the trigger point and its 
first eigenvector. 
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Collinear edges of different buildings in a row may belong to 
(GP p ). Therefore we examine the contiguity of the points in 

the neighborhood of p . The scalar values ( )1 ,c pμ  describe 

the projection of the points onto the straight line. Let ( ),s c pμ  

a sorted list of the ( )1 ,c pμ . Because ( ),s p pμ = 0
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the straight line without gap with respect to p . For 
determination of the line we calculate the mean values 
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the greatest eigenvalue of the covariance matrix . The 
elements of the matrix are 
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The straight line is described by 1xl cm e= + μ . Start point and 
endpoint are given by  
 ( ) ( )1 1 1 1min    and   max

c GPs c GPs
xa cm c e e xe cm c e e

∈ ∈
= + = +  (25) 

The length of the line is  
 L xe xa= −  (26) 

The eigenvalues of  can be normalized by CM 2
i

i L
λ

ν =  to be 

independent from length. These normalized eigenvalues are 
reasonable for a quality assessment of the lines. The same 
process is repeated for all points not assigned to a line until 
each point belongs to a line or can not generate an acceptable 
line. 
Figure 9 shows the results of the line generation for the data set 
shown in Figure 1. The color indicates the height of the lines. 
The eaves as well as the ground plan of the buildings are 
approximated by lines. For the detection of the ridge of the 
saddle roof we have to use other thresholds for the eigenvalues 
especially for roofs with small inclination. 
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Figure 9. Lines generated from edge points 

 
For the scene from Figure 3 we got the approximation lines 
shown in Figure 10. The ridge line, the contour lines at the 
bottom of the building and the boundary lines of the door are 
detected.  

 
 

Figure 10. Lines generated from edge points for the point 
clouds of a terrestrial Laser scanner (s. Figure 3) 
colored by the 1. eigenvalue 

 

 
 

Figure 11. Building of Figure 3 colored by intensity  
 
Considering the intensity of the Laser scanner signal of the 
same scene (Figure 11) we will investigate the reconstruction of 
windows. More tests have to be accomplished to stabilize the 
method. 



 
 
 

The proposed method delivers not only edges of buildings but 
also the overhead wires of tramways in a city. For data from the 
Toposys sensor Figure 12 displays the Last- and First-Echo and 
Figure 13 shows the generated lines of the power lines and the 
support wires. 
 

 a  b  
Figure 12. LastEcho and FirstEcho of a city scene 

 
 

Figure 13. Lines generated from edge points for overhead wires 
 

6. CONCLUSION AND OUTLOOK 

Laser scanner systems gather directly 3D information. For data 
reduction and visualization the data sets are transformed often 
to a raster grid interpolating gaps. Due to this step the original 
3D data is tampered.  
For terrestrial Laser scan data this method is more difficult to 
apply and tampering error may be larger. Additional problems 
will appear if we want to fuse airborne and terrestrial data sets. 
We propose the exploitation of the original 3D point clouds.  
Additional features for each point of the cloud are calculated 
from the covariance matrix including all neighbor points. The 
neighborhood is defined by a sphere. The quality of the 
resulting eigenvalues and the eigenvectors of the matrix 
depends on the resolution and the number of points inside the 
sphere. For different resolutions of different scan directions 
these values are discussed. Based on this investigation the 
radius of the sphere can be calculated by a function of the 
resolution. The new features are invariant with respect to 
position, rotation and scale. 
The additional features are appropriate for classification of the 
points as edge, corner, plane or tree points. For some typical 
situations analytically determined eigenvalues are opposed to 
calculated eigenvalues of real data for comparison. The greatest 
eigenvalue is used for filtering edge like points. 
The described method for generation of lines combines 
consecutive points with the same eigenvector inside a small 
cylinder without any gap. The presented results are promising.  
Further investigations are planned concerning the fusion of the 
data on basis of the point clouds and/or on a higher level of 
lines. For the filtering process features derived from the 
eigenvalues (12)-(17) should be tested on different kind of data 
to get a robust point classification.  
A further topic is the construction of planes assembling plane 
like points.  

A calculation of the covariance matrix which is adapted to the 
resolution should be investigated and may deliver better results. 
This process is expensive and should be tested on several data 
sets.  
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