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ABSTRACT:

Terrestrial laser scanning systems have become widely available during the past years. Raw data acquired by such systems typically
consists of separate overlapping datasets – each in its own local coordinate system. Applications that need data from more than a single
scan position therefore must be preceded by a registration of all scans into a common geometric reference frame.
In this paper, a novel method for the automatic and marker-free coarse registration of terrestrial laser scan data is presented. It is based
on matching planes in object space and is thus especially suitable for scenarios that are dominated by planar structures such as built-up
areas. First, suitable planes are extracted from the raw point cloud in a robust way. Then, the automatic coarse registration is carried
out based on correspondences of single plane pairs. Results are shown for test data constisting of 26 datasets of a small village.

1 INTRODUCTION

1.1 Motivation

In addition to airborne laser scanning, terrestrial LIDAR systems
have become widely available. While products from airborne
scanners cover larger areas and are often delivered as one geo-
referenced dataset, terrestrial systems are typically operated by
end-users and capture separate overlapping datasets – each in its
own local coordinate system. Any application that needs data
from more than a single scan position therefore must be preceded
by a registration of all scans into a common geometric reference
frame.

The state of the art in registration of terrestrial scan data is to
place artificial markers – either 2D or 3D targets – into the
scene before data acquisition. Registration software for (semi-)
automatic matching of the targets is commercially available.
In contrast to this, an automatic coarse registration of terres-
trial scan data in the absence of markers still is a topic of re-
search (Dold, 2005).

In this paper, a novel method for the automatic and marker-free
coarse registration of laser scan data is presented. It is based on
matching planes in object space and is thus especially suitable for
scenarios that are dominated by planar structures such as built-up
areas. A robust generation of planes from the 3D point cloud is
used as preprocessing. The registration algorithm comprises a
complete search that generates all possible solutions for single
plane matches and then chooses the best ones based on inlier
counts. The implementation turned out very fast for our test data
which is a set of 26 datasets of a small village. Results show that
a reliable coarse registration is possible even for such complex
scenarios and thereby proves the applicability of our algorithm to
real world tasks.

1.2 Related work

The basic algorithm often cited for registration of point clouds
is the ICP (iterative closest point) algorithm (Besl and McKay,
1992): Given an initial transformation, feature correspondences
are found and new transformation parameters are estimated
through a least squares adjustment. This procedure is iterated
until convergence. Extensions exist to enhance the radius of con-
vergence but ICP is mainly suitable for fine registration. One ex-
ample of an ICP derived method is presented in (Bae and Lichti,

2004). Matching is based on geometric curvature and change of
normal vector within a given neighborhood.

(Dold and Brenner, 2004) describe the principle of registration
based on three plane matches. A region growing method for the
estimation of planes from point clouds with known scan geome-
try is presented. Subsequently, the unknown rotation is recov-
ered through extended gaussian images (Dold, 2005): The nor-
mal vectors are all projeted onto a unit sphere and then clustered
through its tesselation. Matching the spheres at multiple resolu-
tion levels yields the rotation matrix but not the translation vector.

The adaption of the normal distribution transform (NDT) from
2D laser scanners used in robotics applications to the registration
of 3D point clouds is proposed by (Ripperda and Brenner, 2005).
Basically, the 3D data is sliced horizontally and then processed
as 2D data. Although the method yields good results, one has to
cope with convergence issues as well as some loss of information
through the reduction of dimensionality.

The complete sequence of segmentation, coarse and fine regis-
tration is also shown by (Liu and Hirzinger, 2005), introducing
the matching tree as a new search structure. The scene is seg-
mented based on changes of the normal vectors and stored in a
special graph structure which is then exploited for registration.

The methods reviewed here are all steps towards a generic solu-
tion, but each approach is improvable. Results for coarse regis-
tration presented are mainly – with the exception of (Ripperda
and Brenner, 2005) – applied to simple scenarios only, where a
single object dominates the scene and the overlap between the
datasets is large. The applicability to large and complex scenar-
ios had not been proven yet. Correspondence search algorithms
similar to the one presented in this paper have been applied to
2D matching problems in computer vision for a long time (Bal-
lard and Brown, 1982, Grimson, 1990).

2 METHODOLOGY

2.1 Overview

We will use the following terminology: The small and localized
planes generated directly from the point clouds are called surface
elements. Groups of coplanar and neighboring surface elements



are planes. The term matching will be used to denote the estab-
lishment of a logical link between two planes of two different
datasets while the transformation of one dataset into the geome-
tric reference frame of the other is called registration. The algo-
rithms frequently require some thresholds for decisions – these
are always denoted by a Θ with the referenced entity as index.

This section describes the processing chain from the raw point
clouds to the final transformation parameters. The registration of
point clouds can be subdivided into two tasks. The first is a pre-
processing and feature generation step that converts the raw point
cloud into a representation suitable for the second task, which
is the matching of features in order to estimate the yet unknown
transformation parameters of the registration. The registration
can again be subdivided into a coarse and a fine registration.
This distinction is necessary as precise algorithms usually re-
quire good initialization values for the transformation parameters,
while robust methods that can handle large displacements usually
do not return a statistically optimal result. Here is a summary of
the steps of the method proposed in this paper:

Generation of surface elements Each point cloud is split into
3D raster cells. For each cell, the dominant plane is estimated
through a RANSAC scheme.

Grouping to planes Neighboring coplanar surface elements
are grouped to planes. These typically coincide with planar ob-
ject surfaces.

Coarse registration This step is the most difficult in the pro-
cessing chain and its solution is the main contribution of this pa-
per. An exhaustive search for matching planes of two datasets
is carried out. For each possible match, initial transformation
parameters are computed and the number of inliers is counted.
Those matches with a high inlier count are returned as correct
matches for the fine registration.

Fine registration As the coarse registration returns both a set
of plane matches and initial transformation parameters, the fine
registration is a least squares adjustment over all scan positions
to compute optimal parameters. A statistical test allows detection
and removal of outliers that may have remained in the data. The
fine registration is outside the scope of this paper.

2.2 Generation of surface elements

The planes that the registration algorithm requires as input will
be generated in a two step process. Surface elements will be gen-
erated in a robust way from the point cloud and then are grouped
to planes (see Sec. 2.3). We utilize a method that is described in
(von Hansen et al., 2006) and is shown here as Alg. 1.

The set of 3D points X is partitioned and assigned to 3D vol-
ume cells using a Cartesian raster. All points in one of the
raster cells are denoted by Xi. For each cell, the dominant plane
pi = (ni, di) – i. e. the one that has the biggest support from

Input: 3D point cloud X .
Output: 3D raster S with one surface element si per cell.

Divide X into regular raster cells Xi.
for all Xi do

Robustly estimate dominant plane pi = (ni, di)
from all points ξ ∈ Xi. {E. g. via RANSAC.}

Compute barycenter xi from those ξ̂ that support pi.
Add si := (ni,xi) to output S.

end for
Algorithm 1: Segment point cloud into surface elements.

Input: Surface elements S as output from Alg. 1.
Output: A set of planes P grouped from S.
{Build graph structure.}
Create empty graph G.
for all s ∈ S do

Insert s as vertex into G.
for all t ∈ G, t 6= s do

if s, t neighbors in 3D raster and s, t coplanar then
Insert (undirected) edge between s and t into G.

end if
end for

end for
{Extract planes from graph.}
{Connected components of G are groups of S.}
for all connected components C ⊆ G do

if |C| < ΘC then
{Omit small structures.}

else
Estimate p := (n̄, x̄) from all si = (ni,xi) ∈ C.
Add p to P .

end if
end for

Algorithm 2: Group surface elements to planes.

the 3D points ξ ∈ Xi – is robustly estimated. This has been im-
plemented using the well known RANSAC strategy (Fischler and
Bolles, 1981), yielding a set of inlier points X̂i.

A localization of the plane in space is also needed in order to be
able to recover the translation vector t with only one plane match.
The plane represented by the Hesse normal form

ax + by + cz + d = n>x + d = 0 (1)

has an infinite extent. We are interested in a small and delimited
plane representing the points X̂i only. Therefore, in addition to
the normal vector ni, the barycenter xi – i. e. the mean – of the
point cloud X̂i is stored as well. The distance di of the plane to
the origin need not be stored because it is determined by

di = −n>
i xi. (2)

The surface elements S are used for visualization instead of the
raw points. Their shape can be recognized easily in all figures
showing 3D data.

2.3 Grouping to planes

The input is a regular 3D raster S with each cell containing one
surface element si = (ni,xi) that rather precisely represents a
small planar region of an object surface. Obviously, many neigh-
boring surface elements describe exactly the same plane. The
grouping collects them into a single plane based on adjacency
and coplanarity as described in Alg. 2.

The basic structure used for this is a graph G. All surface ele-
ments s ∈ S are entered as nodes and then compared to all of
their 26 neighboring cells of the 3D raster. If two such surface el-
ements are coplanar, then an undirected edge is inserted between
the respective graph nodes. Since the order of these operations
does not matter, the resulting graph is determined uniquely.

The connected components of G are planes composed from the
surface elements. They are simply extracted from the graph by
computing a mean normal vector n̄ and a mean barycenter x̄
from each connected component and storing it as one plane in
the output set P . A threshold ΘC is applied to remove planes
that do not have enough support by the surface elements. This is
mainly done to reject planes induced by noise and to reduce the
amount of data in favor of larger and better planes.



2.4 Coarse registration

The coarse registration of two datasets is a typical chicken and
egg problem. In order to compute transformation parameters,
matching entities must be identified first. On the other hand,
matching usually requires some knowlegde about the transforma-
tion parameters. We will solve the dilemma through a complete
search that generates all possible matches from which the correct
ones will be extracted based on inlier counts.

It is required that the scenario contains planar object surfaces as
these will be used for matching. The purely mathematical so-
lution such as proposed in (Dold and Brenner, 2004) needs two
plane matches for rotation and three for translation. Neither a
random nor a systematic generation of matches seems feasible
when only about 20–30% of the planes are in the overlapping
area. However, the situation can be improved when ancillary
knowledge is taken into account. For terrestrial laser scanners,
the zenith direction is usually known from restrictions in the sen-
sor setup. Hence, each dataset implicitly contains the horizontal
ground plane so that only one plane match is required to solve for
rotation.

This single plane match can already be exploited to get an ap-
proximate translation vector t = xj−xi via the known barycen-
ters. This will not yield a precise solution – because there might
be systematic shifts when different parts of a surface have been
visible in the two datasets – but this error will cancel out when
multiple matches are regarded.

The complete strategy for the coarse registration is presented
in Alg. 3. First, a complete search over all possible single plane
matches is carried out. As co-aligned zenith directions are as-
sumed, this knowledge can be applied to narrow the search. The
3D normal vector n of each plane is expressed in a spherical coor-
dinate system with inclination ϕ and azimuth α. Two planes can
only match when they have the same inclination. Then, the trans-
formation parameters rotation R and translation t from P2 to P1

are computed through the difference of azimuth and barycenter
respectively. The planes of P2 are transformed into the geome-
tric reference frame of P1 and denoted P ′′2 .

The next step is the count of inliers nij – the number of planes
matching for a particular set of parameters. If the transformation
is correct, then two matching planes must have similar parame-
ters. Each plane of the first dataset P1 is compared to all planes
of the second dataset P ′′2 and the number of matches with similar
inclination ϕ, azimuth α and barycenter x are counted. Finally,
the triggering match is entered into a list along with its transfor-
mation parameters and inlier count (Tab. 1).

Each generated match thereby is supported by other matches that
verify it. The list is sorted with respect to the inlier count nij and
the m best ones are picked for computation of the parameters.
There are several complementary possibilities to choose m:

1. The maximum number of inliers found nmax – i. e. the first
row of the sorted list – is an upper bound for m.

2. The median of the first nmax inlier counts is a robust esti-
mation for the inlier rate.

3. A large difference in n from one row to the next (e. g. ni+1−
ni > Θn = 1) indicates a possible end of the inlier list.

We have used the minimum of all three possibilities as m. The
transformation parameters are then estimated as a (robust) mean
from all inlier matches.

Input: Two sets of planes P1,P2 generated from two point
clouds as output from Alg. 2.

Output: Transformation parameters R, t from P2 to P1. List of
plane matches Ĉ = (nij , pi, pj ,Rij , tij), pi ∈ P1, pj ∈ P2.
{Compute additional plane attributes.}
for all p = (n,x) ∈ P1 ∪ P2 do

α← arctan(ny/nx) {Azimuth}
ϕ← arcsinnz {Inclination}
Add attributes α, ϕ to p.

end for
{Iterate through all possible correspondences.}
Create empty list of correspondences C.
for all pi ∈ P1 do

for all pj ∈ P2 do
if |ϕj − ϕi| < Θϕ then {New correspondence.}
{Transform P2 according to match (pi, pj).}
Rij ← Rotation by angle αj − αi around z-axis.
P ′2 ← Apply Rij to P2.
tij ← x′j − x′i
P ′′2 ← Translate P ′2 by tij .
{Count inliers.}
nij ← 0
for all pk ∈ P1 do

for all p′′` ∈ P ′′2 do
if |ϕ′′

` − ϕk| < Θϕ ∧ |α′′
` − αk| < Θα

∧ ‖x′′` − xk‖ < Θx then
nij ← nij + 1

end if
end for

end for
Insert (nij , pi, pj ,Rij , tij) into C.

end if
end for

end for
Sort C with respect to n.
Pick m correspondences Ĉ with most inliers from C.
Compute output R and t from all c ∈ Ĉ.

Algorithm 3: Automatic coarse registration.

3 EXPERIMENTS AND RESULTS

3.1 Available datasets

We dispose of 26 overlapping datasets from a Z+F Imager 5003
terrestrial laser scanner. It has an operation range of 50 m and
captured about 100 million valid 3D points per dataset. For each
3D point, the amount of reflected light is recorded and available
for surface textures.

The imaged scenario is a farming village, containing moderately
complex arrangements of small houses around many courtyards.
Buildings are typically two stories high and have inclined roofs.
The global layout of all scan positions is shown in Fig. 1.

3.2 Generation of surface elements

The raster size for the generation of surface elements has been
chosen as 1 m in order to describe façade and roof surfaces
through several surface elements but also to ignore small struc-
tures. Results for three selected positions are shown in Fig. 2. The
grid like texture of the plane boundaries originally stems from
unintended border effects in the visualization, but clearly shows
how the result is composed. The number of surface elements gen-
erated for each of the positions ranges from 2600 to 10000.
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Figure 1: Graph-like layout of all scanner positions, roughly in
their correct geometric place. Dashed lines denote rows of con-
secutive positions that have been left out in this illustration. Di-
rectly neighboring positions are connected, but distant datasets
may also overlap.

Rotation Translation
#Inliers pi pj α/rad tx/m ty/m tz/m

17 88 41 −0.2419 20.76 4.43 −1.71
16 95 55 −0.2527 20.56 2.85 −1.22
16 94 52 −0.2467 20.78 3.93 −0.54
16 91 45 −0.2406 21.00 2.99 −1.31
16 90 40 −0.2424 21.19 2.81 −1.68
16 89 43 −0.2435 20.38 2.85 −1.12
16 87 42 −0.2340 20.92 3.42 −1.27
16 86 33 −0.2282 21.14 2.85 −2.08
16 85 34 −0.2571 20.50 2.81 −1.30
16 67 26 −0.2512 21.89 3.17 −1.53
16 35 3 −0.2587 21.00 2.72 −1.97
16 31 5 −0.2411 21.01 3.18 −1.67
16 27 2 −0.2521 21.39 2.94 −1.25
15 79 29 −0.2408 21.96 2.57 −1.02
15 76 30 −0.2310 20.81 3.01 −0.75
13 93 52 −0.2481 20.80 3.52 −3.90
8 76 31 −0.2276 19.19 2.27 0.93
5 94 62 −0.2304 −3.70 −0.62 −0.80
5 49 55 1.2278 −3.44 −15.16 −2.69
5 28 59 1.2675 −3.14 −12.69 −3.01

Table 1: Twenty best matches from position 2 to 3. The horizontal
line indicates the end of the automatically chosen inlier set.

3.3 Grouping to planes

The grouping is a deterministic procedure that can be guided
through two thresholds – one for coplanarity and one to reject
too small planes. One result is shown in Fig. 3, where all planes
recovered from position 2 are shown in uniform colors. The
number of planes for each position ranges from 30 to 100.

Since only local comparisons are used for the creation of the
graph, it may happen that large resulting regions are not exactly
planar. While the surface elements are an oversegmentation of
object space, the planes are an undersegmentation for which the
streets in an outdoor scenario would be typical examples. For
the coarse registration this poses no real problem, since under-
segmentation results in only a few planes that are easily ignored
by robust algorithms.

3.4 Coarse registration

As the maximum deviation from the true zenith direction was
≤30 mrad, no prior rotation of the datasets was necessary. As a
typical example for the output of Alg. 3, the list of matches from
position 2 to 3 is shown in Tab. 1. Only the top twenty matches
are given – the actual list is much longer (cf. column “#Tests”
of Tab. 2). Column “#Inliers” contains the number of inliers for
the match of the two planes listed in the columns pi and pj . The

Figure 2: Datasets from positions 1 to 3 (from top to bottom).
The small square structures are the surface elements.

Figure 3: Result of the grouping for position 2.

last four columns show the transformation parameters valid for
this particular match. A horizontal line marks the automatically
defined end of the inlier set.

Results for all neighboring positions of the test data (cf. Fig. 1)
are shown in Tab. 2. Columns P1 and P2 are the position num-
bers, column n1n2 is the total number of tests that are possible,
while the next two columns show the number and percentage of
tests actually carried out because the inclination indicated a pos-
sible match. At least half of the generated correspondences could
be rejected early through this criteria.

The following columns are the results of the inlier tests. The
absolute number of inliers is given along with the inlier rate with
respect to min(n1, n2). The inlier rate of only 25% is low mainly
because of the limited overlap between the datasets. Not all
registrations have been successful. Filled circles mark success-
ful registrations while empty circles indicate failures.

In order to illustrate the results of the coarse registration, a color-
coded fusion of the individual datasets from positions 1 to 3 is
shown in Fig. 4.



Figure 4: Resulting coarse registration of positions 1 (red), 2 (green), 3 (blue).

P1 P2 n1n2 #Tests #Inliers
1 2 7776 3191 41% 21 26% •
2 3 6240 1993 32% 15 23% •
3 4 3705 1431 39% 17 30% •
4 5 2337 980 42% 11 27% •
2 6 4512 1479 33% 13 28% •
6 7 2021 623 31% 4 9% ◦
7 8 2064 550 27% 12 28% •
8 11 2928 672 23% 6 12% •
11 10 2501 646 26% 4 10% ◦
10 9 2255 774 34% 8 20% •
9 1 4455 2042 46% 6 11% •
1 12 5346 2354 44% 17 26% •
12 13 5610 2300 41% 18 27% •
12 14 4620 1742 38% 5 8% •
14 15 6160 2364 38% 18 26% •
15 16 6336 2520 40% 19 26% •
16 17 6120 2377 39% 16 22% •
17 18 7395 2588 35% 20 24% •
18 19 7743 2531 33% 16 18% •
19 20 4272 1276 30% 10 21% •
20 21 1632 364 22% 3 9% ◦
1 22 6075 2910 48% 22 29% •
22 23 4575 1864 41% 10 16% •
23 24 3111 1162 37% 16 31% •
24 25 2091 727 35% 12 29% •
25 26 1681 555 33% 10 24% •

Table 2: The number of tests actually needed compared to the
total number of correspondences.

4 DISCUSSION

Robustness The robustness – i. e. outliers do not have an im-
pact on the result – of our method is achieved at multiple levels:

• Alg. 3 is superior to RANSAC: It is also a generate-and-
test scheme that uses the inlier count as quality measure,
but with the distinction that the random sampling has been
replaced by a complete search. RANSAC would return only
one of the first m rows of Tab. 1 as its result whereas we get
m valid rows.

• There exist several methods to determine m (Sec. 2.4).
Hence, the estimated size of the inlier set can be checked.

• Estimation of the transformation parameters from the m
rows can again be done through a robust scheme such as
RANSAC or a least squares adjustment with outlier detec-
tion.

Complexity Alg. 3 has a complexity of O(n4) with n being
the average number of planes in Pi: Both the generate loop and
the test loop nested inside compare all planes from P1 and P2

and thus each have complexity O(n2). Despite this, the imple-
mentation turned out very fast and finished within seconds even
on a slow computer (Pentium III Mobile CPU @ 750 MHz) for
multiple reasons:

• In practical applications, n is small. For the 26 datasets we
have n < 100 and therefore can expect less than 1004 =
100 million runs of the innermost loop.

• The test of matching inclinations reduces the number of
calls to the test loops. According to Tab. 2, less than half
of the generated matches actually have to be checked.

• The innermost loop only contains comparisons so that it
does not need much processing power. In fact, since there
exist only 2n data elements, it is likely that the innermost
loop will run entirely on the CPU cache.

Alternatively to the count of inliers one could also look for clus-
ters in parameter space. The complexity for the matching is
reduced to O(n2) as only the generation loop is needed, but
a Hough like clustering would require a four dimensional accu-
mulator for the parameters.

Execution times for the different stages are shown in Tab. 3. The
first two stages take considerably longer because they process the
complete cloud of about 100 million points so that I/O perfor-
mance is an issue as well. In contrast to this, grouping and regis-
tration run very fast as these steps operate only on plane repre-
sentations of the data.

Results Compared to the 100 million points of the raw point
cloud, the surface elements are a significant data reduction – es-
pecially near the laser scanner, where the point density of the raw
data is very high. As can be seen from Fig. 2, they describe the
scene very well. The results of the grouping are good, because
planes typically coincide with object surfaces.

As can be seen from the registration result in Tab. 1, every match
from the inlier list (and in fact also the next two rows) contain
similar transformation parameters. The final parameters for the
coarse registration can easily be obtained from this list – e. g. by
averaging over the automatically chosen inlier set. Additionally,



Stage min avg max
Split point cloud into raster 249 307 343
Generate surface elements 136 215 563
Group to large planes 0.18 0.59 2.18
Coarse registration 0.17 0.57 1.29

Table 3: Minimum, average and maximum execution time in
seconds for all datasets and the different stages on a Pentium M
processor @ 1.7 GHz.

we thereby already dispose of a list of plane matches that could
be used as starting point for the fine registration.

In all cases of a failure in Tab. 2, the datasets did not have enough
matching planes in the overlapping area to get the inlier rate
above the noise. During data acquisition, the positions have only
been chosen to produce overlapping datasets that cover the com-
plete scenario, so that the failures are due to bad sensor position-
ing. However, it is possible to work around such cases by first
joining some datasets and then to try to match with this instead.

In Tab. 4, the ten best matches are shown for one of the failures.
It can be seen that the first m rows do not necessarily contain
only inliers. In order to detect a failure caused by a weak con-
figuration, the parameters of the first rows must be checked for
this.

Object features that belong together are overlayed very well
in Fig. 4. The quality of the fusion can be seen best from the two
nicely fitting blue-green and blue-red roofs in the middle of the
figure. Close inspection of the dataset reveals that the registration
is not perfect. While some surfaces actually coincide (these can
be identified by their multi-color pattern) others – like the blue
façade on the very left – are up to 1 m apart. A fine registration
can easily fix this, as valid plane correspondences are available.

Errors in zenith direction We do not explicitly take into ac-
count the errors in the zenith direction. From analysis of the data
we know that the absolute error is less than 30 mrad. However,
the rotational component is also compensated via a z-shift. Ac-
tually this should even decrease bending of large models because
the small rotations are not summed up.

5 CONCLUSIONS

We have presented a novel algorithm for the automatic marker-
free coarse registration of two point clouds from terrestrial laser
scanner – a task that is still considered difficult. The key idea was
to recover initial parameters for rotation and translation from sin-
gle plane correspondences only. As prerequisites it was required
that the scene contains planar surfaces and that the laser scanner
is set up with the local z-direction pointing upward. These condi-
tions are easily fulfilled for built-up areas and available systems.

We have shown results for 26 datasets covering large parts of a
moderately complex farming village. It has been shown that a
reliable coarse registration of such real world data with an overlap
of only 20–30% between neighboring positions is possible with
our method. Some failures occured, but these were always due to
an insufficient number of common planes in both datasets, caused
by bad sensor placement. It is possible to automatically detect
such bad configurations by analysis of the correspondence lists.

Current work is focussed on the extension of the approach to the
automatic determination of topology of multiple datasets. The
input shall be a number of datasets without any additional in-
formation and the output a neighborhood graph similar to Fig. 1
along with the complete set of transformation matrices for all
datasets. We also plan to test the applicability of this algorithm
to the mixed registration of terrestrial and airborne LIDAR data.

Rotation Translation
#Inliers pi pj α/rad tx/m ty/m tz/m

4 29 13 0.1898 −11.31 18.57 0.11
3 44 16 −2.9469 9.24 −5.62 −2.37
3 28 27 −1.3910 −11.21 −24.28 −2.65
3 18 19 −1.3633 18.64 −24.13 −1.79
3 18 3 0.2133 −12.23 −11.49 −2.58
3 11 3 0.1621 −12.66 18.36 0.21
3 4 13 0.2979 −32.38 30.89 3.82
3 4 3 −1.2788 −13.93 17.33 1.30
3 2 16 0.2951 −33.09 34.87 5.29
3 2 2 −1.2707 −14.62 20.61 1.54

Table 4: Ten best matches from position 20 to 21. The horizontal
line indicates the end of the automatically chosen inlier set.
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