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ABSTRACT:

In this contribution we describe an image-based framework for 3D surface reconstruction by a combined analysis of reflectance,
polarisation, and sparse depth data. An error functional consisting of several error terms related to the measured reflectance and
polarisation properties and the depth data is minimised in order to compute a dense surface gradient field and in a subsequent step a
dense 3D surface profile. The error terms related to reflectance and polarisation directly depend on the surface gradients, while the
depth-related error term describes the deviation between the 3D surface profile implied by the surface gradient field and the measured
depth points. Hence, we suggest an optimisation scheme that simultaneously adapts the surface gradients to the measured reflectance
and polarisation data and to the surface slopes implied by depth differences between pairs of depth points. To increase the robustness
of the optimisation scheme it is implemented as a multi-scale approach, thus providing a result largely independent of the provided
initialisation. In our system the sparse depth data are provided by a correlation-based stereo vision algorithm, but in principle arbitrary
sources of depth data are possible. We evaluate the algorithm based on synthetic ground truth data, demonstrating that the combined
approach increases the accuracy of 3D surface reconstruction, compared to the result obtained by applying either of the techniques
alone. Furthermore, we report 3D reconstruction results for a raw forged iron surface and compare them to ground truth depth data
obtained by means of a laser focus profilometer. This evaluation yields a depth accuracy (root-mean-square deviation) of our approach
of 62 µm, which is of the same order of magnitude as the intrinsic roughness of the metallic surface.

1 INTRODUCTION

Three-dimensional surface reconstruction is an important topic
in various application areas, such as quality inspection and re-
verse engineering. Many image-based reconstruction methods
have been proposed, based on photometric as well as geomet-
ric principles. Well known geometric approaches include stereo
and structure from motion (Faugeras, 1993), and projection of
structured light (Batlle et al., 1998). In practice, even passive
methods such as stereo and structure from motion often require
structured illumination to artificially produce texture required for
a dense reconstruction of the surface (Calow et al., 2002). Recon-
struction algorithms based on photometric methods include shape
from shading (SfS) and polarisation (Horn and Brooks, 1989;
d’Angelo and Wöhler, 2005a; Miyazaki et al., 2003). In con-
trast to the geometric approaches, they can be used to reconstruct
smooth, textureless surfaces without structured illumination.

A combined reconstruction based on geometric and photomet-
ric reconstruction methods is desirable, since both approaches
complement each other. A number of approaches to combine
stereo and shape from shading have been proposed in the lit-
erature. Cryer et al. (1995) fuse low-pass filtered stereo depth
data and high-pass filtered shape from shading depth data. Sama-
ras et al. (2000) introduce a surface reconstruction algorithm that
performs stereo analysis of a scene and uses a minimum de-
scription length metric to selectively apply SfS to regions with
weak texture. A related approach (Fassold et al., 2004) integrates
stereo depth measurements into a variational SfS algorithm and
estimates surface shape, light source direction, and diffuse re-
flectance map.

In this paper we propose a combination of shape from pho-
topolarimetric reflectance (SfPR) with 3D depth measurements
from arbitrary sources. Our approach extends a variational SfPR
framework (d’Angelo and Wöhler, 2005a) by adding an addi-
tional depth error term to the error function. A multi-scale ap-

proach is applied to reconstruct the surface gradient field. In
this framework we assume known reflectance functions and light
source positions.

2 SHAPE FROM PHOTOPOLARIMETRIC
REFLECTANCE

In our scenario, we will assume that the surface z(x, y) to be re-
constructed is illuminated by a point light source and viewed by a
camera, both situated at infinite distance in the directions ~s and ~v,
respectively. The xy plane is parallel to the image plane. Parallel
unpolarised incident light and an orthographic projection model
are assumed. For each pixel location (u, v) of the image we in-
tend to derive a depth value z(u, v). The surface normal is given
in the so-called gradient space by the vector ~n = (−p,−q, 1)T

with p = ∂z/∂x and q = ∂z/∂y. The incidence angle θi is
defined as the angle between surface normal ~n and illumination
direction ~s, the emission angle θe as the angle between surface
normal ~n and viewing direction ~v, and the phase angle α as the
angle between illumination direction ~s and viewing direction ~v.
A measure for the intrinsic reflectivity of the surface is given by
the surface albedo ρ(u, v).

In the framework of shape from photopolarimetric reflectance
(SfPR), the light reflected from a surface point located at the
world coordinates (x, y, z) with corresponding image coordi-
nates (u, v) is described by the observed pixel intensity I(u, v),
the polarisation angle Φ(u, v) (i. e. the direction in which the
light is linearly polarised), and the polarisation degree D(u, v).
Measurement of polarisation properties is thus limited to linear
polarisation while circular or elliptic polarisation is not taken into
account. It is assumed that models are available that express these
photopolarimetric properties in terms of the surface orientation ~n,
illumination direction ~s, and viewing direction ~v. These models
may either be physically motivated or empirical (cf. Section 2.2)
and are denoted in this paper by R (intensity reflectance), RΦ



(polarisation angle reflectance), and RD (polarisation degree re-
flectance). The aim of surface reconstruction in the presented
framework is to determine for each pixel (u, v) the surface gra-
dients p(u, v) and q(u, v), given the illumination direction ~s and
the viewing direction ~v, such that the modelled photopolarimetric
properties of the pixel correspond to the measured values:

I(u, v) = R (p(u, v), q(u, v), ~s, ~v) (1)

Φ(u, v) = RΦ (p(u, v), q(u, v), ~s, ~v) (2)

D(u, v) = RD (p(u, v), q(u, v), ~s, ~v) (3)

The reflectance functions (1)–(3) may depend on further, e. g.
material-specific, parameters which possibly in turn depend on
the pixel coordinates (u, v), such as the surface albedo ρ(u, v)
which influences the intensity reflectance R. A local approach
to obtaining the surface gradients p(u, v) and q(u, v) consists of
solving the nonlinear system of Eqs. (1)–(3) individually for each
pixel location (u, v) either exactly or in the least-mean-squares
sense (d’Angelo and Wöhler, 2005b). For integration of large-
scale depth information, however, a global optimisation scheme
for determining the surface gradient field is more favourable,
since it is not straightforward to include global depth constraints
into the local approach to estimate p(u, v) and q(u, v).

2.1 Global optimisation scheme

In this section we describe a global approach to adapt the surface
gradients p(u, v) and q(u, v) to the observed photopolarimetric
properties I(u, v), Φ(u, v), and D(u, v) by solving the system
of equations (1)–(3) (d’Angelo and Wöhler, 2005a). The 3D sur-
face profile z(u, v) is then obtained by integration of the surface
gradient field by solving the Poisson equation ∆z = px + py

(Simchony et al., 1991).

2.1.1 Determination of surface gradients and relative depth
The solving technique is based on the optimisation of a global
error function (Horn, 1989; Jiang and Bunke, 1997; d’Angelo and
Wöhler, 2005a). One part of this error function is the intensity
error term

eI =
L

∑

l=1

∑

u,v

[

I(l)(u, v)−

R
(

ρ(u, v), p(u, v), q(u, v), ~s(l), ~v
) ]2

.

(4)

The number of light sources and thus of acquired images is given
by L. We assume orthographic projection, hence ~s(l) and ~v are
constants.

As the pixel intensity information alone is not necessarily suffi-
cient to provide an unambiguous solution for the surface gradi-
ents p(u, v) and q(u, v), a regularisation constraint es is intro-
duced which requires smoothness of the surface, i. e. for example
small absolute values of the directional derivatives of the surface
gradients. We will therefore make use of the error term

es =
∑

u,v

[

p2
x + p2

y + q2
x + q2

y

]

. (5)

(Horn, 1989; Jiang and Bunke, 1997). In the scenarios regarded
in this paper, the assumption of a smooth surface is realistic. For
wrinkled surfaces, where using Eq. (5) leads to an unsatisfactory
result, it can be replaced by the departure from integrability error
term described in detail by Horn (1989).

To integrate polarisation angle and degree into the 3D surface
reconstruction framework, we define two error terms eΦ and

eD which denote the deviations between the measured values
and those computed using the corresponding phenomenological
model:

eΦ =
L

∑

l=1

∑

u,v

[

Φ(l)(u, v) − RΦ

(

p(u, v), q(u, v), ~s(l), ~v
)]2

(6)

eD =

L
∑

l=1

∑

u,v

[

D(l)(u, v) − RD

(

p(u, v), q(u, v), ~s(l), ~v
)]2

.

(7)

Based on the feature-specific error terms eI , eΦ, and eD, a com-
bined error term e is defined which takes into account the re-
flectance and polarisation properties:

e = es + λeI + µeΦ + νeD. (8)

Minimising error term (8) yields the surface gradients p(u, v)
and q(u, v) that optimally correspond to the observed reflectance
and polarisation properties, where the Lagrange parameters λ, µ,
and ν denote the relative weights of the individual reflectance-
specific and polarisation-specific error terms. With the discrete
approximations px(u, v) = [p(u + 1, v) − p(u − 1, v)] /2 and
py(u, v) = [p(u, v + 1) − p(u, v − 1)] /2 for the second deriva-
tives of the surface and p̄(u, v) as the local average over the four
nearest neighbours of pixel (u, v) we obtain an iterative update
rule for the surface gradients by setting the derivatives of the er-
ror term e with respect to them to zero:

pn+1 = p̄n + λ
L

∑

l=1

(I − R(p̄n, q̄n))
∂R

∂p

∣

∣

∣

∣

p̄n,q̄n

+ µ

L
∑

l=1

(Φ − RΦ(p̄n, q̄n))
∂RΦ

∂p

∣

∣

∣

∣

p̄n,q̄n

+ ν
L

∑

l=1

(D − RD(p̄n, q̄n))
∂RD

∂p

∣

∣

∣

∣

p̄n,q̄n

.

(9)

A corresponding expression for q is obtained in an analogous
manner. This derivation is described in more detail in Jiang and
Bunke (1997). The initial values p0(u, v) and q0(u, v) must be
provided based on a-priori knowledge about the surface or on in-
dependently obtained depth data (cf. Section 3). The surface pro-
file z(u, v) is then derived from the resulting gradients p(u, v)
and q(u, v) by means of numerical integration of the gradient
field (Simchony et al., 1991).

The reconstruction is done in a multi-scale approach to speed up
convergence and avoid getting stuck in local minima. Recon-
struction of the gradient field starts at a low resolution and is re-
peated on the next pyramid level, using the gradients estimated at
the previous level as initial gradient values.

2.2 Determination of empirical photopolarimetric models

For the purpose of determination of empirical reflectance and po-
larisation models for the surface material the surface normal ~n
of a flat sample is adjusted by means of a goniometer, while the
illumination direction ~s and the viewing direction ~v are constant
over the image. Over a wide range of surface normals ~n, five im-
ages are acquired through a linear polarisation filter at orientation
angles ω of 0◦, 45◦, 90◦, 135◦, and 180◦. For each filter orienta-
tion ω, an average pixel intensity over an image area containing
a flat part of the sample surface is computed. To the measured
pixel intensities we fit a sinusoidal function of the form

I(ω) = Ic + Iv cos(ω − Φ) (10)
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Figure 1: (a) Plot of the three reflectance components. (b) Measured reflectance of a raw forged iron surface for α = 75◦.

using the linear method described by Rahmann (1999). The fil-
ter orientation Φ for which the maximum intensity Ic + Iv is
observed corresponds to the polarisation angle. The polarisation
degree amounts to D = Iv/Ic. In principle, three measurements
would be sufficient to determine the three parameters Ic, Iv, and
Φ, but the fit becomes less noise-sensitive and thus more accu-
rate when more measurements are used. The parameter Ic corre-
sponds to the intensity reflectance R of the surface.

According to Nayar et al. (1991), the reflectance of a typical
rough metallic surface consists of three components: a diffuse
(Lambertian) component, the specular lobe, and the specular
spike. We model these components by the phenomenological ap-
proach

R(θi, θe, α) = ρ

[

cos θi +
N

∑

n=1

σn · (cos θr)
mn

]

(11)

with cos θr = 2 cos θi cos θe − cos α describing the angle be-
tween the specular direction ~r and the viewing direction ~v (cf.
Fig. 1a). For θr > 90◦ only the diffuse component proportional
to cos θi is considered. The albedo ρ is assumed to be constant
over the image. The shapes of the two specular components are
expressed by N = 2 terms proportional to powers of cos θr,
where the coefficients {σn} denote the strength of the specular
components relative to the diffuse component and the parameters
{mn} their widths.

The polarisation angle Φ is phenomenologically modelled by an
incomplete third-degree polynomial in p and q according to

RΦ(p, q) = aΦpq + bΦq + cΦp2q + dΦq3. (12)

Without loss of generality we assume illumination in the xz plane
(zero y component of ~s) and a view along the z axis (~v =
(0, 0, 1)T ). Eq. (12) is antisymmetric in q, and RΦ(p, q) = 0
for q = 0, i. e. coplanar vectors ~n, ~s, and ~v. These properties are
required for geometrical symmetry reasons as long as an isotropic
interaction between the incident light and the surface material can
be assumed. The polarisation degree D is modelled by an incom-
plete second-degree polynomial in p and q according to

RD(p, q) = aD + bDp + cDp2 + dDq2. (13)

For rough metallic surfaces, RD is maximum near the direction
of specular reflection. Symmetry in q is imposed to account for
isotropic light-surface interaction.

3 INTEGRATION OF DEPTH INFORMATION

Since the obtained solution of SfS and, to a lesser extent, SfPR
may be ambiguous as long as single images are regarded, in-
tegrating additional information into the surface reconstruction
process improves the reconstruction result. For example, a sparse
set of 3D points of the object surface can be reconstructed by
stereo vision, laser triangulation, or shadow analysis. Previous
approaches either merge the results of stereo and SfS (Cryer et
al., 1995) or embed the SfS algorithm into stereo (Samaras et al.,
2000) or structure from motion algorithms (Lim et al., 2005). For
the examples in this paper, a stereo algorithm was used to extract
sparse depth information.

3.1 Description of the employed stereo algorithm

A block matching stereo algorithm is used in this paper. We as-
sume that the images are rectified to standard stereo geometry
with epipolar lines parallel to the horizontal image axis. The pro-
posed approach is not restricted to this choice since any other
source of relative depth information can be used instead.

For each pixel i at position (u, v) in the left image, a correspond-
ing point is searched along the epipolar line in the right image.
We use the normalized cross correlation coefficient (normxcorr)
as similarity measure. A square region of 7 by 7 pixels of the
left image (L) is correlated with regions on the corresponding
epipolar line in the right image (R) for all candidate dispari-
ties d, resulting in an array of correlation coefficients ci(d) =
normxcorr(Lu,v, Ru−d,v). The disparity with the maximum
correlation coefficient di = argmaxdci(d) is determined, and
a parabola P (d) = ad2 + bd + e is fitted to the local neighbour-
hood of the maxima. The dispartiy di is estimated at subpixel ac-
curacy according to di = −b/(2a). Only fits with ci(di) > 0.9
and ai < −0.1 are used. This ensures that only well localised
correspondences are considered for further processing. The co-
ordinates of a point (ui, vi) in the left stereo camera coordinate
system are then given by Zi = bf/di, Xi = uib/di, and
Yi = vib/di. The focal length f and base distance b between the
cameras are determined by binocular camera calibration (Krüger
et al., 2004).

3.2 Fusion of sparse depth information with SfPR

To incorporate the depth information into the global optimisation
scheme presented in Section 2.1, we define a depth error term
based on the depth difference between the sparse 3D points and



the integrated gradient field. The depth difference between two
3D points i and j is given by

(∆z)ij = Zj − Zi. (14)

The corresponding depth difference of the reconstructed surface
gradient field is calculated by integration along a path Cij be-
tween the coordinates (uj , vj) and (ui, vi):

(∆z)ij

surf =

∫

Cij

(pdx + qdy) . (15)

In our implementation the path Cij is approximated by a list of
K discrete pixel positions (uk, vk) with k = 1, . . . , K. While in
principle any path Cij between the points i and j is possible, the
shortest integration path, a straight line between i and j, is used
here. Longer paths tend to produce larger depth difference errors
because the gradient field is not guaranteed to be integrable.

Using these depth differences, it is possible to extend the global
optimisation scheme introduced in Section 2.1 by adding an error
term which minimises the squared distance between all N depth
points:

ez =

N
∑

i=1

N
∑

j=i+1

(

(∆z)ij − (∆z)ij
surf

)2

‖(ui, vi) − (uj , vj)‖2

(16)

The iterative update rule Eq. (9) then becomes

pn+1(u, v) = p̄n(u, v) + λ
∂eI

∂p
+ µ

∂eΦ

∂p
+ ν

∂eD

∂p

+ 2χ
N

∑

i=1

N
∑

j=i+1

[

(∆z)ij − (∆z)ij

surf

‖(ui, vi) − (uj , vj)‖2

]

∂(∆z)ij

surf

∂p

∣

∣

∣

∣

∣

u,v

.

(17)

An analogous expression is obtained for q. The derivatives of
(∆z)ij

surf with respect to p and q may only be nonzero if the pixel
(uk, vk) belongs to the path Cij and are zero otherwise. They
are computed based on the discrete gradient field. The derivative
depends on the direction (du, dv) of the integration path at pixel
location (uk, vk) with du = uk+1 − uk and dv = vk+1 − vk:

∂(∆z)ij

surf

∂p

∣

∣

∣

∣

∣

uk,vk

=dup(uk, vk)

∂(∆z)ij

surf

∂q

∣

∣

∣

∣

∣

uk,vk

=dvq(uk, vk)

(18)

The update of the surface gradient at location (u, v) is then nor-
malised with the number of paths to which the corresponding
pixel belongs. Error term (16) will lead to the evaluation of
N(N −1)/2 lines at each update step and becomes prohibitively
expensive for a large number of depth measurements. Therefore
only a limited number of randomly chosen lines is used during
each update step.

An earlier approach by Wöhler and Hafezi (2005) fuses SfS and
shadow analysis using a similar depth difference error term. It is,
however, restricted to depth differences along the light source di-
rection. In contrast to the method by Fassold et al. (2004), which
directly imposes depth constraints selectively on the sparse set
of surface locations with known depth, our approach establishes
large-scale surface gradients by computing differences between
depth points. Effectively, our method transforms sparse depth
data into dense depth difference data as long as a sufficiently large
number of paths Cij is taken into account. The influence of the
depth error term is thus extended to a large number of pixels.

4 EXPERIMENTAL EVALUATION

To examine the accuracy of 3D reconstruction using the tech-
niques described in Section 3.2, we apply them to synthetically
generated surfaces in Section 4.1. In Section 4.2 we regard real-
world scenarios of 3D surface reconstruction of metallic surfaces
in the domain of industrial quality inspection.

4.1 Synthetic examples

To examine the behaviour of the global optimisation scheme de-
scribed in Section 3.2, we apply the developed algorithms to the
synthetically generated surface shown in Fig. 2a. We assume a
perpendicular view on the surface along the z axis, correspond-
ing to ~v = (0, 0, 1)T . The scene is illuminated by a single light
source from the positive x direction under an angle of 15◦ with
respect to the horizontal plane. This setting results in a phase an-
gle α = 75◦. A set of 100 random points has been extracted from
the ground truth and is used as depth data Z for the reconstruc-
tion.

The reflectance functions of the rough metallic surface measured
according to Section 2.2 were used to render the synthetic images
shown in Fig. 2c. The reconstruction was performed with syn-
thetic noisy data, where we used Gaussian noise with a standard
deviation of 0.001 for I (maximum grey value ∼ 0.06), 1◦ for
Φ and 1 pixel for the depth values. Only intensity I , polarisation
angle Φ and depth Z have been used during the reconstruction.
In the case of rough metallic surfaces, the polarisation degree D
contains similar information as the intensity I , has a higher mea-
surement error, and is strongly affected by small-scale variations
of the surface roughness (d’Angelo and Wöhler, 2005b), and is
therefore not used for reconstruction.

The weights for the error terms according to Eq. (17) were set to
λ = 50 (I in arbitrary units, with a maximum of ∼ 0.06), µ = 14
(Φ in radian), ν = 0, and χ = 0.5 (z between 0 and 50 pixels).
The surface gradients were initialised with zero values. The 3D
reconstruction results obtained with various combinations of er-
ror terms are shown in Fig. 2d-f. The reconstruction errors are
listed in Table 4.1. It is apparent that the shape from shading re-
construction fails to reconstruct the surface (Fig. 2d), while the
surface shape can be reconstructed approximately using inten-
sity and polarisation degree (Fig. 2e). The combined approach
(Fig. 2f) shows the smallest error. Table 4.1 also indicates that
using intensity, polarisation, and depth leads to better results than
either feature alone.

4.2 Real-world example: raw forged iron surface

We have applied our surface reconstruction algorithm to a raw
forged iron surface. For the stereo reconstruction of the surface
(cf. Section 3.1), we used a vergent stereo setup of two cam-
eras (1032 × 776 pixels image size, 10◦ horizontal field of view,
320 mm base distance, average object distance 450 mm). Stereo
calibration and image rectification to standard epipolar geometry
were performed using the method by Krüger et al. (2004). The
disparity values at object distance thus amount to approximately
4000 pixels. Experiments with synthetic data have shown that
the standard deviation of the disparity is 0.3 pixels, resulting in
an estimated standard error of 30 µm of the determined depth
values. One of the stereo cameras is equipped with a rotating lin-
ear polarisation filter and is used to acquire the images required
for SfPR (cf. Section 2.2). Fig. 3a shows the intensity and po-
larisation angle image, and Fig. 3b shows the triangulated stereo
reconstruction result. The stereo reconstruction is very sparse
due to the highly non-Lambertian metallic surface and does not
extend across the complete surface to be reconstructed.



0

20

40
0

20

40

60

80

100

0

10

20

30

40

0

20

40
0

20

40

60

80

100

0

10

20

30

40

0

20

40
0

20

40

60

80

100

0

10

20

30

40

0

20

40
0

20

40

60

80

100

0

10

20

30

40

0

20

40
0

20

40

60

80

100

0

10

20

30

40

(c)(b)

u

v

z

u

v

z

u

v

z

(d) (e) (f)
u

v

z

u

v

z

(a)

Figure 2: 3D reconstruction of a synthetically generated surface based on a photopolarimetric image and sparse depth values. (a)
Ground truth. (b) Noisy 3D data. (c) From the left: noisy intensity and polarisation angle images, based on measured reflectance
functions of a raw forged iron surface. The reconstruction result for noisy images of a surface with uniform albedo is shown in (d)
using intensity only and in (e) using intensity and polarisation angle. (f) Reconstruction result obtained using the combined SfPR and
depth approach.

Table 1: Results on the synthetic ground truth example shown in Fig. 2.

Method RMS error (without noise) RMS error (with noise)
z [pixels] p q z [pixels] p q

I 8.19 0.267 0.508 8.19 0.267 0.508
I , Φ 2.07 0.186 0.039 2.12 0.189 0.058
Z 1.20 0.137 0.102 1.16 0.135 0.136
I , Z 0.80 0.070 0.076 0.79 0.083 0.115
I , Φ, Z 0.46 0.050 0.026 0.50 0.075 0.063

The unknown albedo ρ was computed based on the specular re-
flections, which appear as regions of maximum intensity Ispec

and for which we have θr = 0◦ and θi = α/2. Eq. (11) then
directly yields the albedo ρ. The reconstructed surface shown
in Fig. 3c was computed using λ = 50, µ = 8, ν = 0, and
χ = 1 as error term weights, cf. Eq. (17). A cross-section of the
surface was measured with a scanning laser focus profilometer
and compared to the corresponding cross-section extracted from
the reconstructed 3D profile (Fig. 3d). Although the triangulated
depth data RMSE of 80 µm along the inspected profile of 14 mm
length is already quite low, no small-scale detail of the surface
is revealed. When all available photopolarimetric and depth in-
formation is used, the RMSE amounts to 62 µm. Without depth
information the SfPR method yields a RMSE of 65 µm, while
intensity information alone results in a much higher RMSE of
300 µm. If no polarimetric information is available (e.g. when in-
cident light is not polarised by reflection at the surface), the com-
bination between intensity and sparse depth data yields a RMSE
of 70 µm.

5 SUMMARY AND CONCLUSION

In this paper we have presented an image-based method for 3D
surface reconstruction relying on the simultaneous evaluation of
reflectance, polarisation, and sparse depth data. The reflectance
and polarisation properties of the surface material have been ob-

tained by means of a series of images acquired through a lin-
ear polarisation filter under different orientations. SfPR and
depth difference error terms are minimised using a variational
approach, resulting in a surface gradient field. A dense depth
map is obtained by numerical integration of the gradient field. A
multi-scale approach has been used to improve the convergence
behaviour. The proposed method transforms sparse depth data
into dense depth difference data. In contrast to previous methods,
the influence of the corresponding error term does not remain
restricted to a small number of pixels. The presented method
has been evaluated based on a synthetically generated surface,
and a high accuracy of surface reconstruction has been demon-
strated. Furthermore, we have successfully applied our method
to the difficult real-world scenario of 3D reconstruction of a sur-
face section of a raw forged iron part, yielding a very reasonable
accuracy of 62 µm along the inspected profile of 14 mm length.
A somewhat lower accuracy of 70 µm is obtained when polar-
isation information is neglected. These measurement errors are
of the same order of magnitude as the intrinsic roughness of the
metallic surface. We conclude that the suggested approach is a
favourable technique for industrial surface inspection systems.
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