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ABSTRACT:

In this paper we propose to link Markov Chain Monte Carlo – MCMC in the spirit of (Dick, Torr, and Cipolla, 2004) with information
from Implicit Shape Models – ISM (Leibe and Schiele, 2004) and with Plane Sweeping (Werner and Zisserman, 2002) for the 3D
interpretation of building facades, particularly for determining windows and their 3D extent. The approach starts with a (possibly
uncalibrated) image sequence, from which the 3D structure and especially the vertical facades are determined. Windows are then
detected via ISM. The main novelty of our work lies in using the information learned by the ISM also to delineate the window extent.
Additionally, we determine the 3D position of the windows by plane sweeping in multiple images. Results show potentials and problems
of the proposed approach.

1. INTRODUCTION

Recently, there are – among others – two yet not contradicting
important directions in object extraction: Appearance based and
generative models. Prominent examples for the former are, e.g.,
(Lowe, 2004) and (Agarwal, Awan, and Roth, 2004). The ba-
sic idea of these two and similar approaches is that an object is
modeled by features computed from small characteristic image
patches and their spatial arrangement, both being learned more or
less automatically from given training data, i.e., images. While
this can also be seen as a discriminative model where a hypoth-
esis for an object is created bottom-up from the data, generative
models go the other way, i.e., top-down: From a given hypothesis
they generate a plausible instance of the data generatively, i.e.,
via computer graphics, and compare it with the given image data.
Usually this is done in a Bayesian framework. There are priors
for the parameters, the comparison with the data results into a
likelihood, and both are combined into the posterior. One partic-
ularly impressive example for an approach linking discriminative
and generative modeling tightly in a statistically sound manner
is (Tu, Chen, Yuille, and Zhu, 2005). In (Fei-Fei, Fergus, and
Perona, 2004) a generative appearance based model is employed
to learn 101 object categories from only a few training examples
for each class via incremental Bayesian learning.

We are aiming at the interpretation of building facades from
image sequences, particularly inspired by the generative model
based on Markov Chain Monte Carlo – MCMC, e.g., (Neal,
1993), put forward in (Dick, Torr, and Cipolla, 2004). To de-
tect objects, in our case windows, we follow (Mayer and Reznik,
2005) who use appearance based modeling in the form of an Im-
plicit Shape Model – ISM, as introduced by (Leibe and Schiele,
2004). Yet, and this is the main novelty of our approach, we addi-
tionally link ISM to MCMC for the determination of the window
extent. By this means we partly avoid the tedious manual gen-
eration of a model for the in our case sometimes complex struc-
tures of windows and also robustify the approach. Additionally,
we compute the three-dimensional (3D) extent of the windows
by means of plane sweeping proposed in (Werner and Zisser-
man, 2002). Opposed to (Werner and Zisserman, 2002) as well
as (Bauer, Karner, Schindler, Klaus, and Zach, 2003) we do not
detect windows as objects which are situated behind the facade
plane which makes us independent from the fact if the windows
are behind, on, or in even in front of the facade.

The basic idea of the generative model of (Dick, Torr, and

Cipolla, 2004), which is our main inspiration, is to construct the
building from parts, such as the facades and the windows, for
which parameters, e.g., the width, brightness, are changed statis-
tically to produce an appearance resembling the images after per-
spectively projecting the model with the given parameters. The
difference between the given and the generated image determines
the likelihood that the data fits to the model and is combined with
prior information describing typical characteristics of buildings.

Other work on facades is, e.g., (Früh and Zakhor, 2003), where
a laser-scanner and a camera mounted on a car are employed to
generate 3D models of facades (yet without information about
objects such as windows or doors) and together with aerial im-
ages and aerial laser-scanner data realistic models of areas of
cities. In photogrammetry as well as in computer vision semi-
automatic approaches have been proposed (van den Heuvel,
2001; Wilczkowiak, Sturm, and Boyer, 2005), where the latter
exploits special geometrical constraints of buildings for camera
calibration. (B̈ohm, 2004) shows how to eliminate visual arti-
facts from facades by mapping images from different view points
on the facade plane employing the robust median. The determina-
tion of fine 3D structure on facades via disparity estimation is pre-
sented by (von Hansen, Thönnessen, and Stilla, 2004). (Wang,
Totaro, Taillandier, Hanson, and Teller, 2002) take into account
the grid, i.e., row / column, structure of the windows on many fa-
cades. (Alegre and Dallaert, 2004) propose a more sophisticated
approach, where a stochastic context-free grammar is employed
to represent recursive regular structures of the windows. Both
papers only give results for one or two very regular high-rising
buildings.

In Section 2. we sketch our approach to generate a vertically ori-
ented Euclidean 3D model consisting of cameras and points from
(possibly uncalibrated) image sequences, from which we deter-
mine vertical facade planes. Section 3. describes the ISM and
as main contribution of this paper how we learn and use the seg-
mentation information to help delineate the windows via MCMC.
Finally, in Section 4. we show how the 3D extent of the windows
can be determined based on plane sweeping. The paper ends up
with conclusions.

2. 3D RECONSTRUCTION

Our approach is based on wide-baseline image sequences. After
projective reconstruction using fundamental matrices and trifocal



tensors (Hartley and Zisserman, 2003) employing Random Sam-
ple Consensus – RANSAC (Fischler and Bolles, 1981) based
on Förstner points (F̈orstner and G̈ulch, 1987) which we match
via least squares matching, we calibrate the camera employing
the approach proposed in (Pollefeys, Van Gool, Vergauwen, Ver-
biest, Cornelis, and Tops, 2004). If calibration information is
available, we use (Nistér, 2004) to determine the Euclidean 3D
structure for image pairs. Our approach deals efficiently with
large images by using image pyramids and we obtain full covari-
ance matrices for the projection matrices and the 3D points by
means of bundle adjustment taking into account the covariance
matrices of the least squares matching of all employed images.

Having generated a 3D Euclidean model we orient it vertically
based on the vertical vanishing point derived from the vertical
lines on the facade and the given calibration parameters. The ver-
tical vanishing point is detected robustly again using RANSAC,
the user only providing the information if the camera has been
been very approximately held horizontally or vertically.

The vertically oriented model is the basis for the determination
of the facade planes using once again RANSAC. To make the de-
termination more robust and precise, we employ the covariance
information of the 3D points from the bundle adjustment by test-
ing the distances to a hypothesized plane based on the geometric
robust information criterion – GRIC (Torr, 1997). Additionally,
we check, if the planes are vertical and we allow only a limited
overlap of about five percent between the planes. The latter is
needed, because of the points possibly situated on intersection
lines between the planes.

Finally, as the position of the facade planes is often determined
in-between the plane defined by the real facade and the plane de-
fined by the windows, its depth is optimized via plane sweeping
(Baillard and Zisserman, 1999; Werner and Zisserman, 2002).
From the parameters for the facade planes as well as the projec-
tion matrices we compute homographies between the plane and
the images. We project all images a facade can be seen from
(this can be derived via the points that lead to the plane and from
which images they were determined) onto the facade plane and
compute an average image as well as the bias in brightness for
each projected image to it. Then, we move the facade plane in its
normal direction and determine for a larger number of distances
the squared differences of gray values to the average image for all
images after subtracting the bias in brightness determined above.
We finally take the position, where this difference is minimum.

The result of this step are projection matrices, 3D points, and op-
timized facade planes all in a vertically oriented Euclidean sys-
tem. The only additional information the user has to provide for
the further processing is the approximate scaling of the model so
that the images can be projected on the facade with a normal-
ized pixel-size. Therefore, for the next step of the delineation of
windows on the facade we can assume vertically oriented facade
planes with a standardized pixel size.

3. DETECTION AND DELINEATION OF WINDOWS
BASED ON MCMC AND ISM

An Implicit Shape Model – ISM (Leibe and Schiele, 2004) de-
scribes an object in the form of the spatial arrangement of char-
acteristic parts. As (Agarwal, Awan, and Roth, 2004) we use as
parts image patches (here of the empirically determined size9�9

pixels) around F̈orstner points. Training patches and patches in
an image to be analyzed are compared via the (normalized) cross
correlation coefficient (CCC). For the arrangement of the points

we employ as (Leibe and Schiele, 2004) the generalized Hough
transform.

Similarly as (Mayer and Reznik, 2005), we “learn” the model
for a window in a way that can be seen as a simplified version
of (Leibe and Schiele, 2004): We manually cut out image parts
containing training windows using in the range of about 100 win-
dows. In these (cf. Figure 1 for an example) we extract Förstner
points with a fixed set of parameters. Opposed to (Mayer and
Reznik, 2005), we manually mark the extent of the whole win-
dow including the frame and compute from it the center.

We “learn” only salient points at the corners of the manually
marked window extent (small yellow squares in Figure 1). For
these we store the gray values in the patches around the points,
their relation to the window center in the form of the difference
vector, and particularly their relation to the window extent. This
is done in the form of images of the edges of the window ex-
tent. The latter gives information which we use for the segmenta-
tion, i.e., the delineation of the window, the main novelty of our
approach. Figure 2 shows examples for image patches (left) to-
gether with the edges derived from the manually given window
extent (right). Please note that for many of our (training) windows
the window extent does not fit too well to the Förstner points as
they tend to be situated at the salient image corner between glass
and window frame.

Figure 1. Image part containing training window with Förstner
points (white crosses), manually marked window extent (yel-
low rectangle), window center (yellow diagonal cross), patches
around salient points at the corners of the window extent (small
yellow squares), and one of four difference vectors to center (blue
arrow)

To detect windows on a facade, we extract Förstner points with
the same set of parameters as above (cf., e.g., Figure 3, left) and
compare the patches of size9�9 centered at them with all salient
points learned above by means of CCC. If CCC is above an em-
pirically determined threshold of0:9, we write out the difference
vector learned for the corresponding point into an initially empty
evidence image, incrementing the corresponding pixel by one.
By this means, each match votes for the position of the window
center. The F̈orstner points as well as the evidence for the posi-
tion of the window centers are given for our running example in
Figure 3, right.

Figure 3, right, shows that the hypothesized window centers are
widely spread, because parts of windows can vote for different



Figure 2. Set of patches (left) and set of edges (right) for window corners

Figure 3. Facade (left) and evidence for window centers (yellow dots, right) both with Förstner points (red crosses)

positions. A patch can look, e.g., similar to an upper right corner
of a whole window, but is actually situated at a transom (hori-
zontal bar) at the center of the window. To generate meaningful
hypotheses for window centers, we, therefore, integrate the ev-
idence by smoothing them with a Gaussian and then determine
all local maxima above a given threshold. The result for this is
shown in Figure 5, left. Please note that none of the windows used
for training stems from this scene as well as any of our examples
presented in this paper.

The information from the ISM is used for segmentation by insert-
ing it into the generative modeling based on MCMC. For this, the
patches voting for the respective centers need to be determined.
In Figure 5, right, all hypotheses and their difference vectors
for the areas around the local maxima for the window centers,
where the evidence is beyond0:9 of the local maximum value,
are shown. From these vectors only the vectors pointing diago-
nally are retained. Only they provide information about the win-
dow extent, because windows are assumed not to be extremely
narrow or low. The average vectors of these patches pointing to
the center are shown in Figure 4 together with the areas where the
evidence is locally above0:9 of its maximum.

Figure 4. Areas with a value beyond0:9 times of the local max-
ima (white) and average vectors of all hypotheses for corners
pointing diagonally to the maxima, i.e., hypotheses for the win-
dow centers (green lines)

Once the potential patches at the window corners are known, the

corresponding edges (cf. Figure 2, right) are summed up (cf. Fig-
ure 6, left). For guiding MCMC, the edges are thinned, normal-
ized and then blurred to extend the area of convergence. As the
likelihood is normalized in the MCMC process, it is important
that the ends of the straight segments are cut and not blurred in
the direction of the edge. The result is the window corner image
(cf. Figure 6, right).

To delineate the windows, we start with hypotheses constructed
from the centers of the diagonally most distant patches voting
for a particular window and a small inward offset of 8 pixels in
horizontal and vertical direction to avoid that the random search
starts outside the window extent. We then take up the basic idea
of (Dick, Torr, and Cipolla, 2004), i.e., we try to generate an
image which is similar to the actual image. Our basic model is
very simple, namely a rectangle brighter or darker than the back-
ground, i.e., with an edge to the background. The corresponding
edges for the windows are projected into the window corner im-
age and the normalized strength of all pixels above zero gives the
likelihood. As we found that for bright facades it is very helpful
that windows are in most cases darker than the facade plane, we
follow for them (Mayer and Reznik, 2005) and correlate a model
consisting of noisy dark rectangles on a bright background with
the facade image abstracted by gray-scale morphology. The re-
sult for this is then combined with the result based on ISM on a
half and half basis.

Figure 7, left, shows a hypothesis for the window extent, i.e., the
start position, and right the final position. Please note that we
have employed the half and half combination of correlation and
ISM for the running example with its bright facade. Therefore,
the final position in Figure 7, right, does not fit perfectly to the
distribution given by the ISM.

The parameters for the window extent are disturbed by Gaussian
noise taking into account the prior that the ratio of height to width
of a window lies in the majority of cases between0:25 to 5 mod-
eled by a mixture of Gaussians. For each iteration of MCMC, we
either change the width, the height, or the position of the rectan-
gle representing the window extent. For robustification we use
simulated annealing. I.e., the higher the number of iteration be-
comes, the lower becomes the probability to accept results which



Figure 5. Evidence for window centers integrated with Gaussian together with maxima (diagonal red crosses – left) and hypotheses for
window corners pointing to the maxima (right)

Figure 6. Sum of edges describing window corners (left) and derived distribution to guide MCMC (window corner image, right)

Figure 7. Distribution from ISM used to guide MCMC with hy-
pothesis for window extent, i.e., start position (left) and final po-
sition (right).

are worse than for the preceding iteration. Figure 8 shows the
hypotheses in white and the final result in green.

Figure 8. Hypotheses for the window extent (white) and final
outcome (green)

4. DETERMINATION OF THE 3D EXTENT OF
WINDOWS VIA PLANE SWEEPING

As windows are often not lying on the facade plane, but mostly
behind it, their 3D position needs to be determined. This is done
again by means of plane sweeping, cf. Section 2., employing the
3D Euclidean reconstruction result by computing homographies
between planes and images. The bias in brightness of the im-
ages to an average image is computed for the whole facades as
it is too unreliable for the individual windows. To determine the
depth of a particular window, we move the rectangular part of
the facade plane determined above to correspond to a window in
the direction of the normal of the facade plane. We compute for
a larger number of reasonable distances from the facade plane
the squared differences of gray values from the individual images
it can be seen from to the average image and take the position,
where the difference is minimum.

Results for this are given in Figures 10 and 13. The first result, the
input images for which are given in Figure 9, shows that we are
actually dealing with a 3D setup where not only images of facade
planes, but also there 3D position and relations to the cameras
are known. For this bright facade again ISM and correlation have
been used on a half by half basis leading to a meaningful delin-
eation of the windows after detecting all windows on the facade.
Also plane sweeping was successful for all windows as can be
seen from the nearly constant offset. With our approach we are
able to determine different depths for individual windows as we
do not employ 3D information in the form of local maxima of
the whole plane to determine possible window hypotheses such
as (Werner and Zisserman, 2002). Yet, we have to note that a
combination of both ideas might be the best way to proceed to
deal with more complex situations.

For the second building in Figure 13 (input images cf. Figure 12,



Figure 9. Four images used to generate the model given in Figure 10

Figure 10. Bright building seen from the back – the windows are marked in red on the facade and in green behind the facade; cameras
are given as green pyramids with the tip defining the projection center and the base the viewing direction

3D points and cameras, cf. Figure 11) the facades are rather dark.
Therefore, we could only use ISM for the delineation of the win-
dows. One can see from Figure 13, left, that for it all windows
have been detected, except for the upper left, where the resolu-
tion of the image is not good and which is disturbed by a bird
house. As we have not yet modeled doors, the door on the right
facade is interpreted as a window. Figure 13, right, shows that
in most cases there was a correct and consistent determination of
the depth of the windows. Here one has to note, that these are
mostly windows without mullions and transoms, where a deter-
mination of the depth is rather difficult, also because the windows
are partly reflecting the surroundings.

5. CONCLUSIONS

We have shown how by combining appearance based and gener-
ative modeling employing MCMC and ISM the extent of objects,
particularly windows, can be determined robustly based on auto-
matically learned models even if the structure of the object varies
or the contrast is weak. This can be seen as an extension of ap-
proaches such as (Dick, Torr, and Cipolla, 2004), where a less
adaptive object-wise modeling of the texture was employed. We
have also demonstrated how based on plane sweeping employing
homographies between the facade plane and the images it is pos-
sible to determine the 3D position of the planar hypotheses for
the windows.

Windows, but also other objects on the facade, can have sub-
structures of different sizes, e.g., mullions and transoms. To
model them and also other objects such as doors and architec-
tural details, we plan to integrate scale into ISM.

The homographies employed in the 3D determination could on
one hand help to identify 3D details not lying on the facade, but
could also be used to compute the 3D position of (partly) planar
objects far off, but parallel to the facade plane such as balconies.
For handling problems with different reflectivity we plan to intro-
duce a robust estimator.

Figure 11. 3D points and cameras (green pyramids) for dark
building

To be able to model rows or columns of windows or architectural
details and grids made up of them, it is essential that one can deal
with models of changing complexity. A means for this is Re-
versible Jump Markov Chain Monte Carlo – RJMCMC (Green,
1995), used, e.g., by (Dick, Torr, and Cipolla, 2004). It allows
to change the number of objects during processing, i.e., to in-
clude new windows, etc. To model rows, columns, and grids in
a principled way we want to employ a (context free) stochasti-
cal grammar describing the hierarchy of the objects on the facade
as well as of the different facades of a building in the spirit of
(Alegre and Dallaert, 2004).



Figure 12. Four images used to generate the model given in Figures 13 and 11

Figure 13. Dark building seen from the outside (left) and from the top (right) – colors and cameras cf. Figure 10
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