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ABSTRACT:

In the context of 3D building model production or updating, the models have to be manually checked one by one by a human operator
in order to ensure their quality. In this paper, we investigate a new approach to perform a quality self-diagnosis of building models
in dense urban areas from high resolution aerial images. Hence, we aim at reliably identifying roof facets that do not comply with
quality specifications. The self-diagnosis process will highlight potential incorrect facets for their inspection by a human operator. A
set of calibrated aerial images enable us to collect positive or negative evidences of roof facet existence and consistency. A particular
attention has been paid to the definition of a set of low-level, complementary, robust and consistent image processing measures. Four
quality classes have been defined and are used to classify roof facet quality. A supervised classifier and robust decision rules are then
applied to perform an effective self-diagnosis according to the traffic light paradigm. Finally, the work in progress leads to a promising
quantitative and qualitative evaluation in the context of dense urban areas.

1. INTRODUCTION

1.1 Motivation
Many applications use 3D building models, such as urban
environment planning, telecommunications and natural disaster
simulations. Automation of 3D building reconstruction from
aerial images has been a very active field of research for the
two last decades, leading to a large number of automated or
semi-automated systems. Automated production of 3D building
models is now conceivable over entire cities, especially when
2D building footprints are available, from cadastral maps for
instance. Nevertheless, a verification stage is necessary to
control the quality of produced data, including shape description
correctness, topological consistency, geometrical accuracy and
completeness. This quality control is now a key issue to a greater
use and an easier maintenance of 3D building models, since it
has been done manually so far.

In this paper, we focus on the quality self-diagnosis of individual
roof facets, as a first step of the 3D building model assessment in
the context of data production, update or verification. In order
to produce useful information on this diagnosis, results should
be presented according to the traffic light paradigm (Förstner,
1996). It is based on three qualitative identified classes, namely
accepted (high quality verified facets), rejected (poor quality
verified facets) and undecided (intermediate quality facets).
Then, a verification stage completes the self-diagnosis process,
in which a human operator only checks the undecided and
rejected facets, in order to confirm, edit or delete them. The
self-diagnosis process of 3D roof facet quality is based on aerial
images and does not depend on the level of automation involved
in the reconstruction stage (none, semi or complete) or on the
specific algorithm used to produce the building models.

1.2 Related Work
Since intensive researches have been carried out on 3D building
model reconstruction from aerial imagery, quantitative and
qualitative evaluations have also been achieved (Henricsson and
Baltsavias, 1997, Rottensteiner and Schulze, 2003, Durupt and

Taillandier, 2006) using visual inspection and/or a high quality
ground truth reference. Avoiding the reference need, (Schuster
and Weidner, 2003, Meidow and Schuster, 2005) proposed to use
another reconstructed scene to compute either absolute or relative
quality measures. Quality criteria are based on completeness,
robustness, geometric accuracy, and shape similarity according
to the reference, in addition to those proposed in (McKeown et
al., 2000). These empirical evaluations showed the capabilities
of semi-automated and automated systems for the production of
3D building models.

Another approach of evaluation in computer vision is the
algorithm performance characterisation in terms of internal
evaluation and error propagation. (Förstner, 1994, Förstner,
1996, Thacker et al., 2005) give useful guidelines on this
topic. Nevertheless, the presented self-diagnosis process aims
at assessing data quality independently from the reconstruction
techniques or algorithms. Thus, self-diagnosis is based on obser-
vations of the reality and requires the definition of image-based
measures. Some examples can be found in the ”hypothesize and
verify” approach of 3D model reconstruction, such as (Suveg and
Vosselman, 2002, Jibrini et al., 2004, Taillandier and Deriche,
2004) where the best building model is selected among plausible
ones, or such as (Kim and Nevatia, 2004, Ameri, 2000) where the
building models are confirmed or discarded during a verification
stage. The authors generally take advantage of evidences
provided either by a Digital Elevation Model (DEM), correlation
scores, 3D feature extraction or shadow detection, according to
the initial hypothesis generating method. Finally, the decision
is taken by thresholding according to a prior knowledge, by
maximizing posterior probabilities or by using a supervised
classifier (Kim and Nevatia, 2003).

1.3 Overview
In this paper, quality self-diagnosis of 3D roof facets is per-
formed by using overlapping aerial images. The problem of
discriminating facets that comply or not with a set of quality
specifications results in a three-class solution, namely an ac-
cepted, an undecided and a rejected class. Hence, our problem



is expressed as a classification problem. First, an overview of
building modelling errors is introduced in the section 2. Then,
a set of image coherence measures is defined (section 3.) in
order to prove the roof facet existence and to characterize its
consistency. Attention is paid to their robustness and their com-
plementarity. Their combination is performed in a supervised
classification stage (section 4.). Finally, the algorithm is applied
on two datasets in dense urban areas (section 5.), and evaluated
by comparing its results with manual labels of the roof facets.

2. 3D ROOF FACET QUALITY ANALYSIS

In this section, we introduce the input dataset which is consti-
tuted of 3D roof facets and aerial images. A succinct overview of
building modelling errors is provided.

2.1 Data
3D building models are described by a set of 3D planar poly-
gons (the facets) which represents building roofs without small
structure elements, such as chimneys or dormer-windows. Each
roof facet is described by geometrical properties (a set of 3D ver-
tices, 3D edges and a normal direction) and topological relations
(3D connexity and 2D planimetric connexity between the facets).
Their quality evaluation is performed by using multiple 25 cm
resolution aerial images. They are acquired by a high quality dig-
ital frame camera (SNR=300). Each roof is viewed by 8 to 11
images.

2.2 Building Model Error Causes
In dense urban areas, errors in building modelling may occur be-
cause of the complexity of roof shapes, the presence of occlu-
sions and vegetation. Besides, a lack of texture (along the roofs
or inside the shadow areas) or a low contrast (along the build-
ing ridges) may mislead the reconstruction process. Additional
external data which are often used, such as cadastral maps, are
also error prone. Moreover, as regards to building reconstruction,
some robust approaches do not manage some roof shapes while
other more general approaches, based on feature detection, pro-
duce less robust and unpredictable results. Finally, buildings may
have been destroyed, modified or extended between the database
production and new image acquisition.

2.3 Building Model Errors
We may consider three kinds of errors in building modelling:

- the non-existence of the corresponding building,
- the shape description incorrectness which corresponds to

under-modelling (Fig. 1) and over-modelling errors. It af-
fects the topological relations and the geometrical charac-
teristics of roof facets,

- the geometrical inaccuracy of a 3D facet, either in slope,
altimetric location, and/or planimetric delimitation.

In the following, we focus on the verification of individual roof
facet consistency including their existence, their shape descrip-
tion correctness and their geometrical accuracy.

3. CHARACTERIZATION OF THE COHERENCE
BETWEEN THE IMAGES

In this section, overlapping images are used in order to col-
lect positive or negative evidences of roof facet consistency.
Among several image coherence characterization techniques, we
use multi-image correlation and feature detection in order to de-
fine robust and complementary measures.

3.1 A Texture Coherence Analysis
Multi-image correlation techniques measure the similarity of tex-
tures over image-windows in order to get an estimation of the

Figure 1: An example of correct and uncorrect (under-modelled)
roof facets.

elevation such as in DEMs. Both the correlation scores and the
estimated elevations bring an evidence of facet consistency, or on
the contrary, find out a better solution.
The multi-image correlation function defined in (Paparoditis et
al., 2000) has been selected because it permits to compute ef-
ficiently DEMs in a multi-image context with a very low-level
analysis (3 × 3 window size). The image similarity is estimated
along the roof facet in the object space. The most probable eleva-
tion is estimated by maximizing the correlation function on a scan
of a tolerance bound of [−2m, 2m] along the vertical axis. Call-
ing vi the vector of intensity values, computed thanks to the im-
plicit homography defined between the images, the multi-image
correlation function (MIC) is defined by :

MIC =
Var
`
Pn

i=1 vi

´

Pn

i=1 (Var (vi))
∈ [0, n] (1)

where Var is the variance and n the image number. A preliminary
image-window selection stage is performed in order to take into
account the occlusions predicted by the building model dataset.

Facet Elevation Consistency Analysis A first clue of roof
facet consistency is obtained by measuring the discrepancy be-
tween the expected elevation -predicted by the facet- and the es-
timated one. This difference is shown in Fig. 2.
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Figure 2: Vertical axis difference between the expected eleva-
tion (predicted by the facets) and the estimated one (estimated by
maximizing the multi-image correlation function).

Although the under-modelled buildings can easily be identified,
it should be noted that occlusions still disturb the elevation es-
timation. Indeed, occlusion prediction intrinsically depends on
the geometric accuracy of the occluding buildings. Besides, ele-
vation estimation is disturbed by the unmodelled roof structures
such as chimneys or dormer-windows. Hence, a robust estimator
such as the following pseudo-median function is required :

med(Y ) = Y

„

min (SF ,S0)

2

«

(2)

where Y is a ranged vector, SF is the facet area and S0 is an area
threshold (500 m2) used to cope with large facets. Hence, a first
measure of facet consistency is based on the robust estimation of



the distance between the estimated elevation points P̂ (x, y, ẑ) of
each ground pixel (x, y) and their projection onto the facet plane
PF . It leads us to define the Correlation Distance (CD) value by
:

CD = med
(x,y)∈F

“

DR3(P̂ (x, y, ẑ),PF )
”

(3)

where DR3 is the euclidean distance in R
3.

Correlation Function Profile Analysis Another clue assess-
ing the roof facet consistency is provided by the correlation
function profile. Correlation scores along the facets (Fig. 3, on
the left) are expected to be high for correct facets and higher than
those obtained along the vertical scan of the object space.
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Figure 3: Multi-image correlation function (on the left) and cor-
relation profile function (on the right) applied on the facets.

Two issues linked to the correlation function have to be handled.
Firstly, homogeneous or periodic textures result in smoothed cor-
relation profiles or in local extrema. Such profile should not be
considered as reliable even if correlation scores are high. Sec-
ondly, since an image-window selection stage is carried out to
cope with occlusions, the number of images varies from one pixel
to another. Thus, a normalisation is required but linearity is not
fulfilled. Both of these issues have been getting through by defin-
ing a new consistency measure based on the shape of the cor-
relation profile (Fig. 3, on the right). It takes into account the
correlation score sF (x, y) obtained near the facet and its relative
differences with the scores s(x, y, z) obtained along the profile,
where (x, y) is a ground pixel. Applying the pseudo-mediane
function, we define the Correlation Profile (CP) value by:

CP = med
(x,y)∈F

 

sF
2(x, y)

Mz
X

z=−Mz

(sF (x, y) − s(x, y, z))

!

(4)
sF (x, y) = max

−δz≤z≤δz

(s(x, y, z)) (5)

where Mz is the tolerance bound (2m) and δz the z-step (0.25m).
Finally, the CP-value is higher when the correlation profile has
got a high (because of the square function) and unique peak
nearby the facet (because of the sum of the relative differences).

3.2 A Structured Feature Coherence Analysis
A complementary way to assess the roof facet consistency is to
take advantage of the high level of structuration of urban areas.
Extracting these structures from the images allows us to verify the
facet geometric characteristics and the shape description correct-
ness. Hence, 3D segments detected from images provide positive
clues when they overlap the facet edges or lay onto its plane, but
also negative ones when they are found in a corner, or far away.

Edgel Extraction First, the detected contours are matched
in order to produce robust, accurate and very low-level linear
feature elements (Fig. 4) by using the reconstruction technique
proposed in (Jung et al., 2002). These features, called “edgels”,
are 3D points with a 3D tangent direction. Here, the facet is
only used to determine the regions of interest in the images
and the matching process is performed with photogrammetrical
constraints. The corresponding contours are searched in a

reliable and adaptative tolerance bound estimated thanks to a
DEM. This bound is larger when the features are closer to the
DEM discontinuities. Thus, the main structures of the scene can
be extracted even if the facet is not correct.

Figure 4: Reconstruction of edgels applied on an under-modelled
facet. On the left, edgels projected on one image. On the right, a
3D view of the edgel set. The main structures of the roof build-
ing are well reconstructed wherever image contours have been
extracted.

3D Segment Detection A set of relevant 3D segments are ex-
tracted from the edgel set in order to compare them to the facet.
A filtering method enables to recover the segment direction and
location, applied firstly in planimmetry and secondly in altime-
try. Geometrical and filtering thresholds are required in order to
get robust segments, the main ones being a required minimum
number of edgels accumulated along the segment (linked to the
image number). The 3D segments are detected inside three spe-
cific zones which are defined according to the facet (Fig. 5). A
segment coherence value is defined for each zone.

Figure 5: 3D segments detected for the under-modelled facet
within three specific zones: near the edges (green), in the cor-
ners (yellow) and inside (cyan). Notice that a 3D inner segment
belongs to a neighbouring facet (on its left). The corner zones
are outlined in pink (on the left). In the 3D view (on the right), a
3D segment corresponding to a shadow boundary is occluded by
the 3D facet. Even if many segments are detected near the facet
edges, negative clues are collected by those detected in the corner
and inside the facet.

Facet Edge Analysis An edge zone is defined for each facet
edge with a distance and an angular deviation thresholds. The de-
tection of 3D segments overlapping the facet edges allow to ver-
ify the facet boundary consistency and to detect over-modelling
errors. An Edge Segment (ES) value is defined by the weigthed
coverage rate of the 3D segments {sj0 , .., sjn

} projected onto
their corresponding facet edge ej :

ES =

Pn

j=0 αjr(ej , {sj0 , .., sjn
})

Pn

j=0 αj‖ej‖
(6)

where the function r computes the coverage length, αj is a weight
parameter (1/2 for edges belonging to several facets and 1 oth-
erwise) and ‖.‖ is the euclidean distance between the segment
end-points.

Facet Corner Analysis A corner zone is defined for each facet
vertice (pink polygons in Fig. 5, left) with a window width (5m)



and an angular deviation threshold (15◦). The corner segments
allow to verify the facet shape correctness and to detect under-
modelled roof (a missing hip roof structure for instance). A
Corner Segment (CS) value is defined by the maximum of the
summed length of the segment set {s0, .., sjn

} detected in each
corner zone j:

CS = max
j

jn
X

i=0

‖si‖· (7)

Inner Facet Analysis The remaining edgels, that do not match
with the neighbouring facet edges and that are inside the ground
facet boundary, are selected in order to detect inner segments.
They allow to assess the facet shape correctness. Finding a seg-
ment onto the facet plane may indicate a well localisation (the
matched image contours may come from a two-material roof for
instance). On the contrary, finding a segment far away from
the facet plane, 2m above it for instance, may outline under-
modelling errors, such a saw-tooth roof modelled by a flat facet.
For each inner segment si, the area A(si,PF ) defined between
its end-points and their projection onto the facet plane is com-
puted. This area is normalised by the length of the facet in the
segment direction (‖F−→si

‖) in order to take into account the facet
shape variability. Then, a Inner Segment (IS) value is defined by
the sum of the normalised areas of all inner segments:

IS =

n
X

i=0

A(si,PF )

‖F−→si
‖

· (8)

4. FACET QUALITY SELF-DIAGNOSIS

We introduce in this section how image coherence characteriza-
tion is used to classify the roof facet quality. First, four levels of
quality are defined. Afterwards, a learning and a supervised clas-
sification are performed in order to associate and predict facet
quality classes from the image coherence parameters.

4.1 Definition of quality classes
Four quality classes have been defined in order to value their level
of adequacy with reality from false to correct:

- false: the roof facet does not fit with the reality (Fig. 6(a));
- generalised : a part of the roof is not correctly modelled or

geometric deviations are observed (Fig. 6(c));
- acceptable: the roof is quite well modelled, but either un-

modelled hip roof ridge without geometric deviation or
small geometric deviations are observed (Fig. 6(d));

- correct : the roof is correctly modelled by the facet (Fig.
6(b)).

The self-diagnosis process should alert the false and generalised
facets and validate the acceptable and correct facets.

4.2 A Supervised Classification
The problem of self-diagnosing the quality of roof facets is ex-
pressed as a classification problem, whose inputs are the quality
classes and a parameter vector V = {CD,CP, ES,CS, IS}.
A simple classifier, the k-Nearest Neighbour (Duda et al., 2000),
has been used to evaluate the efficiency of the image coherence
measures. Each parameter is normalised by its standard devia-
tion computed on the training instances. The euclidean distance
between two normalised parameter vectors has been used.

Practically, 60 instances of each quality class have been learnt.
Fig. 7 shows parameter mean and standard deviation for each
quality class. Firstly, it shows that image coherence mean values
are compliant with the quality classes, as expected. Secondly,
even if the class false is quite well disjoined from the other ones,
the classes generalised and acceptable are really close from each
other. Indeed, these two labels are assigned whether a facet is

(a) class false (b) class cor-
rect

(c) class generalised

(d) class acceptable

Figure 6: Some facet instances of each quality class. The false
and generalised ones should be identified as not acceptable by
the self-diagnosis algorithm.

acceptable or not, based on its shape correctness and geometri-
cal accuracy. Finally, it shows that no measure alone is able to
reliably classify each quality class.

Figure 7: Image coherence parameter mean and standard devia-
tion for each quality class when applied on the training instances.

4.3 Robust Decision Rules
In the following, the neighbour number k has been fixed to 15
which is a good trade-off between overfitting and generalisation.
As the majority vote rule is not robust enough and does not re-
veal ambiguous classifications, the final decision is taken in or-
der to translate the self-diagnosis results into the three classes
of the traffic light paradigm. The decision is based on the num-
ber of neighbours NF , NG, NA, NC belonging to each class, the
distance d of the k neighbours, and follows selective rules for
acceptance:

- if (NF + NG ≥ k
2

or max(NF , NG) ≥ k
3

) :
if the majority vote says F or G, decide Rejected ;
otherwise, decide Undecided,

- if (NF + NG ≥ k
3

or d ≥ βk) : decide Undecided,
- otherwise: decide Accepted.



Figure 8: Manually labelled roof facets of the realistic dataset.

Here, the maximum distance of all the neighbours has been fixed
with β = 1.2. Moreover, neighbours at a distance null have been
excluded, enabling to merge the results of the training and testing
examples in the next section.

5. RESULTS

5.1 3D Building Model Datasets
We have chosen two dense urban areas of Amiens, France.
The first one is composed of many similar buildings, mainly
with gable roofs, hip roofs and low slope garage roofs within
courtyards. The second area is composed of many different roof
materials and shapes, with a mix of industrial and very small
buildings.
Two building model datasets have been used for the self-
diagnosis evaluation. The first one, called realistic (Fig. 8),
has been produced semi-automatically by a platform containing
several algorithms (Flamanc and Maillet, 2005). The main
modelling errors (nearly 20% on 862 facets) are hip roof with
missed structures, industrial buildings simply modelled by a
flat roof and small buildings poorly modelled. In order to get
enough modelling errors for statistical evaluation, we complete
the first dataset with a second one simulating systematic errors
and containing only flat roof facets (80% incorrect facets on
251). They have been delimited by 2D vectorial building
footprints and are located at the median altitude given by a
DEM. As buildings have many different shapes, the simulated
discrepancies between the reality and the models are widespread.
All roof facets that are flat in the realistic dataset have been
removed from the flat roof dataset. This one provides all the
training instances of the class false and a few ones of the class
generalised, while the realistic dataset provides all the other ones.

5.2 Quantitative Results
As regards to the semi-automatic building model verification, an
operator will inspect the rejected and undecided facets. Thus,
the self-diagnosis process makes two erroneous decisions : a
False Acceptance (FA) error when a false or generalised facet is
classified as accepted, and a False Rejectance (FR) error when an

Figure 9: Correct (detected/validated) and incorrect (not de-
tected/to be checked) self-diagnosis decisions of the realistic
dataset.

acceptable or correct facet is classified as rejected or undecided.
It should be emphasis that minimizing the FA errors is the most
important because the accepted facets will not be inspected
anymore. FR errors only correspond to time lost for an opera-
tor to inspect facets while ideally it would not have been required.

The results of the self-diagnosis algorithm are provided in Table
1 merging all the facets of both datasets. The percentages are
computed according to the facet number of each quality class.
The self-diagnosis algorithm detects almost all the false mod-
elling errors (0.5% FA rate), but the results are mixed with the
class generalised (nearly 20% FA rate) which is confused with
the classes acceptable (11%) and correct (9%). As the decision
rule is selective for acceptance, only 52% and 80% of correct
acceptance rates are reached for the classes acceptable and cor-
rect respectively. Globally, the rates of correct rejectance (91%)
and correct acceptance (73.7%) are quite satisfying, especially
considering that an overall rate of 79.6% of correct decisions is
reached with only 3% of false acceptance errors on the whole
datasets (containing 1113 roof facets).

Decision Facet
Quality class Rejected Undecided Accepted number

Correct R. FA error
false 96.2% 3.3% 0.5% 209

generalised 63.5% 17.1% 19.4% 170
FR error Correct A.

acceptable 28.9% 19.1% 52% 173
correct 9.4% 10.2% 80.4% 561

Table 1: The statistics of the self-diagnosis decisions according
to the quality class on the whole datasets.



5.3 Qualitative Results
An overview of the correct and incorrect self-diagnosis decisions
is provided on the realistic dataset (Fig. 9). It shows that many
facets are correctly classified. As regards to the false rejectance
decisions (Fig. 10), the facet quality estimation is generally
mislead either by occlusions, by the presence of shadows,
dormer-windows or a hip roof ridge without geometric deviation.
Even if these facets have been manually labelled as acceptable
or correct, their inspection by an operator may be well-founded -
for some of them at least-.

Figure 10: Examples of false rejectance decisions from the real-
istic dataset.

Let’s now focus on the analysis of the false acceptance decisions.
Considering the results presented in Fig. 9, only 4 false accep-
tance decisions have been made on 33 incorrect facets. In figure
11(a), the facet is geometrically accurate but a hip roof structure
is not modelled. This is not detected by corner segments because
the unmodelled roof ridge is not contrasted enough. Therefore,
no evidence of incorrectness shape description has been proved
(as for 13 FA errors on 34). In figure 11(b), a part of an overhang-
ing roof is modelled by the facet of interest. The roof slope and
location are correct, its boundary is covered at 44% by edge seg-
ments. As the corner segment directions do not fit with the roof
ridge, no corner segment has been detected. Therefore, using the
pseudo-median function and based on the detected segments, this
facet has been erroneously validated. In figure 11(c), a double
side roof is modelled by an horizontal facet. Even if the middle
ridge is detected by inner segments (IS = 2.6), fair geometric de-
viation measurement (CD = 50cm) and edge segment coverage
(ES = 50%) lead to its validation. In figure 11(d), the roof slope
is deviated by the neighbouring roof. While the CD value is quite
the same, smaller CP value and edge coverage (ES = 28%) are
balanced by a very small inner segment value (IS = 0.2). Finally,
based on 10 neighbours belonging to the class acceptable, this
facet has been validated.

(a) a miss-
ing hip roof
structure

(b) an
extended
roof

(c) an
under-
modelled
roof

(d) a
deviated
slope roof

Figure 11: Examples of false acceptance decisions (yellow out-
lined) from the realistic dataset.

6. CONCLUSION AND PERSPECTIVES

We have introduced a new approach for a quality self-diagnosis
of roof facets in dense urban areas. It is based on the definition
of robust and meaningful image-driven measures that aims at
characterizing individual roof facet existence and consistency.
The originality of our work is to take advantage of a set of very
low-level image observations and of a supervised learning in
order to classify roof facet quality. Although a simple classifier

is used, it has shown very promising results in the difficult
context of dense urban areas with the detection of almost all the
false modelling errors (99.5%). Considering also the generalised
modelling errors, which should be alerted, the evaluation shows
very satisfyingly that only 3% of false acceptance decision is
made on the whole datasets. Our efforts will be focused on the
improvement of the generalised facet detection (only 81%) while
keeping a good correct acceptance rate.

Future works will be carried out on the completion of the image
coherence measures by considering the radiometric changes
between the images and the change consistency with the facet
specular direction. It will allow us to assess the slope of the
roof facets when the roof material is not lambertian. Besides,
others classifiers could be used, as linear separation or neural
networks for instance, in order to improve the classification stage.
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