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ABSTRACT 
 
Relative orientation in a stereo pair (establishing 3D epipolar geometry) is generally described as a rigid body transformation, with 
one arbitrary translation component, between two formed bundles of rays. In the uncalibrated case, however, only the 2D projective 
pencils of epipolar lines can be established from simple image point homologies. These may be related to each other in infinite varia-
tions of perspective positions in space, each defining different camera geometries and relative orientation of image bundles. It is of 
interest in photogrammetry to also approach the 3D image configurations embedded in 2D epipolar geometry in a Euclidean (rather 
than a projective-algebraic) framework. This contribution attempts such an approach initially in 2D to propose a parameterization of 
epipolar geometry; when fixing some of the parameters, the remaining ones correspond to a ‘circular locus’ for the second epipole. 
Every point on this circle is related to a specific direction on the plane representing the intersection line of image planes. Each of 
these points defines, in turn, a circle as locus of the epipole in space (to accommodate all possible angles of intersection of the image 
planes). It is further seen that knowledge of the lines joining the epipoles with the respective principal points suffices for establishing 
the relative position of image planes and the direction of the base line in model space; knowledge of the actual position of the princi-
pal points allows full relative orientation and camera calibration of central perspective cameras. Issues of critical configuration are 
also addressed. Possible future tasks include study of different a priori knowledge as well as the case of the image triplet.  
 
 
 

1. INTRODUCTION 
 
In photogrammetric textbooks a typical definition of the task of 
relative orientation (RO) is that of establishing the relative posi-
tion of two – already formed – homologue bundles of rays (in-
volving 5 independent parameters). The object may then be re-
constructed by bundle intersection in an arbitrarily oriented and 
scaled model space. In this sense, certain explicit or implicit as-
sumptions are made: 

• In order to establish RO, the camera interior orientation (IO) 
must be fully known beforehand. Knowledge of IO is also a pre-
requisite for linear algorithms for estimating RO – in fact equi-
valent to the computation of the ‘essential matrix’, as it came to 
be known in computer vision literature – which have been pre-
sented in photogrammetry (Thompson, 1959; Stefanovic, 1973; 
Khlebnikova, 1983). 

• Determination of epipolar lines presupposes knowledge of 
both IO and RO. For instance: “If relative orientation is known 
for a given stereo pair, the coplanarity condition can be used to 
define epipolar lines” (Wolf & DeWitt, 2000). Or: “The epipolar 
lines can be determined after the photographs have been relati-
vely oriented” (Mikhail et al., 2001).  
 
Thus, most photogrammetric textbooks (rather understandably, 
in the context of routine mapping tasks using metric cameras) 
restrict the definition of RO to that for calibrated images. Cur-
rently, however, a more general view on RO is also adopted. For 
instance, according to the new edition of the Manual of Photo-
grammetry (McGlone, 2004) “the relative orientation of two un-
calibrated straight-line-preserving cameras is characterized by 7 
independent parameters. An object can be reconstructed only up 
to a spatial homography”. It is also noted there that, 150 years 
ago, M. Chasles had detected the 1D homography between cor-
responding pencils of epipolar lines, whose 3 parameters com-
bine with the 4 parameters defining the epipoles to yield the to-
tal of 7 independent parameters required for establishing RO in 
the uncalibrated case. It is further stated that 7 pairs of homolo-
gue points allow finding RO in uncalibrated stereopairs. It needs 
to be noted that ‘relative orientation’ stands here for something 

more general than the conventional photogrammetric concept 
(since no unique spatial relationship between the two images is 
fixed); it actually means ‘recovery of 2D epipolar geometry’. 
 
Clearly, it is thanks to extensive research in the field of com-
puter vision that this point of view is being (re)introduced into 
the photogrammetric literature. In particular, Faugeras (1992) 
and Hartley (1992) have demonstrated that the 2D epipolar geo-
metry of an image pair may still be established even with un-
known IO. The ‘fundamental matrix’ F – having 7 independent 
parameters, found from simple point homologies – establishes 
the epipolar constraint on the uncalibrated pair and allows pro-
jectively distorted, i.e. non Euclidean, 3D reconstructions (Hart-
ley & Zisserman, 2000, Faugeras & Luong, 2001). 
 
Undoubtedly, the notion of the fundamental matrix has allowed 
a deeper insight into the structure of the stereopair. In fact – al-
though somehow obscured in the many decades of technologi-
cal advance and massive photogrammetric production – this ge-
neralization of the term ‘relative orientation’ to include the un-
calibrated case (and thus signify the establishment of 2D epipo-
lar geometry) is not unfamiliar to photogrammetry. Thus, in the 
framework of projective geometry Bender (1971) had formula-
ted the equivalent of the fundamental matrix, which represents 
“the most general relative orientation of two photos”. He also 
explained that use of one arbitrary camera matrix leads to con-
struction of a model space related to the real object via a 3D 
projectivity. He concluded that its 15 parameters, added to the 7 
of relative orientation, yield the 22 parameters (two DLT matri-
ces), which fully relate two individual images to object space. 
Yet, it was Sebastian Finsterwalder who – in one of his remark-
able publications – had already shown that, given the two epi-
poles, one can reconstruct an ‘auxiliary’ 3D object which is col-
linear to that depicted on the images, since all straight lines of 
the real object also correspond to straight lines on the two per-
spective projections from which this ‘auxiliary’ object is recon-
structed. He pointed out that, assuming central perspective ca-
meras, ∞5 such projective reconstructions are possible from an 
uncalibrated image pair (Finsterwalder, 1899). 



Notwithstanding the elegance and ‘compactness’ of essentially 
algebraic approaches, it is believed that the more geometric rea-
soning of Finsterwalder (also adopted in Rinner & Burkhardt, 
1972) is indeed also useful to photogrammetry. It might help 
further illuminate the actual 3D geometry of the stereo pair, by 
indicating the countless combinations of relative – in its con-
ventional meaning – and interior orientations embedded in one 
and the same 2D epipolar geometry. Besides, it could also fur-
ther clarify why partial knowledge of interior orientation can al-
low recovering camera geometry from simple image point cor-
respondences. It is from this point of view that the authors wish 
to address here certain aspects of two-image geometry. 
 
 

2. THE GENERAL CASE 
 
The base line o, defined by the projection centres O1 and O2 of 
a stereopair, intersects the two image planes ε1, ε2 in the respec-
tive epipoles e1 and e2 (Fig. 1). Epipolar planes, defined by the 
base and each imaged object point (such as P), intersect the im-
age planes in homologue epipolar lines passing through the epi-
poles. Corresponding epipolar lines intersect on the intersection 
line (g) of the two image planes; the pencils of epipolar rays in 
both images are, therefore, projective (Hallert, 1960). 
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Figure 1. Epipolar geometry. 

 
When only a sufficient number of image point correspondences 
are at hand, determination of the fundamental matrix allows es-
tablishing the epipoles (and consequently the projective pencils 
of epipolar lines). Once these two pencils are brought to some 
position in which they are perspective to each other, it is seen in 
Fig. 1 that changes of angle ϑ between the two image planes do 
not affect the perspective position of the pencils (they still inter-
sect on g) and the coincidence of the epipolar planes. Thus, one 
may for the moment address the problem in 2D (i.e. set ϑ = π). 
 
First, it is assumed that the two image planes are not parallel (g 
is not at infinity) and that no image is parallel to the base line o 
(no epipole is at infinity). Thus, referring to Fig. 2, the pencil of 
e1 may be intersected with any line g on image plane ε1 not 
passing through e1. No generality is lost if only lines through 
some fixed point K are considered, since the position of K only 
affects scale. For convenience, K is fixed on some epipolar ray 
through e1 and all lines g are characterised by the angle δ they 
form with this ray. A line g(δ) intersects two other epipolar rays 
of e1 in points A and B. Epipole e2 can be constructed as the in-
tersection of the two circular arcs ca and cb which see segments 
KA and KB under the respective angles α2 and α2+β2 of the 
epipolar pencil of the second image. All other couples of homo-
logue epipolar rays also intersect on g (cross ratio constraint). 
 
It is to note that a valid second location also exists for e2, on the 

other side of line g, as the intersection of the circular arcs ca and 
cb if these are mirrored with respect to g. However, this could 
be disregarded since it corresponds to ϑ = 0. A further remark is 
that, for some direction δ of line g, any translation of K (point 
of rotation of g) simply slides the position of e2 along e1e2 (i.e. 
direction δ defines a line through e1 as the locus of e2). 
 
Following Fig. 2, it can be also shown that the geometric locus 
for epipole e2 is a circle ck (which also contains e1). Consider, 
for instance, the intersections M and N of epipolar lines e1A and 
e1B with ca and cb, respectively. In ca point A views chord KM 
under the angle α1+δ, while e2 sees it under the supplementary 
angle. In cb point B views chord KN under the angle α1+β1+δ, 
while e2 sees it under the supplementary angle. Thus, the angu-
lar difference Ke2M−Ke2N = KBN−KAM, namely segment MN 
is seen from e2 under the fixed angle β1 (or, if e2 lies between M 
and N, under angle π−β1). 
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Figure 2. Epipolar geometry on the plane. 

 
Thus, quite independently from the direction δ of line g, every 
point K fixes a circle ck as the geometric locus of the epipole e2. 
This circle can be constructed from e1 and the two points M, N 
which are fixed by angles α2 and β2 of the pencil through e2. In-
deed, as seen from Fig. 2, M views segment KA under angle α2 
regardless of δ, i.e. of the actual position of A on epipolar line 
e1A; the same is true for point N, which sees segment KB under 
angle α2+β2 regardless of the position of B on epipolar line e1B. 
Fixing K also fixes these two points (and all other similarly de-
fined points corresponding to other epipolar lines of the pencil 
through e1) and, as a consequence, ck can be constructed. 
 
Thus, the 7 degrees of freedom in 2D epipolar geometry (funda-
mental matrix) may be parameterized in the following way. The 
epipoles on ε1 and ε2 are fixed with 4 parameters. The remain-
ing 3 degrees of freedom on the plane, which bring the two pen-
cils of epipolar rays in perspective position (they intersect on a 
line g of direction δ rather than on a conic section), may be geo-
metrically described as follows. For a fixed point K – its loca-
tion only affects scale and is irrelevant to relative orientation – 
2 parameters define with epipole e1 the circle ck, whose points 
are valid locations of epipole e2. The third parameter is the rota-
tion which, for any valid e2, brings the corresponding epipolar 
ray to pass through K. This constrains the intersection of the 
two projective pencils on a line g(δ). In this sense, and disre-
garding scale, all possible positions of epipole e2 can be grasped 
as a circular movement of all points of ck around their corre-
sponding line g(δ) and normal to it. This includes all possible 
angles of intersection of the image planes (0 < ϑ < 2π, ϑ ≠ π) 
for each individual direction δ (cf. Fig. 3). 



Thus, two further parameters δ, ϑ (9 in total) are required to de-
termine in 3D the relative orientation of the two pencils of epi-
polar lines. These represent the direction of the second image 
plane relative to the first, i.e. a given 2D epipolar geometry in-
cludes, in principle, all possible directions. As discussed in the 
following section, knowledge of the line through the epipoles 
and the corresponding principal points allows establishing full 
relative orientation of the image planes. Then the base line o is 
also fixed in model space. Since a full relative orientation of an 
uncalibrated pair from central perspective cameras involves 11 
independent parameters, the additional knowledge of one image 
coordinate (c, xo or yo) of the projective centre of each image 
provides full relative orientation of the pair. 
• Note: Two special cases are pointed out. First, the two pencils 
of rays are identical, while the epipoles are not at infinity. This 
occurs if image planes are parallel but not coplanar (and o is not 
parallel to them); if image planes are coplanar but the camera 
constants differ; if epipoles are equidistant from the intersection 
of image planes. In such a case, circle ck degenerates to a point 
coinciding with e1. For every line g, a circle through e1 about g 
and on a plane normal to it is the locus of e2. Here, nonetheless, 
ϑ = 0 is a valid angle referring to parallel image planes (g at in-
finity). Second, the epipolar lines of one image run parallel to 
each other, which occurs if this image is parallel to the base line 
o. It can be shown that, if epipole e1 is at infinity, circle ck de-
generates to line MN (which can also be constructed). 
 
 

3. PARTLY CALIBRATED IMAGES 
 
Contrary to a typical photogrammetric approach, even in order 
to perform RO in its conventional sense (namely, allowing met-
ric reconstruction) one does not need to assume already formed 
bundles; indeed, recovery of RO is possible together with partial 
camera calibration. Chang (1986) had given an early illustration 
of the possibility to find the IO parameters with a simultaneous 
adjustment of independent stereo pairs from the same camera. 
Faugeras et al. (1992) showed that assumption of common IO in 
an image pair produces two independent conditions among the 
elements of F and the IO parameters. Hence, if certain camera 
elements are considered as known, partial self-calibration is fea-
sible from a single stereo pair. By fixing the principal point, for 
instance, one may recover the constant of a central perspective 
camera even if it varies between the two views (Hartley, 1992). 
Non-iterative algorithms have been reported for estimating one 
or two camera constants from the fundamental matrix, while cri-
tical configurations have also been demonstrated (Newsam et 
al., 1996; Sturm, 2001; Sturm et al., 2005). 
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Figure 3. A possible relative position of images in 3D. 

In order to address this issue here, it is referred to Fig. 3, which 
presents one out of the possible relative orientations of two im-
ages ε1, ε2 given their line of intersection g. The rotation of an 
image plane about g by a change in angle ϑ does not affect the 
epipolar lines or the coplanarity constraint. As mentioned, such 
rotations move epipoles e1, e2 on two parallel circles, which are 
normal to both image planes and their intersection g. In Fig. 3 
line segments e1a, e2′b represent the projections of the two cir-
cles on image plane ε1, and e2b, e1′a are their projections on ε2. 
 
Any two points on line o (e1e2) which joins the two epipoles can 
be chosen as projection centres. Camera constant and principal 
point corresponding to each projection centre can be determined 
through its normal to the respective image plane. As a conse-
quence, for a particular angle ϑ the locus of the principal point 
on each image is a line through its epipole. One of them (e1d) is 
constructed through the projection d of e2 on plane ε1; in a simi-
lar way, the line e2c of the principal point may be found on ε2. 
The two right triangles e1ac and e2bd are then similar since their 
angles e1ac and e2bd are equal to angle ϑ of the image planes. 
Hence, ac/e1a = bd/e2b = cosϑ. Since e1a = e1′a and e2b = e2′b 
(radii of circles) it also holds that ac/e1′a = bd/e2′b = cosϑ. Con-
sequently, the change of angle ϑ affects on both images the di-
rection of the line through the epipole and the principal point. 
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Referring now to Fig. 4, which shows the inclination on image 
plane ε1, the line e1d of the principal point of the first image has 
to intersect segment e2e2′. Thus, for a given δ only a part of the 
image plane represents a valid location for the principal point. 
The same holds for the second image. But if the principal point 
of the first image, or simply the direction of line e1d, is known, 
then line e2c of the principal point of the other image is further 
constrained to intersect segment e1e1′ at a specific point c such 
that ac/e1a = bd/e2b. From the isosceles trapezium e1e1′e2e2′ it 
can be shown that equality of these two ratios exists only when 
the intersection of lines cd and e1e2 lies on line g. To summa-
rize, if line e1d is known, then for every angle δ the line of the 
principal point of the second image as well as the angle ϑ of the 
two images can both be found. It is further observed that the di-
rection of e1d also constrains angle δ to those values which give 
segments e2e2′ that can be intersected by e1d, which means that 
only part of circle ck represents now valid positions for e2. 
 
If in addition to e1d also line e2c of the other principal point is 
known, the constraint that the two lines must intersect segments 



e1e1′ and e2e2′ to equal ratios allows finding the compatible an-
gle δ, since random selections of δ will not produce ratios ac/e1a 
and bd/e2b which are equal1. The fact that both ratios also equal 
cosϑ finally provides the 2 missing parameters, thus allowing a 
full estimation of relative orientation of the two image planes 
and, consequently, fixing through the two epipoles the base line 
o in space. It is noted, however, that ϑ only establishes the an-
gle between the image planes. Thus, cosϑ provides the four an-
gles ϑ, π−ϑ, π+ϑ, 2π−ϑ, which in fact represent the four possi-
ble solutions for relative orientation2. 
 
From the above it is seen that if not only the directions of these 
two lines (loci of the principal points) but the principal points 
themselves are known, the camera constant of the two images 
may be found through the projections of the respective principal 
points onto the base line o in space. This is in agreement to the 
knowledge that, in general, fixed principal points allow compu-
tation of the camera constants from the fundamental matrix. 
 
• Note: In case of coplanarity of the optical axes3 their common 
plane will be perpendicular to both images and their line of in-
tersection g. In such a case the two circles of Figs. 3 and 4 will 
be coplanar and the two principal point lines (e1d, e2c) will co-
incide with segments e1e1′ and e2e2′. In this situation none of the 
two ratios mentioned above can be determined and a rotation ϑ 
will not affect the coplanarity of the two axes. If the principal 
points themselves are known, for every ϑ there emerge different 
camera constants. Thus, coplanarity of image axes renders par-
tial camera calibration impossible (Newsam et al., 1996). Yet, if 
the images are assumed as having identical camera constants, it 
is indeed possible to find that angle ϑ which will result to equal 
camera constants (Sturm, 2001). This will not hold if the two 
principal points are equidistant from the intersection g of image 
planes since then all angles ϑ produce equal values for the two 
camera constants. For identical camera constants this, of course, 
is equivalent with the equidistance of projection centres from g, 
also including parallelism of the optical axes, which is the criti-
cal geometry pointed out by Sturm (2001). 
 
 

4. CONCLUDING REMARKS 
 
In photogrammetric literature two distinct definitions of relative 
orientation of a stereopair coexist. The one presents it strictly as 
a separate 5-parameter orientation step following camera cali-
bration (six parameters for two central perspective cameras) and 
founded on the intersection in 3D space of corresponding rays, 
which thus permits the metric reconstruction of object shape. A 
much wider view (embodied in the fundamental matrix, as ela-
borated in the computer vision literature) bypasses the camera 
calibration step and conceives relative orientation also as the 7-
parameter 2D task of establishing homologue pencils of epipolar 
lines, which then allows object reconstruction up to a 3D pro-
jective transformation. Along with the relative position of (not 
known) bundles of rays which created the original image pair, 
the second group of parameters apparently incorporates ∞4 com-
binations of interior and relative image orientations. The authors 
feel that photogrammetric literature needs to further scrutinize 
this ground between 2D and 3D epipolar geometry in a Eucli-
dean framework. 

                                           
1 To this point, however, it is not known to the authors whether more 
than one solution for δ is possible. 
2 At this stage the criterion that reconstructed points should be in front 
of both cameras (Stefanovic, 1973) cannot be applied, since the princi-
ple point could be on either side of the epipole in both images. 
3 If the principal points or the lines connecting them with the epipoles 
are known, a way to distinguish whether the optical axes are coplanar or 
not is to check whether these lines are also homologue epipolar lines. 

This is the motivation behind the attempt made here to handle 
existing degrees of freedom in a more directly geometric man-
ner and illustrate how these are constrained once partial knowl-
edge of interior orientation is available. Besides further elabora-
tion of the approach presented here, future tasks include similar 
studies of the case when only the camera constants are regarded 
as known and, also, of the possible image configurations if an 
identical interior orientation of the image pair is assumed. Fur-
ther, it is intended to investigate in this framework the possibil-
ity of other factorizations of epipolar geometry with some prac-
tical use. Finally, study of overlapping image triplets in a simi-
lar manner is also within the authors’ intentions. 
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