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ABSTRACT:

We suggest altering the fundamental strategy in Fundamental or Essential Matrix estimation. The traditional approachfirst estimates
correspondences, and then estimates the camera geometry onthe basis of those correspondences. Though the second half of this
approach is very well developed, such algorithms often failin practice at the correspondence step. Here, we suggest altering the strategy.
First, estimate probability distributions of correspondence, and then estimate camera geometry directly from these distributions. This
strategy has the effect of making the correspondence step far easier, and the camera geometry step somewhat harder. The success of our
approach hinges on if this trade-off is wise. We will presentan algorithm based on this strategy. Fairly extensive experiments suggest
that this trade-off might be profitable.

1 INTRODUCTION

The problem of estimating camera geometry from images lies at
the heart of both Photogrammetry and Computer Vision. In our
view, the enduring difficulty of creating fully automatic meth-
ods for this problem is due to the necessity to integrate image
processing with multiple view geometry. One is given imagesas
input, but geometry is based on the language of points, lines, etc.
Bridging this gap- using image processing techniques to create
objects useful to multiple view geometry- remains difficult. In
both the Photogrammetric and Computer Vision literature, the
object at interface between image processing and geometry is
generally correspondences, or matched points. This is natural
in Photogrammetry, because correspondences are readily estab-
lished by hand. However, algorithmically estimating correspon-
dences directly from images remains a stubbornly difficult prob-
lem.

One may think of most of the previous work on Essential or
Fundamental matrix estimation as falling into one of two cate-
gories. First, there is a rather mature literature on Multiple View
Geometry. This is well summarized in Hartley and Zisserman’s
recent book (Hartley and Zisserman, 2004), emphasizing theun-
calibrated techniques leading to Fundamental Matrix estimation.
Specifically, there are techniques for estimating the Fundamental
Matrix from the minimum ofseven correspondences (Bartoli and
Sturm, 2004). In the calibrated case, the Essential Matrix can be
efficiently estimated from five correspondences (Nistér, 2004).
Given perfect matches, it is fair to say that the problem is nearly
solved.

The second category of work concerns the estimation of the corre-
spondences themselves. Here commonly a feature detector (e.g.
the Harris corner detector (Harris and Stephens, 1988)) is first
used to try to find points whose correspondence is most easily
established. Next, matching techniques are used to find probable
matches between the feature points in both images (e.g. normal-
ized cross correlation, or SIFT features (Lowe, 2004)). These are
active research areas, and progress continues up to the present.

Nevertheless, no fully satisfactory algorithm exists. Current al-
gorithms often suffer from problems such as change in scale or
surface orientation (Schmid et al., 2000). Furthermore, there are
many situations in which it is essentiallyimpossible to estimate
correspondences with out using a higher-level understanding of
the scene. These include repeated structures in the image, the
aperture effect, lack of texture, etc. When humans estimatecor-
respondences, they use this high-level information. Nevertheless,
it is unavailable to algorithms.

Research in multiple view geometry, of course, has considered
the difficulties in the underlying algorithms for correspondence
estimation. As such, robust techniques such as RANSAC (Fis-
chler and Bolles, 1981) are traditionally used to estimate acam-
era geometry from a set of correspondences known to include
many incorrect matches. These techniques are fairly successful,
but because even ’inlying’ correct matches include noise there is
a difficulty in discriminating between inlying matches withnoise,
and outlying, ’wrong’, matches. When simultaneously adjusting
the camera geometry, and 3-D points in a final optimization, bun-
dle adjustment methods frequently use more sophisticated noise
models which smoothly account for error due to both noise, and
’outlying’ matches (Triggs et al., 1999).

In this paper, we suggest that it is worth stepping back and re-
considering if correspondences are the correct structure to use at
the interface between image processing and multiple view geom-
etry. Point correspondences are natural in Photogrammetrybe-
cause they are easily estimated by humans. Nevertheless they
are very difficult to estimate algorithmically. Here, we suggest
instead usingcorrespondence probability distributions. We can
see immediately that this makes the image processing side ofthe
problem much easier. If repetitive structure or the aperture effect
presents itself, it is simply incorporated into the probability distri-
bution. We will present a simple, contrast invariant, technique for
estimating these correspondences from the phase of tuned Gabor
filters.

The more difficult side of this strategy concerns multiple view
geometry. One must estimate the camera geometry from only dis-



tributions of correspondence. As we will see, one can quite easily
define aprobability for any given camera motion, from only these
distributions of correspondence. We then present a heuristic non-
linear optimization scheme to find the most probable geometry.
In practice, this space has a similar structure to the least-squares
epipolar error space, (Oliensis, 2005) in that it contains relatively
few local minima.

1.1 Previous Work

Other work has asked similar questions. First, there are tech-
niques which generate from images feature points, and localim-
age profiles, with out estimating an explicit correspondences (Maka-
dia et al., 2005). These techniques then find motions which are
compatible with these features, in the sense that each feature
tends to have a compatible feature along the epipolar line inthe
second image.

Other work has created weaker notions of correspondences, such
as the normal flow. If a point is along a textureless edge in one
image, local measurements can only constrain it to lie alongthe
same edge in the second image. This constraint is essentially the
normal flow, and algorithms exist to estimate 3-D motion directly
from it (Brodsky et al., 2000). Though these techniques willnot
suffer from the aperture effect, they cannot cope with situations
such as repeated structures in the images. It is also important to
notice that the normal flow will give up information unnecessarily
at points which do not happen to suffer from the aperture effect.

2 CORRESPONDENCE PROBABILITY
DISTRIBUTIONS

Given a pointq in the first image, we would like the probability
that this correspondences most closely to each pixels in the sec-
ond image. It is important to note that there is no obvious way
to use traditional matching techniques here. Whereas traditional
techniques try to find the most probably point correspondingto
q, we require the relative probabilities ofall points.

Our approach is based on the phase of tuned Gabor filters. Let
φl,γ(s) denote the phase of the filter with scalel and orientation
γ at points. Now, given a single filter,(l, γ), we take the prob-
ability that s corresponds to a given point̂q to be proportional
to

exp((φl,γ(s) − φl,γ(q̂))2) + 1. (1)

Combining the probability distributions given by all filters then
yields the probability thats corresponds tôq, which we denote
by ρs(q̂).

ρs(q̂) ∝
∏

l,ω

exp((φl,γ(s) − φl,γ(q̂))2) + 1. (2)

Note here that̂q corresponds to a particularpixel in the second
image. Since we are computing probabilities over a discretegrid,
we approximate the probability thats corresponds to an arbi-
trary point, having non-integer coordinates, though the use of a
Gaussian function.

ρs(q) ∝ max
q̂

ρs(q̂) exp(−|q − q̂|2) + α (3)

Here,α represents the probability that the information given by
the Gabor filters is misleading. This would be the case, for ex-
ample, were the points to become occluded in the second image.
Notice that adding the constant ofα is equivalent to combining
the distribution with the ’flat’ distribution in which all points q
are equally likely. In all experiments described in this paper, we
have usedα = 1.

Correspondence distributions for several images are shownin
Figure 2.

Figure 1: Correspondence Probability Distributions. Left: First
image, with point in consideration marked. Center: Second im-
age: Right: Probability distribution over the points in thesecond
image, with probability encoded as color.

3 ESSENTIAL AND FUNDAMENTAL MATRIX
ESTIMATION

Given the correspondence distributions, we will define natural
distributions over the space of the Fundamental and Essential Ma-
trices. Because the space of these matrices are of high dimension
(7 and 5 respectively), it is impractical to attempt to calculate a
full distribution, by sampling. It is possible that future work will
directly use these distributions. Nevertheless, we use a simple
heuristic optimization to maximize the probability in the Essen-
tial or Fundamental Matrix space. This makes it possible to ex-
amine the behavior of these distributions more easily.

3.1 Fundamental and Essential Matrix Probability

Given the correspondence distribution for a single points, ρs(·),
we define a distribution over the space of fundamental matrices.



ρ(F ) ∝ max
q:qT F s=0

ρs(q) (4)

Thus, the probability of a given Fundamental MatrixF is pro-
portional tothe maximum probability correspondence compati-
ble with the epipolar constraint. Now, to use all correspondence
distributions, simply take the product of the distributions given
by each points.

ρ(F ) ∝
∏

s

max
q:qT F s=0

ρs(q) (5)

Substituting our expression forρs(q) from Equation (3), we ob-
tain

ρ(F ) ∝
∏

s

[ max
q:qT F s=0

max
q̂

ρs(q̂) exp(−|q − q̂|2) + α]. (6)

Rearranging terms, this is

ρ(F ) ∝
∏

s

[max
q̂

ρs(q̂) max
q:qT F s=0

exp(−|q − q̂|2) + α]. (7)

Notice here, that we do not need to explicitly find the pointq.
Only required ismaxq:qT F s |q − q̂|. Notice that this is exactly
the minimum distance of the pointq̂ from the lineFs. Therefore,
we can write the probability ofF in it’s final form.

ρ(F ) ∝
∏

s

[max
q̂

ρs(q̂) exp(−(q̂T l(F,s))
2) + α] (8)

Here,l(F,s) is the lineFs normalized such thatrT l(F,s) gives the
minimum distance betweenr and the lineFs on the planez = 1.
If Fi is theith row ofF , then

l(F,s) =
Fs

√

(F1s)2 + (F2s)2
. (9)

When searching for the most probableF , a parameterization of
the fundamental matrices is required. We found it convenient to
use three parametersf , px, andpy representing the focal length,
and x and y coordinates of the principal point. Next, keepingthe
magnitude of the translation vectort fixed to one, we took two
parameters to parameterize its axis and angle. Finally, we used 3
parameters to represent the rotation vectorω. This corresponds
to a rotation of an angle|ω| about the axisω/|ω|.

K =

[

f 0 px

0 f py

0 0 1

]

(10)

E = [t]×R(ω) (11)

F = K−T EK−1 (12)

Notice there are a total of 8 free parameters, despite the fact that
the Fundamental Matrix has only 7 degrees of freedom. Though
this presents no problem to the estimation ofF , it does mean that
an ambiguity is present in the underlying parameters.

To extend this to the calibrated case, we takeK to be known.
Thus, there are now 5 free parameters: 2 for the translationt, and
3 for the rotationω. It would be trivial to extend this to the case
that only certain calibration parameters were known, or to include
a constant for camera skew.

3.2 Optimization

To explore the behavior of the probability distributions over the
Fundamental and Essential Matrices, we will use a heuristicopti-
mization to try to findarg maxF ρ(F ) andarg maxE ρ(E), re-
spectively. The optimization proceeds as follows: First, select
N random points in the Fundamental or Essential matrix space.
Evaluateρ(E) or ρ(F ) at each of these points. Next, take the
M highest scoring points, and run a nonlinear optimization, ini-
tialized to each of these points. We have used both Simplex and
Newton’s type optimizations, with little change in performance.
The final, highest scoring point is taken as the max.

For the calibrated case, we have found that usingN = 2500 and
M = 25 was sufficient to obtain a value very near the global
maximum in almost all cases. As in the case for the standard
least-squares error surface (Oliensis, 2005) (Tian et al.,1996),
there are generally several, but only several local minima.Usu-
ally, a significant number of the nonlinear searches lead to the
same (global) point.

In the uncalibrated case, we usedN = M = 100. (Thus searches
are taken from 100 random points.) We found that it was neces-
sary to increaseM to 100 to obtain reasonable certainty of ob-
taining the global maximum. At the same time, we found that
increasingN did not improve results, and may even be counter-
productive. Still, the space ofρ(F ) appears to have more local
minima, and even this increased method does not always appear
to achieve the global maximum.

4 EXPERIMENTS

To analyze the performance of the framework, we prepared three
different 3-D Models with the POV-Ray software. Each model
was chosen for its difficulty, including repetitive structure, lack
of texture, or little image motion. The use of synthetic models
makes the exact motion and calibration parameters available. For
each model, we generated two different image sequences- one
with a forward motion, and one with a motion parallel to the im-
age plane.

For each image pair, 10,000 correspondence probability distrib-
utions were created. Next, the calibrated and uncalibratedalgo-
rithm were both run across a range of input sizes. For each input
size, 100 random subsets of the correspondences were generated,
and the algorithm was run on each input.

In the calibrated case, the measurement of error is simple. Let
the true translation vector bet0, normalized so that|t0| = 1.
Let the vector parameterizing the true rotation matrix beω0. The
error metrics we use are simply the Euclidean distance between
the estimated and true motion vectors,|t − t0|, and |ω − ω0|
respectively. For each input size, means are taken over the errors
for all resulting motion estimates.



In the uncalibrated case, we must measure the error of a given
fundamental matrixF . Commonly used metrics such as the Frobe-
nius norm are difficult to interpret, and allow no comparisonto
the calibrated case. Instead, we use the known ground truth cali-
bration matrixK to obtainE. (Hartley and Zisserman, 2004)

E = KT FK (13)

Next, Singular Value Decomposition is used to decomposeE into
the translation and rotational components,E = [t]×R(ω). From
this, it is simple to recover the underlying motion parameters, t
andω. The error is then measured in the same way as the cali-
brated case.

Results for the ’Cloud’, ’Abyss’, and ’Biscuit’ models are shown
in figures 2, 3, and 4 respectively. Several observations areclear
from the data. First, motion estimation is always more accurate
when the epipole is in the middle of the image than when it is par-
allel to it. Surprisingly, perhaps, neither the calibratednor uncal-
ibrated approach clearly outperforms the other. The performance
of the uncalibrated approach relative to the calibrated approach is
better when the epipole is further from the image.

Two frames from the ’Castle’ sequence, along with the epipolar
lines are shown in Figure 5. Two frames from the popular ’Ox-
ford Corridor’ sequence are shown in Figure 6. In both cases,ap-
proximately 2000 correspondence distributions were used.Though
no ground truth calibration or motion is available, the reader can
observe the close correspondence among epipolar lines.

The running time of the algorithm is dominated by the time to
generate correspondence distributions. In practice, the motion
estimation step runs on the order of a minute on a modern laptop.

5 CONCLUSIONS AND FUTURE WORK

With real cameras, neither the fully calibrated, nor fully uncali-
brated approach is fully realistic. In practice, one has some idea
of the calibration parameters, even if only from knowledge of typ-
ical cameras. At the same time, even when a camera is calibrated,
the true calibration is not foundexactly. It would be quite natural
to extend this paper’s work to create a unifying approach between
the two cases.

Write the prior distribution over the focal lengths byρ(f). Sim-
ilarly, we can write the prior distributions of the principal point
by ρ(px, py). Now, we can make the Bayesian nature of this ap-
proach more explicit by writing 14 as

ρ(E|f, px, py) ∝ max
q:qT K−T EK−1s=0

ρs(q) (14)

Now, in the optimization step, instead of seeking

arg max
F

ρ(F ), (15)

the optimization would be over

arg maxE,f,px,py
ρ(E|f, px, py)ρ(f)ρ(px, py). (16)

In this way, in one step, the most likely calibration parameters
would be found as well as the most likely motion. This could be
particularly useful in the common case that the camera calibration
is approximately known, but the focal length changes, perhaps
due to change of focus.
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Figure 2: ’Cloud’ model, and mean errors for two different mo-
tions.



10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

correspondence probability distributions

er
ro

r

"Abyss" model,  t = [1 0 0]T,  ω ≈ [0 0 .175]T

| t −  t
0
| calibrated

| t −  t
0
| uncalibrated

| ω −  ω
0
| calibrated

| ω −  ω
0
| uncalibrated

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

correspondence probability distributions

er
ro

r

"Abyss" model,  t = [0 0 1]T,  ω ≈ [0 0 .175]T

| t −  t
0
| calibrated

| t −  t
0
| uncalibrated

| ω −  ω
0
| calibrated

| ω −  ω
0
| uncalibrated

Figure 3: ’Abyss’ model, and mean errors for two different mo-
tions.
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Figure 4: ’Biscuit’ model, and mean errors for two differentmo-
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Figure 5: Two frames from the ’Castle’ sequence, with epipolar
lines overlaid
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