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ABSTRACT:

We suggest altering the fundamental strategy in Fundamentssential Matrix estimation. The traditional approdicst estimates
correspondences, and then estimates the camera geometing basis of those correspondences. Though the secondfhhifo
approach is very well developed, such algorithms ofteririgitactice at the correspondence step. Here, we suggeshglthe strategy.
First, estimate probability distributions of corresponcke, and then estimate camera geometry directly from thes@dtions. This
strategy has the effect of making the correspondence stepdéer, and the camera geometry step somewhat harderuddess of our
approach hinges on if this trade-off is wise. We will presamialgorithm based on this strategy. Fairly extensive éxymets suggest
that this trade-off might be profitable.

1 INTRODUCTION Nevertheless, no fully satisfactory algorithm exists. r€nt al-
gorithms often suffer from problems such as change in saale o

The problem of estimating camera geometry from images ties asurface orientation (Schmid et al., 2000). Furthermoreretfare

the heart of both Photogrammetry and Computer Vision. In oufmany situations in WhiCh it is_essent_iailmpossi ble to estimate
view, the enduring difficulty of creating fully automatic the ~ correspondences with out using a higher-level understgnof

ods for this problem is due to the necessity to integrate ‘-magthe scene. These include repeated structures in the image, t

processing with multiple view geometry. One is given images aperture effect, lack of texFure_, etc. When hum_ans estinate
input, but geometry is based on the language of points, lztes respondences, they use this high-level information. Nbedegss,

Bridging this gap- using image processing technigues tatere itis unavailable to algorithms.

objects useful to multiple view geometry- remains difficulb . . . .
. -~ . Research in multiple view geometry, of course, has consitler
both the Photogrammetric and Computer Vision literatuhe, t e ) .
the difficulties in the underlying algorithms for correspence

object at interface between image processing and geprrmtry Eestimation. As such, robust techniques such as RANSAC (Fis-
generally correspondences, or matched points. This igalatu

; . chler and Bolles, 1981) are traditionally used to estimatara-

in Photogrammetry, because correspondences are reatiity es .

. o = era geometry from a set of correspondences known to include
lished by hand. However, algorithmically estimating cepen-

. . . e many incorrect matches. These techniques are fairly ssitdes
lcileenr]lces directly from images remains a stubbornly difficdbp but because even 'inlying’ correct matches include noiseetlis

a difficulty in discriminating between inlying matches witbise,

. . . and outlying, 'wrong’, matches. When simultaneously atiljigs
Onedmay th'lnk of most of the pre\flltl)lgs work on E?sentlal Olthe camera geometry, and 3-D points in a final optimization: b
Fundamental matrix estimation as falling into one of twoeeat e giustment methods frequently use more sophisticai n

gories. First, the_re is a rather mgture' literature on M"FMGW , models which smoothly account for error due to both noisd, an
Geometry. This is well summarized in Hartley and Zisserman ‘outlying’ matches (Triggs et al., 1999).

recent book (Hartley and Zisserman, 2004), emphasizingthe

calibrated techniques leading to Fundamental Matrix eton. In this paper, we suggest that it is worth stepping back and re
Specifically, there are techniques for estimating the Foretal  considering if correspondences are the correct structunse at
Matrix from the minimum ofseven correspondences (Bartuti a  the interface between image processing and multiple viewnge
Sturm, 2004) In the calibrated case, the Essential Matiixle etry. Point Correspondences are natural in Photogramrbet.ry
efficiently estimated from five correspondences (Nist®)4).  cause they are easily estimated by humans. Neverthelegs the
Given perfect matches, it is fair to say that the problem &iye 5.0 very difficult to estimate algorithmically. Here, we gest
solved. instead usingorrespondence probability distributions. We can
see immediately that this makes the image processing sitthe of
The second category of work concerns the estimation of theco  problem much easier. If repetitive structure or the aperéffect
spondences themselves. Here commonly a feature detegjor (epresents itself, it is simply incorporated into the protigbdistri-
the Harris corner detector (Harris and Stephens, 1988))s fi bution. We will present a simple, contrast invariant, téghe for

used to try to find points whose correspondence is most easilgstimating these correspondences from the phase of turteat Ga
established. Next, matching techniques are used to findapteb filters.

matches between the feature points in both images (e.g.atorm
ized cross correlation, or SIFT features (Lowe, 2004)).sEtewe  The more difficult side of this strategy concerns multiplewi
active research areas, and progress continues up to thenpres geometry. One must estimate the camera geometry from asily di



tributions of correspondence. As we will see, one can qaitlye  Here,a represents the probability that the information given by
define gprobability for any given camera motion, from only these the Gabor filters is misleading. This would be the case, fer ex
distributions of correspondence. We then present a hgunish-  ample, were the pointto become occluded in the second image.
linear optimization scheme to find the most probable gegmetr Notice that adding the constant afis equivalent to combining
In practice, this space has a similar structure to the legstres  the distribution with the "flat’ distribution in which all pots ¢
epipolar error space, (Oliensis, 2005) in that it contagtatively  are equally likely. In all experiments described in this gapve

few local minima. have usedv = 1.
11 PreviousWork 'C::_orresgondence distributions for several images are shown
igure 2.

Other work has asked similar questions. First, there are-tec
nigues which generate from images feature points, and iocal
age profiles, with out estimating an explicit corresponésr®tlaka-
dia et al., 2005). These techniques then find motions whieh ar
compatible with these features, in the sense that eachréeatu
tends to have a compatible feature along the epipolar linkdn
second image.

Other work has created weaker notions of correspondeneels, s
as the normal flow. If a point is along a textureless edge in one =
image, local measurements can only constrain it to lie atbeg
same edge in the second image. This constraint is essegitiiall
normal flow, and algorithms exist to estimate 3-D motion ctise
from it (Brodsky et al., 2000). Though these techniques moli
suffer from the aperture effect, they cannot cope with sibung
such as repeated structures in the images. It is also impdda
notice that the normal flow will give up information unnecadly
at points which do not happen to suffer from the apertureceffe

2 CORRESPONDENCE PROBABILITY
DISTRIBUTIONS

Given a pointg in the first image, we would like the probability
that this correspondences most closely to each pikethe sec-
ond image. It is important to note that there is no obvious way !
to use traditional matching techniques here. Whereadioadl
techniques try to find the most probably point corresponding
q, we require the relative probabilities alfl points.

Our approach is based on the phase of tuned Gabor filters. Lel
¢1,-(s) denote the phase of the filter with scalend orientation
~ at points. Now, given a single filter(l, v), we take the prob-
ability that s corresponds to a given poigtto be proportional
to Figure 1: Correspondence Probability Distributions. L&frst
image, with point in consideration marked. Center: Secomd i
age: Right: Probability distribution over the points in gecond
exp((¢r1,(s) — ¢M(q))2) +1. (1) image, with probability encoded as color.

Combining the probability distributions given by all filethen
yields the probability that corresponds t@, which we denote
by ps(4).-

3 ESSENTIAL AND FUNDAMENTAL MATRIX
ESTIMATION

Given the correspondence distributions, we will define ratu
. 2 distributions over the space of the Fundamental and Ess&fdi
ps(9) o H exp((¢1+(s) = ¢1,5(9)") +1. @ trices. Because the space of these matrices are of high sianen
Lw (7 and 5 respectively), it is impractical to attempt to cédee a
full distribution, by sampling. It is possible that futurevk will
Note here thatj corresponds to a particulaixel in the second directly use these distributions. Nevertheless, we usenalsi
image. Since we are Computing probabilities over a d|s(gnde heuristic Optimization to maximize the probablllty in theden-
we approximate the probabmty thatcorresponds to an arbi_ t|a| or Fundamental MatriX Space. Th|S makes |t pOSSib|®(tO e
trary point, having non_integer Coordinatesy though the afsa amine the behavior of these distributions more eaSily.

Gaussian function. 3.1 Fundamental and Essential Matrix Probability

. o Given the correspondence distribution for a single psjnts(-),
ps(q) o m(?x ps(q) exp(—lg —4") + a () we define a distribution over the space of fundamental nestric



p(F) o max ps(q)

q:qT Fs=0

Thus, the probability of a given Fundamental Matfixis pro-

“

portional tothe maximum probability correspondence compati-

ble with the epipolar constraint. Now, to use all correspondence
distributions, simply take the product of the distribusogiven

by each point.

p(F) o H popax ps(q)

Substituting our expression far (¢) from Equation (3), we ob-

tain

p(F) o | |[ max mgXps(d)exp(—lq—tiIQ)Jrak

q:qT Fs=0
s

Rearranging terms, this is

p(F) o [ [lmaxp.(@) max exp(-lg—dl*) +al.

:qT Fs=0

Notice here, that we do not need to explicitly find the paijnt
Only required ismax,, 7z, |¢ — ¢|. Notice that this is exactly
the minimum distance of the poigtfrom the lineF's. Therefore,

we can write the probability of in it’s final form.

p(F) oc | [max pu(@) exp(—(a"Uir.)?) + ]

Here,l(r ) is the lineF's normalized such thatTl(F,s) gives the

®)

6)

™

®)

minimum distance betweenand the lineF's on the plane: = 1.

If F; is theith row of I, then

Fs
(Fis)? + (F2s)?

lips) =

When searching for the most probaliie a parameterization of
the fundamental matrices is required. We found it convertien
use three parametefs p.,, andp, representing the focal length,
and x and y coordinates of the principal point. Next, keepivey

magnitude of the translation vectoffixed to one, we took two
parameters to parameterize its axis and angle. Finally,sed 8

parameters to represent the rotation veciorThis corresponds

to a rotation of an anglev| about the axis/|w|.

f 0 pa

K=10 f py
[ 0o 0 1 ‘|

E = [t]xR(w)

9)

(10

(11)

(12)

Notice there are a total of 8 free parameters, despite theHat

the Fundamental Matrix has only 7 degrees of freedom. Though
this presents no problem to the estimatiorFfit does mean that

an ambiguity is present in the underlying parameters.

To extend this to the calibrated case, we tdketo be known.
Thus, there are now 5 free parameters: 2 for the translatizmd

3 for the rotationw. It would be trivial to extend this to the case
that only certain calibration parameters were known, ont¢tuide

a constant for camera skew.

3.2 Optimization

To explore the behavior of the probability distributionspthe
Fundamental and Essential Matrices, we will use a heuigtiie
mization to try to findarg maxr p(F') andarg maxg p(E), re-
spectively. The optimization proceeds as follows: Firslest

N random points in the Fundamental or Essential matrix space.
Evaluatep(E) or p(F') at each of these points. Next, take the
M highest scoring points, and run a nonlinear optimization, i
tialized to each of these points. We have used both Simpléx an
Newton’s type optimizations, with little change in perfance.
The final, highest scoring point is taken as the max.

For the calibrated case, we have found that usihg- 2500 and

M = 25 was sufficient to obtain a value very near the global
maximum in almost all cases. As in the case for the standard
least-squares error surface (Oliensis, 2005) (Tian etlabg),
there are generally several, but only several local minittsu-

ally, a significant number of the nonlinear searches leadhé¢o t
same (global) point.

Inthe uncalibrated case, we us¥d= M = 100. (Thus searches
are taken from 100 random points.) We found that it was neces-
sary to increasé/ to 100 to obtain reasonable certainty of ob-
taining the global maximum. At the same time, we found that
increasingN did not improve results, and may even be counter-
productive. Still, the space ¢f( F) appears to have more local
minima, and even this increased method does not always appea
to achieve the global maximum.

4 EXPERIMENTS

To analyze the performance of the framework, we preparextthr
different 3-D Models with the POV-Ray software. Each model
was chosen for its difficulty, including repetitive struaylack

of texture, or little image motion. The use of synthetic nmede
makes the exact motion and calibration parameters avail&olr

each model, we generated two different image sequences- one
with a forward motion, and one with a motion parallel to the im
age plane.

For each image pair, 10,000 correspondence probabilityilalis
utions were created. Next, the calibrated and uncalibraliga+
rithm were both run across a range of input sizes. For eaclt inp
size, 100 random subsets of the correspondences were gghera
and the algorithm was run on each input.

In the calibrated case, the measurement of error is simpét. L
the true translation vector big, normalized so thafto| = 1.
Let the vector parameterizing the true rotation matrixjge The
error metrics we use are simply the Euclidean distance legtwe
the estimated and true motion vectofs— to|, and |w — wo|
respectively. For each input size, means are taken overrtese
for all resulting motion estimates.



In the uncalibrated case, we must measure the error of a given
fundamental matri¥’. Commonly used metrics such as the Frobe-
nius norm are difficult to interpret, and allow no comparigon

the calibrated case. Instead, we use the known ground talith ¢
bration matrixk to obtainE. (Hartley and Zisserman, 2004)

E=KTFK (13)

Next, Singular Value Decomposition is used to decompgogao

the translation and rotational componeris= [t]x R(w). From

this, it is simple to recover the underlying motion paranmste
andw. The error is then measured in the same way as the cali-
brated case.

Results for the 'Cloud’, 'Abyss’, and 'Biscuit’ models areawvn

in figures 2, 3, and 4 respectively. Several observationslags
from the data. First, motion estimation is always more aateur
when the epipole is in the middle of the image than when itis pa
allel to it. Surprisingly, perhaps, neither the calibrated uncal-
ibrated approach clearly outperforms the other. The perdoice
of the uncalibrated approach relative to the calibratedeaah is
better when the epipole is further from the image.

Two frames from the 'Castle’ sequence, along with the epipol
lines are shown in Figure 5. Two frames from the popular 'Ox-
ford Corridor’ sequence are shown in Figure 6. In both cemes,
proximately 2000 correspondence distributions were uskdugh
no ground truth calibration or motion is available, the eyachn 10" ¢
observe the close correspondence among epipolar lines.

The running time of the algorithm is dominated by the time to |
generate correspondence distributions. In practice, tbéom
estimation step runs on the order of a minute on a moderngapto

error
N

5 CONCLUSIONSAND FUTURE WORK

With real cameras, neither the fully calibrated, nor fullycali- of| 1t ol calibrated —
brated approach is fully realistic. In practice, one hasesaea —— |t~ tl uncalibrated

of the calibration parameters, even if only from knowledgyp- —a— |- o calibrated
ical cameras. At the same time, even when a camera is calihrat ——+— |0 wy| uncalibrated
the true calibration is not founekactly. It would be quite natural 10 o 7 o
to extend this paper’s work to create a Unifying approacbvben correspondence probability distributions
the two cases.

“Cloud" model, t=[001]", w=[0-.0350]"
‘ ‘

— | t- t0| calibrated

Write the prior distribution over the focal lengths pyf). Sim- 10° b
ilarly, we can write the prior distributions of the princlgaoint — ]t~ t uncalibrated
by p(p=, py). Now, we can make the Bayesian nature of this ap- o - w calibrated
proach more explicit by writing 14 as 107 —— | @~ | uncalibrated

N

P(E|f,pz,py) max ps(q) (14)

¢qTK—-TEK—1s=0

error
N

Now, in the optimization step, instead of seeking

arg max p(F), (15)

the optimization would be over 0 10 0
correspondence probability distributions

argmaxg ¢, o p(E|f,pe,py)p(f)p(ps,py).  (16)  Figure 2: 'Cloud” model, and mean errors for two different-mo
tions.
In this way, in one step, the most likely calibration paraenet
would be found as well as the most likely motion. This could be
particularly useful in the common case that the cameraredidn
is approximately known, but the focal length changes, gesha
due to change of focus.



error

error

Figure 3: 'Abyss’ model, and mean errors for two different-mo Figure 4: 'Biscuit’ model, and mean errors for two differemo-

tions.
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Figure 5: Two frames from the 'Castle’ sequence, with egipol
lines overlaid
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