
BUNDLE ADJUSTMENT RULES

Chris Engels, Henrik Stewénius, David Nistér

Center for Visualization and Virtual Environments, Department of Computer Science,
University of Kentucky

{engels@vis, stewe@vis, dnister@cs}.uky.edu
http://www.vis.uky.edu

KEY WORDS: Bundle Adjustment, Structure from Motion, Camera Tracking

ABSTRACT:

In this paper we investigate the status of bundle adjustment as a component of a real-time camera tracking system and show that with
current computing hardware a significant amount of bundle adjustment can be performed every time a new frame is added, even under
stringent real-time constraints. We also show, by quantifying the failure rate over long video sequences, that the bundle adjustment is
able to significantly decrease the rate of gross failures in the camera tracking. Thus, bundle adjustment does not only bring accuracy
improvements. The accuracy improvements also suppress error buildup in a way that is crucial for the performance of the camera
tracker. Our experimental study is performed in the setting of tracking the trajectory a calibrated camera moving in 3D for various
types of motion, showing that bundle adjustment should be considered an important component for a state-of-the-art real-time camera
tracking system.

1 INTRODUCTION

Bundle adjustment is the method of choice for many photogram-
metry applications. It has also come to take a prominent role in
computer vision applications geared towards 3D reconstruction
and structure from motion. In this paper we present an experi-
mental study of bundle adjustment for the purpose of tracking the
trajectory of a calibrated camera moving in 3D. The main pur-
poses of this paper are

• To investigate experimentally the fact that bundle adjust-
ment does not only increase the accuracy of the camera tra-
jectory, but also prevents error-buildup in a way that de-
creases the frequency of total failure of the camera tracking.

• To show that with the current computing power in standard
computing platforms, efficient implementations of bundle
adjustment now provide a very viable option even for real-
time applications, meaning that bundle adjustment should be
considered the gold standard for even the most demanding
real-time computer vision applications.

The first item, to show that bundle adjustment can in fact make the
difference between total failure and success of a camera tracker,
is interesting because the merits of bundle adjustment are more
often considered based on the accuracy improvements it provides
to an estimate that is already approximately correct. This is nat-
urally the case since bundle adjustment requires an approximate
(as good as possible) initialization, and will typically not save
a really poor initialization. However, several researchers have
noted (Fitzgibbon and Zisserman, 1998, Nistér, 2001, Pollefeys,
1999) that in the application of camera tracking, performing bun-
dle adjustment each time a new frame has been added to the es-
timation can prevent the tracking process from failing over time.
Thus, bundle adjustment can over time in a sequential estimation
process have a much more dramatic impact than mere accuracy
improvement, since it improves the initialization for future esti-
mates, which can ultimately enable success in cases that would
otherwise miserably fail. To our knowledge, previous authors
have mainly provided anecdotal evidence of this fact, and one of

This work was supported in part by the National Science Founda-
tion under award number IIS-0545920, Faculty Early Career Develop-
ment (CAREER) Program.

Figure 1: Top: Feature tracking on a ’turntable’ sequence created
by rotating a cylinder sitting on a rotating chair. Middle Left:
When bundle adjusting the 20 most recent views with 20 itera-
tions every time a view is added, the whole estimation still runs
at several frames a second, and produces a nice circular camera
trajectory, Middle Right: Without bundle adjustment, the estima-
tion is more irregular, but perhaps more importantly, somewhat
prone to gross failure. Here we show an example of the type of
failure prevented by bundle adjustment. Bottom Left and Right:
Although there is some drift, the bundle adjusted estimation is
much more reliable and relatively long term stable. Here two
views of multiple laps are shown. All the laps were estimated
as full 6 degree of freedom unsmoothed motion and without at-
tempting to establish correspondences to previous laps.



our main contributions is to quantify the impact of bundle ad-
justment on the failure rate of camera tracking. In particular, we
investigate the impact on the failure rate of n iterations of bun-
dle adjustment over the last m video frames each time a frame is
added, for various values of n and m.

The second item, to show that bundle adjustment can now be con-
sidered in real-time applications, is partially motivated by the fact
that bundle adjustment is often dismissed as a batch-only method,
often when introducing another ad-hoc method for structure from
motion. Some of the ’re-invention’ and ’home-brewing’ of ad-
hoc methods for structure from motion have been avoided by
rigorous and systematic exposition of bundle adjustment to the
computer vision community, such as for example by (Triggs et
al., 2000), but it is still an occurring phenomenon. Several re-
searchers have previously developed systems that can perform
real-time structure from motion without bundle adjustment, see
e.g. (Davison and Murray, 2002, Nistér et al., 2006).

Admittedly, it is typically not possible in real-time applications
to incorporate information from video frames further along in the
sequence, as this would cause unacceptable latency. However,
bundle adjustment does not necessarily require information from
future video frames. In fact, bundle adjustment of as many frames
backwards as possible each time a frame is added, will provide
the best accuracy possible using only information up to the cur-
rent time. If such bundle adjustment can be performed within
the time-constraints of the application at hand, there is really no
good excuse for not using it. We investigate the computation
time required by an efficient implementation of bundle adjust-
ment geared specifically at real-time camera tracking when vari-
ous amounts of frames are included in the bundle adjustment. We
then combine the failure rate experiments with our timing experi-
ments to provide information on how much the failure rate can be
decreased given various amounts of computation time, showing
that bundle adjustment is an important component of a state-of-
the-art real-time camera tracking system.

2 THEORETICAL BACKGROUND AND
IMPLEMENTATION

In this section we describe the bundle adjustment process and the
details of our implementation. For readers familiar with the de-
tails of numerical optimization and bundle adjustment, the main
purpose of this section is simply to avoid any confusion regard-
ing the exact implementation of the bundle adjuster used in the
experiments. For readers who are less familiar with this mate-
rial, this section also gives an introduction to bundle adjustment,
which seems appropriate given that this paper argues for bundle
adjustment.

A very large class of minimization schemes try to minimize a
cost function c(x) iteratively by approximating the cost func-
tion locally around the current (M -dimensional) position x with
a quadratic Taylor expansion

c(x + dx) ≈ c(x) +∇c(x)>dx +
1

2
dx>Hc(x)dx (1)

where ∇c(x) is the gradient

∇c(x) =
[

∂c
∂x1

(x) . . . ∂c
∂xM

(x)
]>

(2)

of c at x and Hc(x) is the Hessian

Hc(x) =




∂2c
∂x1∂x1

(x) . . . ∂2c
∂x1∂xM

(x)

...
. . .

...
∂2c

∂xN ∂x1
(x) . . . ∂2c

∂xN ∂xM
(x)


 (3)

of c at x. By taking the derivative of (1) and equating to zero, one
obtains

Hc(x)dx = −∇c(x), (4)

which is a linear equation for the update vector dx. Since there
is no guarantee that the quadratic approximation will lead to an
update dx that improves the cost function, it is very common to
augment the update so that it goes towards small steps down the
gradient when improvement fails. There are many ways to do
this since any method that varies between the update defined by
(4) and smaller and smaller steps down the gradient will suffice
in principle. For example, one can add some scalar λ to all the
diagonal elements of Hc(x). When improvement succeeds, we
decrease λ towards zero, since at λ = 0 we get the step defined
by the quadratic approximation, which will ultimately lead to fast
convergence near the minimum. When improvement fails, we
increase λ, which makes the update tend towards

dx = − 1

λ
∇c(x), (5)

which guarantees that improvement will be found for sufficiently
large λ (barring numerical problems).

Typically, the cost function is the square sum of all the dimen-
sions of an (N -dimensional) error vector function f(x):

c(x) = f(x)>f(x). (6)

Note that the error vector f can be defined in such a way that the
square sum represents a robust cost function, rather than just an
outlier-sensitive plain least squares cost function.

We use, as is very common, the so-called Gauss-Newton approxi-
mation of the Hessian, which comes from approximating the vec-
tor function f(x) around x with the first order Taylor expansion

f(x + dx) ≈ f(x) + Jf (x)dx, (7)

where Jf (x) is the Jacobian

Jf (x) =




∂f1
∂x1

(x) . . . ∂f1
∂xM

(x)

...
...

...
∂fN
∂x1

(x) . . . ∂fN
∂xM

(x)


 (8)

of f at x. Inserting (7) into (6), we get

c(x + dx) ≈ f>f(x) + 2f>Jf (x)dx + dx>J>f Jf (x)dx, (9)

which by equating the derivative to zero results in the update
equation

Jf (x)>Jf (x)dx = −Jf (x)>f(x). (10)

By noting that 2Jf (x)>f(x) is the exact gradient of (6) and com-
paring with (4) one can see that the Hessian has been approxi-
mated by

Hc(x) ≈ 2Jf (x)>Jf (x). (11)

The great advantage of this is that computation of second deriva-
tives is not necessary. Another benefit is that this Hessian approx-
imation (and its inverse) is normally positive definite (unless the
Jacobian has a nullvector), that is

dx>Jf (x)>Jf (x)dx > 0 ∀dx 6= 0, (12)

which opens up more ways of accomplishing the transition to-
wards small steps that guarantee improvement in the cost func-
tion. For example, instead of adding λ to the diagonal, we can
multiply the diagonal of Jf (x)>Jf (x) by the scalar (1 + λ),
which leads to the Levenberg-Marquardt algorithm. This is guar-



anteed to eventually find an improvement, because an update dx
with a sufficiently small magnitude and a negative scalar product
with the gradient is guaranteed to do so, and when λ increases,
the update tends towards

dx = − 1

λ
diag(Jf (x)>Jf (x))−1Jf (x)>f(x), (13)

(where diag(.) stands for the diagonal of a matrix), which is mi-
nus the gradient times a small positive diagonal matrix. Yet an-
other update strategy that guarantees improvement, but without
solving the linear system for each new value λ, is to upon failure
divide the update step by λ, resulting in a step that tends towards

dx = − 1

λ
(Jf (x)>Jf (x))−1Jf (x)>f(x), (14)

which is minus the gradient times a small positive definite matrix.
With this strategy, only the cost function needs to be reevaluated
when λ is increased upon failure to improve, which can be an
advantage if the cost function is cheap to evaluate, but the linear
system expensive to solve. In our implementation, we use the
Levenberg-Marquardt variant.

The core feature of a bundle adjuster (compared to standard nu-
merical optimization) is to take advantage of the so-called pri-
mary structure (sparsity), which arises because the parameters
for scene features (in our case 3D points) and sensors combine to
predict the measurements, while the scene feature parameters do
not combine directly and the sensor parameters do not combine
directly. More precisely, the error vector f consists of some re-
projection error (some difference measure between the predicted
and the measured reprojections), which can be made robust by
applying a nonlinear mapping that decreases large errors, and the
Jacobian Jf has the structure

Jf =
[

JP JC

]
, (15)

where JP is the Jacobian of the error vector f with respect to the
3D point parameters and JC is the Jacobian of the error vector f
with respect to the camera parameters. This results in the Hessian
approximation

H =

[
J>P JP J>P JC

J>C JP J>C JC

]
, (16)

which in the linear system may possibly have an augmented di-
agonal. The whole linear equation system becomes

[
HPP HPC

H>
PC HCC

][
dP
dC

]
=

[
bP

bC

]
, (17)

where we have defined HPP = J>P JP , HPC = J>P JC , HCC =
J>C JC , bP = −J>P f ,bC = −J>C f to simpify the notation, and
dP and dC represent the update of the point parameters and the
camera parameters, respectively. Note that the matrices HPP

and HCC are block-diagonal, where the blocks correspond to
points and cameras, respectively. In order to take advantage of
this block-structure, a block-wise Gaussian elimination is now
applied to (17). First we multiply by

[
H−1

PP 0
0 I

]
(18)

from the left on both sides in order to get the upper left block to
identity, resulting in

[
I H−1

PP HPC

H>
PC HCC

][
dP
dC

]
=

[
H−1

PP bP

bC

]
, (19)

Then we subtract H>
PC times the first row from the second row in

order to eliminate the lower left block. This can also be thought
of as multiplying by

[
I 0

−H>
PC I

]
(20)

from the left on both sides, resulting in the smaller equation sys-
tem (from the lower part)

(HCC −H>
PCH−1

PP HPC)︸ ︷︷ ︸
A

dC = bC −H>
PCH−1

PP bP︸ ︷︷ ︸
B

(21)

for the camera parameter update dC. For very large systems,
the left hand side is still a sparse system due to the fact that not
all scene features appear in all sensors. In contrast to the pri-
mary structure, this secondary structure depends on the observed
tracks, and is hence hard to predict. This makes the sparsity less
straightforward to take advantage of. Typical options are to use
profile Cholesky factorization with some appropriate on-the-fly
variable ordering, or preconditioned conjugate gradient to solve
the system. We use straightforward Cholesky factorization. As
we shall see, for the size of system resulting from a few tens
of cameras, the time required to form the left hand side matrix
largely dominates the time necessary to solve the system with
straightforward Cholesky factorization. This occurs because the
time taken to form the matrix is on the order of O(NP l2), where
NP is the number of tracks and l is a representative track length.
Since NP is typically rather large, and l on the order of the num-
ber of cameras NC for smaller systems, this dominates the order
of O(N3

C) time taken to solve the linear system, until NC starts
approaching NP or largely dominating l.

Once dC has been found, the point parameter updates can be
found from the upper part of (19) as

dP = H−1
PP bP −H−1

PP HPCdC. (22)

Since an efficient implementation of the actual computation pro-
cess corresponding to this description is somewhat involved, we
find it helpful to summarize the bundle adjustment process in
pseudo-code in Table 1.

The main computation steps that may present bottlenecks are

• The computation of the cost function (which grows linearly
in the number of reprojections).

• The computation of derivatives and accumulation over tracks
(linear in the number of reprojections).

• The outer product over tracks (which grows with the square
of the track lengths times the number of tracks, or thought
of another way, approximately the number of reprojections
times a representative track length).

• Solving the linear system (which grows with the cube of the
number of cameras, unless secondary structure is exploited).

• The back-substitution (linear in the number of reprojections).

Accordingly, these are the computation steps for which we mea-
sure timing in the experiments, as well as a total computation
time.

We use a calibrated camera model in the experiments, so that the
only camera parameters solved for are related to the rotation and
translation of the camera. The parameterization used in bundle
adjustment is straightforward, with three parameters for transla-
tion of each camera, and the sines of three Euler angles parame-
terizing an incremental rotation from the current position (notice



1 Initialize λ.
2 Compute cost function at initial camera and point configura-

tion.
3 Clear the left hand side matrix A and right hand side vector B.
4 For each track p
{

Clear a variable Hpp to represent block p of HPP (in our
case a symmetric 3×3 matrix) and a variable bp to represent
part p of bP (in our case a 3-vector).
(Compute derivatives) For each camera c on track p

{
Compute error vector f of reprojection in camera c of
point p and its Jacobians Jp and Jc with respect to the
point parameters (in our case a 2×3 matrix) and the cam-
era parameters (in our case a 2× 6 matrix), respectively.
Add J>p Jp to the upper triangular part of Hpp.
Subtract J>p f from bp.
If camera c is free
{

Add J>c Jc (optionally with an augmented diagonal) to
upper triangular part of block (c, c) of left hand side
matrix A (in our case a 6× 6 matrix).
Compute block (p, c) of HPC as Hpc = J>p Jc (in our
case a 3× 6 matrix) and store it until track is done.
Subtract J>c f from part c of right hand side vector B
(related to bC ).}}

Augment diagonal of Hpp, which is now accumulated and
ready. Invert Hpp, taking advantage of the fact that it is a
symmetric matrix.
Compute H−1

pp bp and store it in a variable tp.
(Outer product of track) For each free camera c on track p

{
Subtract H>

pctp = H>
pcH

−1
pp bp from part c of right hand

side vector B.
Compute the matrix H>

pcH
−1
pp and store it in a variable Tpc

For each free camera c2 ≥ c on track p
{

Subtract TpcHpc2 = H>
pcH

−1
pp Hpc2 from block (c, c2)

of left hand side matrix A.}}}
5 (Optional) Fix gauge by freezing appropriate coordinates and

thereby reducing the linear system with a few dimensions.
6 (Linear Solving) Cholesky factor the left hand side matrix B

and solve for dC. Add frozen coordinates back in.
7 (Back-substitution) For each track p
{

Start with point update for this track dp = tp.
For each camera c on track p

{
Subtract T>pcdc from dp (where dc is the update for camera
c).}

Compute updated point.}
8 Compute the cost function for the updated camera and point

configuration.
9 If cost function has improved, accept the update step, decrease

λ and go to Step 3 (unless converged, in which case quit).
10 Otherwise, increase λ and go to Step 3 (unless exceeded the

maximum number of iterations, in which case quit).

Table 1: Pseudo-code showing our implementation.

that the latter has no problems with singularities since the param-
eterization is updated after each parameter update step, and the
rotation updates should never be anywhere close to 90 degrees.
For the 3D points, we use the four parameters of a homogeneous
coordinate representation, but we always freeze the coordinate
with the largest magnitude, the choice of which coordinate to
freeze being updated after each parameter update step.

To robustify the reprojection error, we assume that the reprojec-
tion errors have a Cauchy-distribution (which is a heavy-tailed
distribution), meaning that an image distance of e between the
measured and reprojected distance should contribute

ln(1 +
e2

σ2
), (23)

where σ is a standard deviation, to the cost function (negative
log-likelihood). To accomplish this, while still exposing both the
horizontal and vertical component of error in the error vector f ,
the robustifier takes the input error (x, y) in horizontal and ver-
tical direction and outputs the robustified error vector (xr, yr)
where

xr =

√
ln(1 +

x2 + y2

σ2
)

x√
x2 + y2

(24)

yr =

√
ln(1 +

x2 + y2

σ2
)

y√
x2 + y2

. (25)

The key property of this vector is that the square sum of its com-
ponent is (23), while balancing the components exactly as the
original reprojection error.

3 EXPERIMENTS

We investigate the failure rate of camera tracking with n iter-
ations of bundle adjustment over the last m video frames each
time a frame is added, for various values of n and m. The frames
beyond the m most recent frames are locked down and not moved
in the bundle adjustment. However, the information regarding the
uncertainty in reconstructed feature points provided by views that
are locked down is still used. That is, reprojection errors are ac-
cumulated for the entire feature track lengths backwards in time,
regardless of whether the views where the reprojections reside are
locked down.

In the beginning of tracking, when the number of frames yet in-
cluded is less than m + 2 so that at most one pose is locked, the
gauge is fixed by fixing the first camera pose and the distance be-
tween the first and the most current camera position. Otherwise,
the gauge fixing is accomplished by the locked views.

It is interesting to note that when we set m = n = 1, we get
an algorithm that rather closely resembles a simple Kalman filter.
We then essentially gather the covariance information induced on
the 3D points by all previous views and then update the current
pose based on that (using a single iteration), which should be
at least as good as a Kalman filter that has a state consisting of
independent 3D points, with the potential improvement that the
most recent estimates of the 3D point positions are used when
computing reprojection errors and their derivatives in previous
views.

Note that bundle adjustment as well as Kalman filtering for the
application of camera tracking can be used both with or without
a camera motion model. We have chosen to concentrate on ex-
periments for the particular case of no camera motion model, i.e.
no smoothness on the camera trajectory is imposed, and the only



1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Nr Free Cameras

T
im

e 
(m

s)

 

 

Compute cost function

Compute derivatives

Outer product of track

Linear Solving

Back−substitution

Figure 2: Time per iteration versus the number of free views.
Time is dominated by derivative computations and outer prod-
ucts, while linear solving takes negligible time.

1 10 100 250
10

−4

10
−2

10
0

10
2

10
4

Nr Free Cameras

T
im

e 
(m

s)

 

 

Compute cost function

Compute derivatives

Outer product of track

Linear Solving

Back−substitution

Total

Real−time limit

Figure 3: Time per iteration versus the number of free views for
larger numbers of free views. Note that the cubic dependence of
the computation time in the linear solving on the number of free
views eventually makes the linear solving dominate the compu-
tation time. The real-time limit is computed as 1s/(30 ∗ 3)

constraints on the camera trajectory are the reprojection errors
of the reconstruction of tracked feature points. The no motion
model case is the most flexible, but also the hardest setting in
which to perform estimation. It therefore most clearly elucidates
the issue. While a motion model certainly simplifies the estima-
tion task when the motion model holds, it unfortunately makes
the ’hard cases even harder’, in that when the camera performs
unexpected turns or jerky motion, the motion model induces a
bias towards status quo motion.

We measure the failure rate by defining a frame-to-frame failure
criterion and running long sequences, restarting the estimation
from scratch at the current position every time the failure crite-
rion declares that a failure has occurred. Note that this failure cri-
terion is not part of an algorithm, but only a means of measuring
the failure rate. For our real-data experiments, we perform simple
types of known motion, such as forward, diagonal, sideways or
turntable motion, and require that the translation direction and ro-
tation do not deviate more than some upper limit from the known
values.

The initialization that occurs in the beginning and after each fail-
ure is accomplished using the first three frames and a RANSAC
(Fischler and Bolles, 1981) process using the five-point relative

0
2

4
6

8
10

0

5

10
0

0.02

0.04

0.06

0.08

0.1

iterationsfree cams

tim
e 

(s
)

Figure 4: Computation time versus number of free views and
number of iterations.

0246810

0

5

10

0.05

0.1

0.15

0.2

0.25

iterationsfree cams

er
ro

r 
ra

te

Figure 5: Failure rate as a function of the number of free cameras
and the number of iterations.

orientation method in the same manner as described in (Nistér,
2004). In each RANSAC hypothesis, the five-point method pro-
vides hypotheses for the first and third view. The five points are
triangulated and the second view is computed by a three-point re-
section (R. Haralick, 1994). The whole three-view initialization
is then thoroughly bundle adjusted to provide the best possible
initialization.

4 METHOD

For each new single view that is added, the camera position is
initialized with a RANSAC process where hypotheses are gen-
erated with three-point resections. The points visible in the new
view are then re-triangulated using the reprojection in the new
view and the first frame where the track was visible. The bun-
dle adjustment with n iterations of the m most recent views is
then performed. In both the RANSAC processes and the bundle
adjustment the cost function is a robustified reprojection error.
Thus, we do not attempt to throw out outlying tracks before the
bundle adjustment, but use all tracks and instead employ a robust
cost function.

5 RESULTS AND DISCUSSION

Representative computation time measurements are shown in Fig-
ures 2, 3 and 4. In Figure 2, the distribution of time over cost
function computation, derivatives, outer product, linear solving
and back-substitution is shown as a bar-plot for a small number
of free views.



free cameras

nr
 it

er
at

io
ns

 

 

0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

9
Levelcurves for Error−Rate
Levelcurves for Time
Best Choice

Figure 6: Level curves for time and error rate

0 0.1
0

0.2

0.4

Available Time (s)B
es

t P
os

si
bl

e 
E

rr
or

 R
at

e

0 0.1
0

0.5

1

Available time (s)

B
es

t n
r 

fr
ee

 c
am

er
as

0 0.1
0

1

2

Available time (s)

B
es

t n
r 

ite
ra

tio
ns

Figure 7: The first plot shows best possible quality for a given
computation time. The second and third plots show the m and n
values to achieve these results.

The time is per new view and iteration and was measured on the
sequence shown in Figure 1, which has 640× 480 resolution and
1000 frames in total. The computations were performed on an
Alienware with Intel Pentium Xeon processor 3.4GHz, 2.37GB.
The average number of tracks present in a frame is 260, and the
average track length is 20.5. Note that the computation time is
dominated by derivative computation and outer products. Note
also that real-time rate can easily be maintained for ten free views.
Figure 3 shows how the computation times grow with an increas-
ing number of views. Note that the linear solving, due to the cubic
dependence on the number of views eventually becomes the dom-
inant computational burden and that real-time performance is lost
somewhere between 50 and 100 free views. Note however that
the other computation tasks scale approximately linearly (since
the track lengths are limited). When the track length for each fea-
ture is constant, increasing the number of feature points results in
a linear increase in computation time for all steps in the bundle
adjustment except for the linear solver, which is independent of
this number.

Some investigations of the failure rate as well as computation
time for various amounts of bundle adjustment are shown in Fig-
ures 5, 6 and 7. Note that already one iteration on just the most
recent view results in a significant decrease of the failure rate, but
to get the full benefit of bundle adjustment and ’reach the valley
floor’, suppressing failures as much as possible, three iterations
on three views or perhaps even four iterations on four views is de-
sirable. Note that this does not necessarily mean that additional
accuracy can not be gained with more iterations over more views,
only that the gross failures have largely been stemmed after that.
Also, with bundle adjustment very low failure rates can often be
achieved. For example the sequence in Figure 1 can be tracked
completely without failures for 1000 frames and over seven laps.
Decreases in failure rate at such low failure rates require large
amounts of data and computation to measure, but are clearly still
very valuable.

In Figure 6 the level curves over the (n, m) space are shown for
computation time and failure rate. The ’best path’ in the (n, m)
space is also shown there and in Figure 7, meaning that for a
given amount of computation allowed, the n and m resulting in
the lowest failure rate is chosen.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have investigated experimentally the fact that
bundle adjustment does not only increase the accuracy of the
camera trajectory, but also prevents error-buildup in a way that
decreases the frequency of total failure of the camera tracking.
We have also shown that with the current computing power in
standard computing platforms, efficient implementations of bun-
dle adjustment now provide a very viable option even for real-
time applications.

We have found that bundle adjustment can be performed for a few
tens of the most recent views every time a new frame is added,
while still maintaining video rate. At such numbers of free views,
the most significant components of the computation time are re-
lated to the computation of derivatives of the cost function with
respect to camera and 3D point parameters, plus the outer prod-
ucts that the feature tracks contribute to the Schur complement
arising when eliminating to obtain a linear system for the camera
parameter updates. The actual linear solving of the linear sys-
tem takes negligible time in comparison for a small number of
views, but the linear solver, which has a cubic cost in the number
of views, eventually becomes the dominating computation when
a number of views approaching a hundred are bundle adjusted
every time a new frame arrives. This can probably be improved
upon by exploiting the secondary structure that still remains in
the linear system, which is something we hope to do in future
work.

Our results are, as expected, a strong proof that proper bundle ad-
justment is more efficient that any ad-hoc structure from motion
refinement, and the results are well worth the trouble of proper
implementation.

REFERENCES

Davison, A. and Murray, D. W., 2002. Simultaneous Localization and
Map-Building Using Active Vision. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence 24(7), pp. 865–880.

Fischler, M. A. and Bolles, R. C., 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis and auto-
mated cartography. Communications-of-the-ACM 24(6), pp. 381–95.

Fitzgibbon, A. W. and Zisserman, A., 1998. Automatic camera recovery
for closed or open image sequences. In: ECCV (1), pp. 311–326.

Nistér, D., 2001. Automatic Dense Reconstruction from Uncalibrated
Video Sequences. PhD thesis, Royal Institute of Technology, Stockholm,
Sweden.

Nistér, D., 2004. An efficient solution to the five-point relative pose prob-
lem. PAMI 26(6), pp. 756–777.

Nistér, D., Naroditsky, O. and Bergen, J., 2006. Visual odometry for
ground vehicle applications. Journal of Field Robotics 23(1), pp. 3–20.

Pollefeys, M., 1999. Self-Calibration and Metric 3D Reconstruction
From Uncalibrated Image Sequences. PhD thesis, K.U.Leuven, Belgium.

R. Haralick, C. L. K. Ottenberg, M. N., 1994. Review and analysis of
solutions of the three point perspective pose estimation problem. IJCV
13, pp. 331–356.

Triggs, W., McLauchlan, P., Hartley, R. and Fitzgibbon, A., 2000. Bun-
dle adjustment: A modern synthesis. In: W. Triggs, A. Zisserman
and R. Szeliski (eds), Vision Algorithms: Theory and Practice, LNCS,
Springer Verlag.


