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ABSTRACT: 
 
In this paper, we describe an extension of an automatic road extraction procedure developed for single SAR images towards multi-
aspect SAR images. Extracted information from multi-aspect SAR images is not only redundant and complementary, in some cases 
even contradictory. Hence, multi-aspect SAR images require a careful selection within the fusion step. In this work, a fusion step 
based on probability theory is proposed. Before fusion, the uncertainty of each extracted line segment is assessed by means of 
Bayesian probability theory. The assessment is performed on attribute-level and is based on predefined probability density functions 
learned from training data. The prior probability varies with global context. In the first part the fusion concept is introduced in a 
theoretical way. The importance of local context information and the benefit of incorporating sensor geometry are discussed. The 
second part concentrates on the analysis of the uncertainty assessment of the line segments. Finally, some intermediate results 
regarding the uncertainty assessment of the line segments using real SAR images are presented.  
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1. INTRODUCTION 

Synthetic aperture radar (SAR) holds some advantages against 
optical image acquisition. SAR is an active system, which can 
operate during day and night. It is also nearly weather-
independent and, moreover, during bad weather conditions, 
SAR is the only operational system available today. Road 
extraction from SAR images therefore offers a suitable 
complement or alternative to road extraction from optical 
images [Bacher & Mayer, 2005]. The recent development of 
new high resolution SAR systems offers new potential for 
automatic road extraction. Satellite SAR images up to 1 m 
resolution will soon be available by the launch of the German 
satellite TerraSAR-X [Roth, 2003]. Airborne images already 
provide resolution up to 1 decimetre [Ender & Brenner, 2003]. 
However, the improved resolution does not automatically make 
automatic road extraction easier, yet it faces new challenges. 
Especially in urban areas, the complexity arises through 
dominant scattering caused by building structures, traffic signs 
and metallic objects in cities. These bright features hinder 
important road information. In order to fully exploit the 
information of the SAR scene, bright features and their 
contextual relationships can be incorporated into the road 
extraction procedure. Detected vehicles and rows of building 
layover as well as metallic scattering caused by road signs are 
indicators of roads [Wessel & Hinz, 2004], [Amberg, et al. 
2005].  
 
The inevitable consequences of the side-looking geometry of 
SAR, occlusions caused by shadow- and layover effects, is 
present in forestry areas as well as in built-up areas. In urban 
areas, the best results for the visibility of roads are obtained, 

when the illumination direction coincide with the main road 
orientations [Stilla et al., 2004]. Preliminary work has shown 
that the usage of SAR images illuminated from different 
directions (i.e. multi-aspect images) improves the road 
extraction results. This has been tested both for real and 
simulated SAR scenes [Tupin et al. 2002], [Dell’Acqua et al., 
2003]. Multi-aspect SAR images contain different information, 
which is both redundant and complementary.  A correct fusion 
step has the ability to combine information from different 
sensors, which in the end is more accurate and better than the 
information acquired from one sensor alone.  
 
In this article we present a fusion concept based on a Bayesian 
statistical approach, which incorporates both global context and 
sensor geometry. A short overview of the road extraction 
procedure will be given in Sect. 2. The main focus of this paper 
is the proposed fusion module, which is explained in Sect. 3. 
Some intermediate results of an uncertainty assessment of line 
segments based on a training step and global context are 
discussed in Sect 4.  
 

2. ROAD EXTRACTION SYSTEM 

The extraction of roads from SAR images is based on an 
already existing road extraction approach [Wessel & 
Wiedemann, 2003], which was originally designed for optical 
images with a ground pixel size of about 2m [Wiedemann & 
Hinz, 1999]. The first step consists of line extraction using 
Steger’s differential geometry approach [Steger, 1998], which is 
followed by a smoothening and splitting step. By applying 
explicit knowledge about roads, the line segments are evaluated 
according to their attributes such as width, length, curvature, 
etc. The evaluation is performed within the fuzzy theory. A 



 

 

weighted graph of the evaluated road segments is constructed. 
For the extraction of the roads from the graph, supplementary 
road segments are introduced and seed points are defined. Best-
valued road segments serve as seed points, which are connected 
by an optimal path search through the graph. The approach is 
illustrated in Fig. 1.  
 

Line 
Extraction

Attribute
Extraction

Line 
Evaluation

Fusion

Optimum Path
Calculation in

Weighted
Graph

 
 

Figure 1. Automatic road extraction process 
 
The novelty presented in this paper refers on one hand to the 
adoption of the fusion module to multi-aspect SAR images and 
on the other hand to a probabilistic formulation of the fusion 
problem instead of using fuzzy-functions (marked in gray in 
Fig. 1).  
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Figure 2.  Fusion module and its input data 
 

3. PROBABILISTIC FUSION CONCEPT 

Line extraction from SAR images often delivers partly 
fragmented and erroneous results. Especially in forestry and in 
urban areas over-segmentation occurs frequently. Attributes 
describing geometrical and radiometric properties of the line 
segments can be helpful in the selection and especially for 
sorting out the most probable false alarms. However, these 
attributes may be ambiguous and are not considered to be 
reliable enough when used alone. Furthermore occlusions due 
to surrounding objects may cause gaps, which are hard to 
compensate. One step to a solution is the use of multi-aspect 
SAR images. If line extraction fails to detect a road in one SAR 
view, it might succeed in another view illuminated from a more 
favourable direction. Therefore multi-aspect images supply the 
interpreter with both complementary and redundant 
information. But due to the over-segmented line extraction, the 
information is often contradicting as well. To be able to solve 
possible conflicts, the uncertainty of the incoming information 
must be considered.  
Many methods, both numerical and symbolic, can be applied 
for the fusion process. Some frameworks worth to mention, are 
evidence theory, fuzzy-set theory, and the probability theory. 
The last one is, regarding its theoretical foundations, the best 
understood framework to deal with uncertainties. In this chapter 

we will discuss a fusion process accommodating for these 
aspects.  
 
3.1 Features, Attributes and Evaluation 

Man-made objects in general tend to have regular geometrical 
shapes with distinct boundaries. The main feature involved in 
the road extraction process is the line segment, which can either 
belong to the class ROADS or to the class FALSE_ALARMS. The 
selection of attributes of the line segments is based on the 
knowledge about roads. Roads in SAR images appear as dark 
lines since the smooth surface of a road acts like a mirror. 
Therefore radiometric attributes such as mean and constant 
intensity, and contrast of a line as well as geometrical attributes 
like length and straightness should be representative attributes 
for roads.  
 

Other features of interest are linked to global and local context. 
Bright linear features (BRIGHT_LINES) represent the local 
context in this work. The global region features applied in this 
work are URBAN, FOREST, FIELDS and OTHER_AREAS. These 
regions are of interest, since road attributes may have varying 
importance depending on the global context region. For 
example, length becomes more significant for roads in rural 
areas, but may be of less importance in urban areas.   
 

By means of an attribute vector x, the probability that a line 
segment belongs to the class ωi (i.e. ROADS or 
FALSE_ALARMS) is estimated by the well-known Bayesian 
formula, 
 

( ) ( ) ( )

( ) ( )∑
=

= M

j
jj

ii
i

pp

pp
p

1

ωω

ωω
ω

x

x
x . (1) 

 
If there is no correlation between the attributes, the likelihood 
p(x|ωi) can be assumed equal to the product of the separate 
likelihoods for each attribute 
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It is important to show that this simplification is valid for the 
data used. Furthermore, it should be noted that this is not a 
definite classification; instead each line segment obtains an 
assessment, which is necessary for the subsequent fusion of 
multi-aspect SAR images. 
 
3.2 Definition and Validation of Probability Density 
Functions 

Each separate likelihood p(xj|ωi) is approximated by a 
probability density function learned from training data. 
Learning from training data means that the extracted line 
segments are sorted manually into two groups, ROADS and 
FALSE_ALARMS. The global context (URBAN, FOREST, 
FIELDS and OTHER_AREAS) is specified for each line segment 
as well. A global context term will be helpful by the latter 
estimation of the prior term p(ωi). The training data used is X-
band, multi-looked, ground range SAR data with a resolution of 
about 0.75 m. The small test area is located near the airport of 
DLR in Oberpfaffenhofen, southern Germany.  

 



 

 

The independence condition has been empirically proved by a 
correlation test using the training data. Only two attributes, 
mean intensity and constant intensity, showed any correlation, 
which in fact can be expected due to the speckle characteristics 
of SAR data. As a conclusion, the factorized likelihoods can not 
be applied for these two attributes. The rest of the attributes did 
not indicate any dependence. Figure 3 exemplifies this for the 
two attributes length and intensity. 
 
A careful visual inspection indicated that the histograms might 
follow a lognormal distribution, i.e.  
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A reasonable way to test the match of histograms and 
parameterized distributions is to apply the Lilliefors test 
[Conover, 1999]. This test evaluates the hypothesis that x has a 
normal distribution with unspecified mean and variance against 
the alternative hypothesis that x does not have a normal 
distribution. However, the Lilliefors test tends to deliver 
negative results, when applied to histograms of manually 
selected training data, since the number of samples is naturally 
limited. To accommodate for this fact, the probability density 
functions have been fitted to the histograms by a least square 
adjustment of S and M since it allows to introducing a-priori 
variances. Figs. 4 and 5 show the histogram of the attribute 
length and its fitted lognormal distributed curve. A fitting 
carried out in a histogram with one dimension is relatively 
uncomplicated, but as soon as the dimensions increase, the task 
of fitting becomes more complicated. Since mean intensity and 
constant intensity tend to be correlated, fitting of a bivariate 
lognormal distribution shall be carried out. This is under 
development and until than, only the one-dimensional fitting of 
mean intensity is applied.  
 
Please note that the estimated probability density functions 
should represent a degree of belief rather than a frequency of 
the behaviour of the training data. The obtained probability 
assessment shall correspond to our knowledge about roads. At a 
first glance, the histograms in Figs. 4 and 5 seem to overlap. 

However, Fig. 6 exemplifies for the attribute length that the 
discriminant function 
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increases as the length of the line segment increases. The 
behaviour of the discriminant function corresponds to the belief 
of a human interpreter. The behaviour of the discriminant 
function was tested for all attributes. All are illustrated in Fig 
6a-d.  
 

 
 

Figure 3. Scatter plot of attributes intensity and length 
 
It should be kept in mind that statistical attributes addressing 
deviation and mean are not reliable for short line segments of 
only a few pixels length. Since these line segments are 
considered unreliable with respect to their short length, they can 
simply be sorted out. It should also be pointed out that more 
attributes does not necessarily mean better results, instead 
rather the opposite occur. A selection including a few, but 
significant attributes is recommended.  
 

  

 
 
Figure 4. A lognormal distribution is fitted to a histogram of the 

attribute length (ROADS). 
 

 
 

Figure 5. A lognormal distribution is fitted to a histogram of the 
attribute length (FALSE_ALARMS).  
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Figure 6 a-d. Discriminant function for the attributes a) Length, b) Straightness, c) Inner intensity and d) Contrast. 
 
  

3.3 Global and Local Context 

Since even a very sophisticated feature extractor delivers 
generally results with ambiguous semantics, additional 
information of global and local context is helpful to support or 
reject certain hypotheses during fusion. Assume, for instance 
that two SAR images with perpendicular view direction contain 
a road flanked by high buildings. The road is oriented across-
track in one scene and along-track in the other scene. While in 
the first image, the true road surface is visible, in the second 
image, merely the elongated shadow of the fore-buildings and 
the bright, elongated layover area of the buildings across the 
road are detectable. The parallel appearance of bi-polar linear 
features (dark/light) would stand for local context, while the 
whole urban area would represent the global context region. 
Hence, a correct fusion of both views must involve a reasoning 
step, which is based on the sensor geometry and its influence on 
the relations between the extracted features. Relations between 
features, which appear due to local context, usually need to be 
detected during the extraction process. Consequently also the 
features involved in local context relations should be attached 
with confidence values. 

Global context regions are derived from maps or GIS before 
road extraction, or can be segmented automatically by a texture 
analysis. As a start, global context (URBAN, FOREST, FIELDS 
and OTHER_AREAS) is extracted manually (see Fig. 7b). Global 
context plays an important role for the reasoning step within the 
fusion module as well as for the definition of the priori term. 
The frequency of roads is proportionately low in some context 
areas, for instance in forestry regions. The a-priori probability 
must be different in these areas. In this work the user specifies 
the priors (see Tab. 1). Therefore the priors represent the belief 
of the user to a certain degree. In future work, these values will 
be compared with values learned from training data.  

 

Global context p(ROADS) p(FALSE_ALARMS) 
FIELDS 0.4 0.6 

URBAN AREAS 0.5 0.5 
FOREST 0.1 0.9 

OTHER AREAS 0.3 0.7 
 

Table 1. Prior terms for different global context areas 
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Figure 7. a) SAR image analysed in this work b) Manual extraction of global context from previous SAR scene c) Results of 
discriminant function neglecting global context d) Results of discriminant function incorporating global context  

 
 

4. RESULTS AND DISCUSSION 

A cross-validation was carried out in order to examine if the 
assessment of a sample of the training data (1220 line 
segments) delivers a correct result. 83.5% of the line segments 
belonging to the class ROADS were correctly classified and 
76.0% of the FALSE_ALARMS were correctly classified. An 
assessment ignoring global context did not change the number 
of correctly classified road segments, but deteriorated the 
classification of FALSE_ALARMS. As much as 54.3% of the 
FALSE_ALARMS are falsely classified as road segments. The 
prior terms of each classes were assumed to be p(ROADS)=0.3 
and p(FALSE_ALARMS)=0.7. 
 
The assessment was also tested on a line extraction carried out 
in a scene taken by the same sensor as the training data but now 

performed with different parameter settings. In order to test the 
derived likelihood functions in terms of sensitivity and ability 
to discern roads from false alarms, we allowed a significant 
over-segmentation. Results of this test are illustrated in Fig. 7c). 
The derived discriminant value g(x) of each line segment is 
coded in gray, i.e. the darker the line the better the evaluation. 
Two assessments are carried out, one incorporating global 
context and one containing the same priori terms for all context 
areas.  
  
A fact that comes clear from the comparison of Figs..7c) and d) 
is the importance of using global context for the evaluation, in 
particular for determining the Bayesian priors. Incorporating 
global context reduces the number of false alarms in forest 
regions (marked black in Fig. 7b). Still many line segments are 
falsely classified in urban regions, which indicates the need of 



 

 

additional local context information and a different assessment 
in these regions. The attribute length, for instance, should have 
less influence on the final evaluation since short line segments 
may also correspond to roads.  
 
As can also be seen from Fig. 7, most line segments that 
correspond to roads still got a good evaluation. On the other 
hand, many of the false alarms in the urban and forest area are 
rated worse, even though also some correct segments got a bad 
rating. However, keeping in mind that this evaluation is only an 
intermediate step before fusion and network-based grouping 
(see flow charts in Figs. 1 and 2) the learned likelihood 
functions seem indeed being robust enough to be applied to 
different parameter settings as well as different images – of 
course under the condition that the image characteristics do not 
differ too heavily.  
 
The results achieved so far are promising in terms that the 
evaluation of the lines is on one hand statistically sound and, on 
the other hand, it closely matches the assumptions on the 
significance of different attributes with respect to their 
distinctiveness. However, the fusion of evaluated lines from 
different views and thereby taking into account local context 
needs still to be done and analysed in depth.  
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