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KEY WORDS: Markov Chain, constraint equations, façade modelling, building extraction, least squares adjustment.

ABSTRACT:

Today’s processes to extract man-made objects from measurement data are quite traditional. Often, they are still point based, with the
exception of a few systems which allow to automatically fit simple primitives to measurement data. At the same time, demands on the
data are steadily growing. The need to be able to automatically transform object representations, for example, in order to generalize their
geometry, enforces a structurally rich object description. Likewise, the trend towards more and more detailed representations requires
to exploit structurally repetitive and symmetric patterns present in man-made objects, in order to make extraction cost-effective. In
this paper, we address the extraction of building façades in terms of a structural description. As has been described previously by
other authors, we use a formal grammar to derive a structural façade description in the form of a derivation tree. We introduce two new
concepts. First, we use a process based on reversible jump Markov Chain Monte Carlo (rjMCMC) to guide the application of derivation
steps during the construction of the tree. Second, we attach variables and constraint equations to the symbols of the grammar, so that
the derivation tree automatically leads to a constraint equation system. This equation system can then be used to optimally fit the entire
façade description to given measurement data.

1 INTRODUCTION

The extraction of man-made objects from sensor data has a long
history in research (Baltsavias, 2004). Especially for the mod-
elling of 3D buildings, numerous approaches have been reported,
based on monoscopic, stereoscopic, multi-image, and laser scan
techniques (Brenner, 2005). While most of the effort has gone
into sensor-specific extraction procedures, very little work has
been done on the structural description of objects.

Nowadays, in extraction systems, one can choose between
boundary representation (BRep) and constructive solid geometry
(CSG) modelling. BRep modelling is inspired by traditional pho-
togrammetric point measurement, with subsequent topology def-
inition to obtain lines, surfaces, and volumes. CSG, on the other
hand, models objects by combining predefined volumetric primi-
tives using Boolean operations. Thus, it has the intrinsic potential
to attach meaning to the primitives and to obtain a structural de-
scription in terms of a CSG modelling tree. However, primitives
usually reduce to simple geometric shapes such as planar patches,
cylinders and spheres, and the CSG tree is often derived accord-
ing to the modelling process and the desired 3D shape rather than
with a semantic modelling of the building structure in mind.

Modelling structure though is very important for downstream
usability of the data, especially for the automatic derivation of
coarser levels of detail (LoD) from detailed models (a process
called generalization). Being able to deliver different LoDs tai-
lored to different customers needs, to context-adapted visualiza-
tions, such as on mobile displays, or simply to cut down rendering
time of large models is essential for 3D models to enter the mar-
ket. The Sig3D group has defined five levels of detail for building
models (Kolbe et al., 2005). However, the definition of discrete
LoDs alone does not imply any path to derive one level from the
other in an automated way. Experience from 2D map general-
ization in cartography shows that generalization purely based on
geometric information is indeed a hard problem, which becomes
even worse in 3D.

Representing structure is not only important for the later usability

of the derived data, but also as a means to support the extraction
process itself. A fixed set of structural patterns allows to span
a certain subspace of all possible object patterns, thus forms the
model required to interpret the scene. Patterns can also guide
the measurement process (taking place after the interpretation).
Especially for man-made structures such as building façades, a
large number of regularity conditions hold, which can be intro-
duced into the measurement process as constraints. In interactive
measurement processes, introducing structural descriptions can
cut down acquisition time, since repeated or mirrored parts can
be introduced in one step.

This paper elaborates on the grammar-based extraction of façade
descriptions. The grammar is used in two places. First, it guides
the generation of possible façade layouts using a reversible jump
Markov Chain Monte Carlo (rjMCMC) process to explore solu-
tion space. Second, the obtained derivation tree is used for the
automatic setup of constraint equation systems during the fine
matching of the generated façade layout to measurement data.

2 RELATED WORK

2.1 Extraction of objects using constraints

The extraction of objects from measurement data is different from
computer aided design (CAD) construction. In CAD, the general
problem is to derive an instance (a geometrical instantiation) of
an object, given a sketch (or just an idea), annotated with dimen-
sional information. Algebraically, sketch annotations are con-
straints and the sketch defines a constraint graph, out of which a
constraint equation system

f(x) = 0 (1)

results, where x is the parameter vector describing the (geometry
of the) solution. Finding x, given (1), is termed geometric con-
straint solving. In order to obtain a finite set of solutions, f must
be well constrained or consistently overconstrained. In contrast,



when objects are reconstructed using measurements, the task can
typically be formulated as

‖g(b, x)‖
!
= min, subject to

f(x) = 0, (2)

where g subsumes the (possibly contradictory) constraints im-
posed by some measurement data b, whereas f represents the
“hard” constraints imposed by the model. As opposed to the case
in CAD, f will be normally underconstrained (as else the mea-
surements will have no effect on the solution), whereas g will
be typically overconstrained (since redundant measurement data
is used), which leads to a system which is both locally overcon-
strained and globally well- or underconstrained.

There are no extraction tools which implement (2) rigorously.
For example, modelling of objects from close range scan data
is usually carried out using CAD-based systems which combine
CAD modelling functionality with the ability to fit CAD objects
to point clouds (e.g., (Leica Geosystems, 2006)). In this case, the
first part of (2) is implemented, but not the second one. For a
practical example, assume that four best-fit planar patches have
been extracted from laser scan data. Then, it is not possible to
make them meet in a single point except by manual modifica-
tion (usually, a “snap” operation) of one of the planes – which
destroys the initial best-fit property.

The need to introduce constraints into the reconstruction process
of man-made objects has been recognized early. For example,
Weidner extracts roof faces using a DSM segmentation and pro-
poses to automatically derive mutual relationships between the
extracted faces, such as ‘same slope’, ‘symmetry’, and ‘antisym-
metry’, in order to insert them as constraints into a global robust
adjustment (Weidner, 1997). Although this has been proposed by
several authors, constraint-based extraction does not play a role
nowadays, except for research systems (Ermes, 2000).

The major problems with constraint-based modelling are (i) to
insert the constraints in a meaningful manner, (ii) to manage, in-
trospect, and debug large constraint equation systems, and (iii) to
solve constraint equation systems. As opposed to the classical
geometric constraint solving problem, which attempts to build a
solution “from scratch”, in reconstruction, initial values are usu-
ally available, so that linearization and iterative estimation can
be used for solving the equation system. Thus, the main task
lies in the structured insertion and management of constraints.
To facilitate this in interactive environments, “weak primitives”
have been proposed in (Brenner, 2004). The concept has been
extended later to include hierarchical structures using containers
(Brenner and Sester, 2005).

2.2 Generalization and incremental modelling

Automation of (manual) map generalization procedures has been
a topic in cartography for several decades. There are now first
operational systems available, which usually start from a scene
description in form of 2D primitives like polygons or polylines.
From this, implicit relationships are discovered, such as adja-
cency, parallel and rectangular structures, distances, protrusions,
etc., which are to be modified or preserved during generalization.
The final outcome is again a description of the objects in terms of
their geometry only. Since the discovered structures are not being
made explicit, they cannot be modified, which frequently leads to
the need to check and correct the outcome of the automatic gen-
eralization step manually.

Recently, in cartography methods are being investigated and de-
veloped which aim at the recognition of important structures that

are needed as a basis for generalization, e.g. parallelism, lin-
ear arrangement, clusters (Christophe and Ruas, 2002, Anders
and Sester, 2000). Furthermore, there are approaches which try
to separate generalization processes related to different objects
in different hierarchical levels, e.g. when defining generalization
modules that can be handled independently (Kilpeläinen and Sar-
jakoski, 1995). A first attempt to explicitly model these structures
has been done in the AGENT project, where different hierarchical
levels of objects have been specified that can act independently
with a specific dedicated behavior (Lamy et al., 1999).

In (Brenner and Sester, 2005), the previously mentioned approach
of primitives and containers has been extended to include discrete
behavior. Primitives are defined as the combination of geometric
description (e.g., polygons), sets of constraints (e.g., all line seg-
ments aligned horizontally or vertically), and discrete behavior
(e.g., boundary simplification rules). Containers provide the abil-
ity to spatially layout primitives, with dedicated interface slots
which allow to connect primitives to containers. This leads to a
simple hierarchical description scheme, which is extended in this
paper to a grammar-based description.

2.3 Modelling of architectural patterns

Grammars have been extensively used to model structures. For
modelling plants, Lindenmayer systems were developed by the
biologist Aristid Lindenmayer (Prusinkiewicz and Lindenmayer,
1990). They have also been used for modelling streets and build-
ings (Parish and Müller, 2001, Marvie et al., 2005). However,
Lindenmayer systems are not necessarily appropriate for mod-
elling façades. Façades differ in structure from plants and streets,
since they don’t grow in free space and modelling is more a par-
tition of space than a growth-like process.

For this reason, other types of grammars have been proposed for
architectural objects. Stiny introduced shape grammars which
operate on shapes directly (Stiny and Gips, 1972). The rules re-
place patterns at a point marked by a special symbol. Mitchell de-
scribes how grammars are used in architecture (Mitchell, 1990).
The derivation is usually done manually, which is why the gram-
mars are not readily applicable for automatic modelling tools.

Wonka et al. developed a method for automatic modelling which
allows to reconstruct different kinds of buildings using one rule
set (Wonka et al., 2003). The approach is composed of a split
grammar, a large set of rules which divide the building in parts,
and a control grammar which guides the propagation and distri-
bution of attributes. During construction, a stochastic process
selects among all applicable rules.

Dick et al. introduce a method which generates building models
from measured data, i.e. several images (Dick et al., 2004). This
approach is also based on the rjMCMC method. In a stochastic
process, 3D models with semantic information are built.

3 GRAMMAR-BASED FAÇADE RECONSTRUCTION

In this section, the basic concept of our method is described. As
in the approaches outlined in the previous section, we use a gram-
mar to define façade layout. However, we do not want to gener-
ate artificial façade descriptions, but rather derivation trees which
correspond to measurement data. Two major tasks can be identi-
fied:

1. the recognition of the façade structure, i.e., building of a
structural description in the form of a derivation tree, to-
gether with a first instantiation of all (geometric) parame-
ters, and



2. measurement, i.e., fine-matching the geometry of this initial
structure to the measurement data.

The first task is the interpretation step, for which we describe an
approach that uses rjMCMC to explore different derivation trees.
As for the second task, we propose to attach constraint equation
systems to the derivation rules such that a complete derivation
tree not only defines the structure and initial layout, but also a set
of constraints which allow to precisely match the structure to the
measurement data.

For our experiments, we use terrestrial laser scan data and im-
ages. For the moment, we concentrate on façades, i.e., the mea-
surement data consists of point clouds and orthorectified images
of single façades.

3.1 Façade grammar

The façade model is described in terms of a recursive partition of
space. Each part is represented by one of the symbols listed in
table 1 and 2. There are two kinds of symbols, the first one being
nonterminals (table 1). Geometrically, nonterminals do not repre-
sent façade geometry directly but serve as containers which hold
other objects, represented in the derivation tree by nonterminal or
terminal children. The second group contains the terminal sym-
bols, which represent façade geometry and cannot be subdivided
further (table 2).

ABOVEDOOR IDENTICALFAÇADEARRAY
ABOVEWINDOW PARTFAÇADE
FAÇADE STAIRCASECOLUMN
FAÇADEARRAY SYMMETRICPARTFAÇADE
FAÇADECOLUMN SYMMETRICPARTFAÇADEMIDDLE
FAÇADEELEMENT SYMMETRICPARTFAÇADESIDE
FAÇADEROW SYMMETRICFAÇADE
GABLE SYMMETRICFAÇADEMIDDLE
GROUNDFLOOR SYMMETRICFAÇADESIDE

Table 1: Nonterminal symbols corresponding to containers.

DOOR WALL
DOORARCH WINDOW
STAIRCASEWINDOW WINDOWARCH

Table 2: Terminal symbols corresponding to façade geometry.

The start symbol is the symbol FAÇADE. Starting from it, the
model can be expressed as a derivation tree with FAÇADE as
root. The subdivision is made by rules similar to the ones in-
troduced by (Wonka et al., 2003). Figure 1 shows an example
façade. The FAÇADE can be partitioned into GROUNDFLOOR
and upper parts of the building, modelled as PARTFAÇADE.
PARTFAÇADE shows symmetry and therefore only one side
is modelled as SYMMETRICPARTFAÇADESIDE. In this part
the windows are arranged in a regular grid modelled by an
IDENTICALFAÇADEARRAY. This array can be instantiated with
a single WINDOW which is placed at each grid position. The
GROUNDFLOOR doesn’t show any regularities which is why it
is subdivided into FAÇADEELEMENTs which can contain WIN-
DOWs or DOORs. Each rule has a left side which consists of one
symbol and a right side which may comprise several symbols in
a certain spatial layout. The result of the method is a derivation
tree which describes the model of the façade.

3.2 Exploration of the derivation tree using rjMCMC

We use rjMCMC for the construction of the derivation tree. The
tree is encoded in a vector θ, which holds all parameters which
are present in the derivation tree, e.g. positions and sizes of

Figure 1: Example partition of a façade.

terminal symbols. The task is to find the optimum value for
θ, given measurement data. In terms of a distribution, we are
therefore looking for the maximum (mode) of the distribution
P (θ|DSDI), i.e., the conditional distribution of θ, given scan
data DS and image data DI . Finding this maximum by an ex-
haustive search is not feasible, due to the dimension of θ. There-
fore, we use a stochastic method to instantiate the value of θ
randomly. The overall approach is thus of the type hypothesize-
and-test, where the hypotheses are generated randomly and tested
afterwards, using measurement (scan and image) data. In or-
der to be feasible, the samples θ are drawn from the distribution
P (θ|DSDI), so that more samples are in the vicinity of high
distribution values (i.e., close to probable façade layouts). The
problem with this is that first, P (θ|DSDI) usually has a highly
complex shape, far from a standard distribution, so drawing sam-
ples is nontrivial. Second, P (θ|DSDI) is not analytically avail-
able. The first problem is solved using Markov Chain Monte
Carlo (MCMC, see e.g. (Gilks et al., 1996)). Basically, using
the algorithm of Metropolis-Hastings, a Markov chain is obtained
which converges to the desired distribution. Thus, after an initial
phase, the algorithm delivers samples drawn from the distribu-
tion P (θ|DSDI). As for the second problem, using Bayes’ law,
P (θ|DSDI) ∝ P (θ)P (DSDI |θ). The first term (prior) is eval-
uated using plausibility functions, which are set up manually. For
example, one part of P (θ) describes assumptions about window
sizes (by assuming a distribution). The second term (likelihood
function) is evaluated by a score function based on the model
(defined by θ) and scan and image data. The realization of both
terms is described in more detail below. Thus, to summarize, the
method explores the solution space by drawing samples from a
(posterior) distribution, without the need to know this distribu-
tion analytically. Since the derivation tree changes during the
process, the dimension of θ changes as well, and MCMC is not
directly applicable. To resolve this, rjMCMC is used, which al-
lows jumps between spaces of different dimension (Green, 1995).
Our approach is described in more detail in (Ripperda and Bren-
ner, 2006).

During the exploration of the derivation tree, any state change can
be assigned to one of the following categories:

• Application of a split rule from the grammar. Façade ele-
ments are divided horizontally, vertically or in both direc-
tions and each part becomes a new symbol (see Fig. 2). In



fact, one grammar rule comprises a set of changes to the pa-
rameter vector θ, since the associated attributes have to be
chosen, such as the number and size of children. Figure 3
shows an example where one rule splits the symbol FAÇADE
into FAÇADECOLUMNs. The number of columns and their
width is determined randomly. If a FAÇADE can be divided
into several FAÇADECOLUMNs the general rule stands for
all rules of this kind with different number of columns and
different positions.

SymmetricFaçade Symmetric
FaçadeSide

Symmetric
FaçadeSide

Symmetric
FaçadeMiddle

Façade
FaçadeRow
FaçadeRow
FaçadeRow

SymmetricFaçade Symmetric
FaçadeSide

Symmetric
FaçadeSide

Symmetric
FaçadeMiddle

Façade
FaçadeRow
FaçadeRow
FaçadeRow

FaçadeRow
FaçadeRow
FaçadeRow

Figure 2: Split rules.

Façade

FC  FC FC   FC   FC FC  FC      FC

Façade

FC  FC FC   FC   FC FC  FC      FC

Figure 3: Different applications of a split rule.

• Changes in structure. Even after derivation of new con-
tainers according to the previous step, a second set of
state changes allows to modify parameters, e.g. the num-
ber of columns or the position of the parting lines between
columns (see Fig. 4). The same can be done starting from a
child symbol. In this case, the neighbor symbols which are
involved in the change have to be changed as well.

Symmetric
FaçadeSide

Symmetric
FaçadeSide

Symmetric
FaçadeMiddle

Symmetric
FaçadeSide

Symmetric
FaçadeSide

Symmetric
FaçadeMiddle

FaçadeRow
FaçadeRow
FaçadeRow

FaçadeRow
FaçadeRow
FaçadeRow

FaçadeRow
FaçadeRow
FaçadeRow

Figure 4: Changes which modify splits.

• Replacement of symbols. This allows to interchange one
symbol in the derivation tree by another symbol. In
this case, the geometry stays the same, but the denota-
tion changes. This is especially used in the case of the
symbols ABOVEDOOR and ABOVEWINDOW. For exam-
ple, the space above a window is modelled by the symbol
ABOVEWINDOW. The rules

ABOVEWINDOW → WINDOWARCH
ABOVEWINDOW → WALL

allow to replace this symbol.

The control is done by the rjMCMC method. To ensure the re-
versibility, each change can be applied from left to right and vice
versa. This is a difference to the way split grammars are used,
but is a requirement for the rjMCMC approach. A change is pro-
posed depending on the jumping distribution Jt(θt|θt−1) which
expresses the likelihood for each change.

For the evaluation of changes, we use different methods which
can be divided into two groups. The first group contains methods
which test the general plausibility of the model of the façade.

In the group there are methods which test how good the model
fits the data. This group subdivides in methods working with
range data and methods working with image data. In any case, the
evaluation functions return a probability which is used to decide
if the change is accepted or rejected.

The general plausibility depends on the alignment, the extent and
the position of the façade elements. Windows are usually ar-
ranged in rows and columns. Therefore, such layouts are assigned
a high acceptance probability. We consider the size and the as-
pect ratio of façade elements to rate their probability. We also
use the size for the rating of the subdivision into rows, columns
or arrays. A row which is five meters high is not very likely and
thus has a low acceptance probability. The last general criterion
is the position of the elements. A door in the third floor is not
very likely, so only doors in the ground floor are assigned a high
probability.

To evaluate the match of the data to the model, scan and image
data are used. In the first case, the fact that window points typi-
cally lie behind the façade is exploited. In the second case, color
difference has been used since windows typically appear darker
than the surrounding façade. In both cases, the information is
used for the subdivision into rows, columns, and arrays as well.
For example, upon division into rows, the resulting row strips are
correlated to obtain an acceptance probability. Additionally, in
image data a color change may indicate a changeover of ground
floor and first floor.

Fig. 5 and 6 show the partition of a symmetric façade and the
corresponding derivation tree. The symbol FAÇADE is replaced
by SYMMETRICFAÇADE. SYMMETRICFAÇADE is split into
SYMMETRICFAÇADESIDE and SYMMETRICFAÇADEMIDDLE.
Each one is further subdivided into IDENTICALFAÇADEARRAY
and FAÇADEELEMENTs, respectively. WINDOW and DOOR are
on the leaf level.

Figure 5: Resulting partition of a façade.

SymmetricFaçade

SymmetricFaçadeSide SymmetricFaçadeMiddle

IdenticalFaçadeArray

Window Door

FaçadeElement FaçadeElement

Window

Figure 6: Derivation tree of the façade shown in figure 5.

3.3 Introduction of constraints

In 2D, with points represented by p = (x1, y1)
T, q =

(x2, y2)
T ∈ IR2 and lines by l = (a1, b1, c1)

T, m =

(a2, b2, c2)
T (in Hesse normal form ax + by + c = 0), typi-

cal logic constraint equations are a2
1 + b2

1 − 1 = 0 (l having a
unit length normal vector), a1x1 + b1y1 + c1 = 0 (p incident
l), a1a2 + b1b2 = 0 (l perpendicular m), a1b2 − a2b1 = 0



(l parallel m), whereas dimensional equations include a1x1 +
b1y1 + c1 − d = 0 (p having (signed) distance d from l),
(x1−x2)

2 +(y1−y2)
2−d = 0 (p having Euclidean distance d

from q), a1a2 + b1b2 − cos % = 0 and a1b2 − a2b1 − sin % = 0
(two oriented lines l and m enclosing the fixed angle %). Thus,
constraints between objects often result in bilinear equations. For
solving those constraints, linearization and least squares estima-
tion can be used. As noted earlier, the main problem is to intro-
duce constraints in a sensible way so that they are manageable
and constraint dependencies are minimized.

We use the derivation tree to define the set of constraints auto-
matically. Two types of constraints can be generated from this
tree. Terminal symbols represent geometry, which is fitted to
measurement data. Thus, terminal symbols can generate fitting
constraints, depending on the measurement data type, e.g. least
squares fitting of surfaces to laser scanner data, or fitting of edges
to the orthorectified image. Nonterminal symbols, on the other
hand, can introduce constraints between their children, such as
alignment, size, or orientation.

As an example, Fig. 7 shows a derivation tree (as ob-
tained by the grammar), the corresponding geometric rep-
resentation, and the generated unknowns and constraints.
IDENTICALFAÇADEARRAY, as seen by the grammar, subdivides
space into a regular array (depicted here as 2x3 array). From
a unknowns/ constraints viewpoint, IDENTICALFAÇADEARRAY
introduces column alignment lines at x1, x2, x3 and row align-
ment lines at y1, y2. As IDENTICALFAÇADEARRAY enforces
a regular column spacing, a constant distance ∆x together with
constraint equations xi+1 − xi = ∆x is introduced. Since
IDENTICALFAÇADEARRAY enforces identical sizes as well,
width w and height h variables are introduced. All variables
are inherited, i.e., the FAÇADEELEMENT shown in the figure re-
ceives the relevant alignment variables x3 and y1 as well as w
and h. WINDOW is a weak primitive p and thus consists of ge-
ometry and internal constraints. To the outside, it offers variables
p.cx, p.cy (the center), p.w (width), p.h (height) in the form of
fields (slots). Those fields are connected to the inherited variables
x3, y1, w, h by the addition of four constraints. Being a terminal
symbol, WINDOW represents a “real” geometry. Thus, additional
constraints are added which match the geometry of WINDOW to
the measurement data.

In contrast to the approach in (Wonka et al., 2003), the distinc-
tive feature of our approach is that we do not “copy” attribute
values down the derivation tree, but rather distribute (symbolic)
variables. These variables can be used by children in arbitrary
complex ways by introducing constraint equations. By the dis-
tribution of variables and the link by constraints, the geometric
representation of the tree is “alive” in the sense that changes in
one place can propagate across the entire tree. Finally, mapping
the tree to a constraint equation system and subsequent solution
of that system in the least squares sense allows a mathematically
thorough, well-defined solution, which seamlessly integrates ob-
servations and constraints. To experiment with constraint equa-
tion systems in 2D, we have developed an environment which
allows the interactive modification of geometric items while ge-
ometric constraints are enforced using least squares estimation
(Fig. 8).

4 CONCLUSIONS AND OUTLOOK

In this paper, we have proposed to use grammars for the extrac-
tion of façade descriptions from measurement data. We intro-
duced two major concepts. First, the use of rjMCMC to guide

Figure 8: Snapshot of the interactive tool for evaluation of con-
straint equations.

the construction of the derivation tree, in conjunction with eval-
uation functions which rate possible changes based on measure-
ment data. Second, the use of the hierarchic derivation tree struc-
ture as a means to automatically establish constraint equations for
a subsequent least-squares fitting of the façade description to the
measurement data. For the future, we plan to enlarge our set of
derivation rules as well as to improve our evaluation functions.
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(II), Birkhäuser, Basel, pp. 193–202.

Wonka, P., Wimmer, M., Sillion, F. and Ribarsky, W., 2003. In-
stant architecture. ACM Transaction on Graphics 22(3), pp. 669–
677.

ACKNOWLEDGEMENT

This work has been carried out within the scope of the junior re-
search group “Automatic methods for the fusion, reduction and
consistent combination of complex, heterogeneous geoinforma-
tion”, funded by the VolkswagenStiftung, Germany.


