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ABSTRACT:

GOODSAC is a paradigm for estimation of model parameters given measurements that are contaminated by outliers. Thus, it is an
alternative to the well known RANSAC strategy. GOODSAC’s search for a proper set of inliers does not only maximize the sheer size of
this set, but also takes other assessments for the utility into account. Assessments can be used on many levels of the process to control
the search and foster precision and proper utilization of the computational resources. This contribution discusses and compares the two
methods. In particular, the estimation of essential matrices is used as example. The comparison is performed on synthetic and real data
and is based on standard statistical methods, where GOODSAC achieves higher precision than RANSAC.

1 INTRODUCTION

1.1 Motivation

One of the basic tasks for many computer vision applications is to
describe a set of measurements by a mathematical model. Often
this model is overdetermined because the number of measure-
ments is much higher than the number of unknown sought model
parameters. Different methods to find an optimal solution de-
spite the presence of noise and outliers have been devised during
the years. The techniques used for robust estimation include ran-
dom sampling (RANSAC), a complete search to test all possible
inlier sets, clustering such as the Hough transform and maximum-
likelihood-type estimation (McGlone et al., 2004, p. 103 ff). Even
though they vary greatly in detail, their common property is to
reduce the influence of outliers on initial solutions thus allowing
their detection and removal.

RANSAC is often used when the outlier rate is high. The approach
to its solution is to detect an inlier set of maximal size, while the
precision of the resulting parameters is not taken into account.
Better results can be achieved, when some of the often redundant
inlier samples are traded in for others that have more impact on
the parameters.

For real-time applications the computation time constraints are
hard. Methods where the overall processing time is data-depen-
dent and not guaranteed to be within a given bound cannot be
accepted. In particular, it is desirable to have a method that can be
terminated by external requirements. On the other hand, it should
utilize the given resources properly, i. e. it should also not be
ready long before the requirement for a result arrives and keep
the resources idling for the rest of the time. For the experiments
in this contribution, methods are chosen that have this anytime
capability.

1.2 Our approach

In this paper, we propose the GOODSAC (good sample consensus)
paradigm as an alternative to RANSAC (random sample consen-
sus) (Fischler and Bolles, 1981). RANSAC uses a blind generate-
and-test strategy that treats all samples equally regardless of their
quality and requires a large number of tests to find an optimal
solution. Furthermore, RANSAC is nondeterministic so that two
runs on the same dataset will return different results.

In contrast to this, GOODSAC replaces the random sampling with
an assessment driven selection of good samples. Good samples
are those that possess a high degree of confidence and advanta-
geous geometry so that the model parameters computed are well
defined. Appropriate utility functions can usually be derived from
the mathematical, geometric model in order to produce a sorted
list of samples which features the most promising ones in the
leading positions. Multiple abstraction stages from the measure-
ments to the samples evade the complete search through all com-
binatorial possibilities.

A second enhancement is the replacement of tedious inlier tests
by a clustering in parameter space. While RANSAC defines the
best result as the one which has the largest inlier set, GOODSAC
looks for solutions that turn up often. The concept of the inlier
set is still present in GOODSAC through the set of predecessors –
those samples who lead to the cluster in parameter space.

This contribution focuses on the application of GOODSAC to the
estimation of essential matrix constraints between two images
and in particular on the special case of nonuniform distributed
interest points. Its performance is evaluated by comparing it to
RANSAC with respect to robustness and accuracy. The experi-
mental setup is chosen to resemble a situation frequently encoun-
tered in forward looking aerial thermal videos.

1.3 Related work

RANSAC (Fischler and Bolles, 1981) had been introduced to the
scientific community 25 years ago and is widely used for its ro-
bustness in the presence of many outliers (25 Years of RANSAC,
2006). Documented enhancements of RANSAC based estimation
mainly focus on the reduction of the required number of ran-
dom samples in order to decrease processing time. (Matas et al.,
2002) replaced the seven point correspondences required for the
estimation of a fundamental matrix with three matching affine re-
gions. Many implementations contain additions to the original
RANSAC – typically constraints that bail out early on bad random
samples.

A major recent improvement on the method itself is the preemp-
tive RANSAC scheme (Nistér, 2005). While the original algorithm
generates and tests one hypothesis at a time, preemptive RANSAC
first generates a number of hypotheses and then tests them in par-
allel, discarding bad hypotheses early in order to speed up pro-
cessing.



Another variant more along the lines of our work is PROSAC (pro-
gressive RANSAC) (Chum and Matas, 2005). PROSAC introduces
an assessment component to narrow the set of samples to draw
from. If successful, this achieves a higher inlier rate so that fewer
runs are needed. In contrast, GOODSAC eliminates the random
sampling process completely and introduces additional assess-
ment components to achieve robustness.

GOODSAC has already been used for completely different recog-
nition tasks in the past (Michaelsen et al., 2006).

2 METHOD AND TEST SETUP

2.1 The GOODSAC Paradigm

The good sample consensus principle has been designed for tasks
where an assessment on the quality of the samples and of their
parts can be provided (Michaelsen and Stilla, 2003). In this case
the random search for a sample that maximizes consensus can be
replaced by a controlled search. It is intended to capture sensi-
ble heuristics or proven utilities in a more systematic way and
use them to prevent waste of computational resources and foster
precision.

Let F (m,x) = 0 denote an implicitly defined functional model,
where m is a k-tuple of parameters and x is an n-tuple of mea-
surements. Only a subset {xi} with i ∈ I ⊆ {1, . . . , n}
fulfills the model. The task is to estimate m from x. If the
set I were known, the solution would be found by minimizing∑

i∈I F (m, xi)
2 under variation of m. Systematical complete

search in the power set 2n for an optimal set I is usually not fea-
sible. It is assumed that there exists ` < n minimally such that
m can be determined from an `-sample {xi1 , . . . , xi`}.

Whereas the RANSAC method draws samples at random,
GOODSAC regards them as objects. Each object is assessed ac-
cording to its presumed utility for the estimation task at hand.
Furthermore, it exploits part-of hierarchies: intermediate ob-
jects are introduced between the single measurements and the
`-samples, which are smaller sub-sample objects (e. g. pairs or
triples). Thus, the way is open for a better control on the search.
Badly composed sub-sample objects can be neglected, while pre-
sumably well suited ones can be preferred – `-sample objects vote
for specific settings of the parameters m of the model. `-sample
objects with consistent votes – according to a metric and thresh-
old inM 3 m – are parts of a cluster object, which represents
the highest level of the object hierarchy. The best cluster object
is the result.

2.2 Assessment Driven Control

GOODSAC uses a general control approach. A part-of hierarchy
is formulated as finite production system:{

pι; pι = oκ ← (oλ, oµ) ∨ oκ ← {oλ, . . . , oλ}
}
, (1)

where pι denotes the productions and oκ, oλ or oµ respectively
denote object types. Note that the productions may be of two
forms – either a more complex object is formed from an ordered
pair of simpler objects of possibly different kinds or it is formed
from a set of objects of the same kind. Associated with each pro-
duction pι there is a predicate πι that the right side must fulfill
for the production to be appropriate, a function that determines
the object instances attribute values on the left side from the val-
ues found in the right side and in particular an assessment func-
tion αι for the newly constructed object instance. A proper as-
sessment driven control cycle for production systems has already
been given by (Stilla et al., 1995):

1. Form working elements (α0, oλ, ξ, nil) from a given set of
primitive object instances, where ξ is a pointer to the object
instance and α0 its initial assessment.

2. Sort the set of working elements according to the assess-
ments α.

3. Pick a fixed number of elements from the “good end” of the
sorted working set and proceed with all of them.

4. Let (α0, oλ, ξ, χ):

(a) If χ = nil, then clone (α0, oλ, ξ, χ) with χ = ι for
each production pι in which oλ occurs on the right
side.

(b) Else query the database for partner object instances
that fulfill πι together with the object oλ to which ξ
points; generate all new objects oκ that are obtained
using these combinations and insert new working ele-
ments (αι, oκ, η, nil) for each of these with η pointing
to them.

5. If the set of working elements is still not empty and no
external break criterion holds continue at step 2.

After breaking the control cycle the best object of the highest hi-
erarchical type is chosen as result. Using this control scheme for
GOODSAC is achieved by taking the measurements x as primitive
objects and larger samples as intermediate non-primitive objects
up to the minimal `-samples required for calculating F . Thus
these objects can be attributed with parameter estimations for F .
A single cluster production for these minimal `-sample objects is
added (of the type oκ ← {oλ, . . . , oλ}) that demands adjacency
in the parameter space of F . It constructs non-minimal sample
objects that are the result of the process.

The assessment functions used in this process must not only be
capable of comparing the presumed utility of objects of the same
type and hierarchy level, they must also be valid between objects
of all different types, because all these objects constantly com-
pete for the same computational resources. There are no random
choices in a GOODSAC search run. It is completely determined by
F , x, the object hierarchy and the assessment functions. Its suc-
cess depends on the care of the designer of the latter structures.
It is particularly appropriate where utility assessment criteria can
be given in a mathematically sound way. Sect. 2.3 gives an ex-
ample for the estimation of essential matrix constraints.

2.3 An Example: Estimating Essential Matrices

GOODSAC is particularly suitable for essential matrix estima-
tion. The minimal sample for this task is five correspondences
(x, y, x′, y′)> giving one constraint each, so that the five param-
eters of an essential matrix E can be obtained by evaluating the
roots of a polynomial of 10th degree (Nistér, 2004). GOODSAC
clusters each of the up to ten hypotheses computed from one sam-
ple. This independent treatment of the hypotheses is similar to a
straightforward RANSAC implementation.

The hierarchy of the corresponding GOODSAC system consists of
five object types: Correspondences K, pairs P , quadruples Q,
quintuples R and essential matrix clusters C. The following
attributes and assessment functions are assigned to these objects:

1. Objects K are obtained from image pairs taken from a
video stream. Therefore they are attributed with the loca-
tions of the corresponding item in the first and second image



(x, y, x′, y′)>. It will be most useful if objects K with high
assessment have a small expected error or outlier probabil-
ity. There are extraction methods that provide these mea-
sures, and they have proven very useful for RANSAC accel-
eration (Chum and Matas, 2005). In our comparison uni-
form distributed random assessments have been used in the
experiments in sect. 3 because emphasis is on exploitation
of the geometric configurations. Random assessments are
the worst possible choice apart from using the sequence in
which the objects have been generated.

2. Objects P ← KK are pairs of correspondence pairs.
A similarity transform with four degrees of freedom may be
calculated from an object P . The expected deviation of this
transform from the correct value would inversely depend on
the Euclidean distance d between the objects K preceding it
(in one or the other image). This motivates heuristically that
the assessment is obtained from this distance. It is directly
and linearly transformed to the assessment interval [0, 1] by
a(P ) = d/dmax where dmax is the maximal possible dis-
tance in the image.

3. Objects Q ← PP are quadruple of correspondence ob-
jects. For their assessment the area a of the smallest of the
four triangles formed from the four locations is used. This
motivation is based on the fact that from an object Q, a pla-
nar projective transform with eight degrees of freedom may
be calculated. The expected deviation of this transform from
the correct value would be highly correlated to this assess-
ment value a/amax, where amax is the area of the largest
possible triangle in the image bounds. It can at most be
equal to one, but usually it is much smaller. In order to
balance between different object types, (a/amax)

e is used
for the assessments of objects Q with an appropriate value
0 < e < 1.

4. Objects R ← QK are a quintuple of correspondence ob-
jects. Given an object Q, partners K that are not co-linear
with two of the four locations of this object are searched.
The assessment is again obtained from the area of the small-
est triangle. Also this assessment must be properly normed
to be bounded by one and balanced with the other assess-
ments as described above.

5. Objects C ← {R; mutually consistent} are clusters of es-
sential matrices very similar to each other. All objects K
preceding them are again entered into the same procedure
– this time in its overdetermined version – resulting in a new
more precise estimation of E. For assessment, the convex
hull of all preceding objects K in the image is determined.
The assessment value is formed as product of the number
of correspondences k and the area of the convex hull. This
assessment is neither balanced with respect to the other as-
sessments nor bounded by one. It is not used for control
purposes. Objects C do not compete for computational re-
sources. This assessment is only used for picking the best
result after termination of the GOODSAC search run.

If a very precise result is needed, a concluding consensus set
may be formed from all objects K being consistent with the
result, followed by least squares optimization. This last step is
also proposed for RANSAC search. It is well known as “guided
matching” (Hartley and Zisserman, 2000, p. 125).

2.4 Performance Evaluation

In this section we evaluate the performance of the proposed es-
timations with respect to the robustness of the procedures and

Figure 1: White displacements are inlier correspondences, black
displacements outliers, the white aircraft symbol indicates the
epipole.

the accuracies of the individual results. Whereas the ability of
detecting outliers is specified by an error rate in terms of a bi-
nary classification, the results of the parameter estimations will
be evaluated using statistical tests and results from adjustment
theory, cf. (Mikhail, 1976, Förstner, 1994) for instance. For the
real data set we do not have the true projection matrices and we
are also not sure of the presence of possible non-projective dis-
tortions. Therefore we will describe qualitatively the result on a
particular example.

2.4.1 Robustness

Outlier detection: Error rate. We consider the procedures to
be a binary classifier indicating inliers and outliers with the help
of a threshold. Competing classifiers can be evaluated based on
their empirical confusion matrices. The rate of missed outlier de-
tections is of interest beside the error rate being the ultimate mea-
sure of the classification performance (Jain et al., 2000). Since
these measures are random variables, they have an associated dis-
tribution permitting hypothesis testing.

Self-diagnosis. In automatic analysis there is a demand for reli-
able self-diagnostics. Concerning the detectability of errors eval-
uation quantities can be derived from the stochastic model within
general least squares adjustment models:

An initial covariance matrix Qxx of the observations x is as-
sumed to be known and related to the true covariance matrix Cxx

by Cxx = σ2
0Qxx with the possibly unknown scale factor σ2

0 ,
also called variance factor. If the initial covariance matrix cor-
rectly reflects the uncertainties of the observations, this factor is
σ2

0 = 1. The estimated parameters are independent with respect
to scaling of this covariance matrix, therefore only the ratios of
the variances and covariances have to be known in advance.

The variance factor can be estimated from the estimated correc-
tions v̂ for the observations x via

σ̂2
0 =

v̂>Q−1
xx v̂

R
(2)

with the redundancy R of the system.

If the mathematical model actually holds and the observations are
normally distributed, the estimated variance factor will be Fisher
distributed with R and ∞ degrees of freedom (McGlone et al.,
2004)

T1 =
σ̂2

0

σ2
0

∼ FR,∞ (3)

with the test statistic T1 having the expectation value one.



Figure 2: Left: Typical RANSAC result, right: Typical GOODSAC result. RANSAC maximizes the size of the inlier set, while GOODSAC
returns correspondences that allow better precision of the estimated parameters.

If the test (3) is accepted, the data and model will fit. In the case
of deviations there is no evidence for the reasons. In particular,
small errors in the assumptions concerning the precision of the
observations lead to a rejection of the test. But, for synthetic
data σ2

0 is known and the mathematical model holds. Therefore
this test checks indirectly the robustness, since gross errors or
blunders lead to a rejection.

2.4.2 Precision and Accuracy

Acceptability of the empirical precision. The empirical pre-
cision indicates the effect of random errors onto the estimated
parameters, taking the estimated variance factor σ2

0 into account.
The empirically estimated covariance matrix for the estimated pa-
rameters m is

Ĉm̂m̂ = σ̂2
0Qm̂m̂ (4)

where the covariance matrix of the estimated parameters results
from Qm̂m̂ = (J>Q−1

xx J)−1 if the observations can be ex-
pressed explicit in terms of the parameters, where J denotes the
Jacobian of the equations with respect to the parameters.

If a certain precision of the parameters is required, the individual
values can be compared with some pre-specified tolerances for
the specific application.

Empirical Accuracy. The evaluation of the covariance matri-
ces, as discussed so far, is only an internal evaluation relying on
the internal redundancy of the observation process. Systematic
errors, which may not have an influence on the residuals but may
deteriorate the estimated parameters, are not taken into account.
Evaluating the empirical accuracy of the estimated parameters
therefore requires reference values mr for the parameters.

The Mahalanobis distance is useful for checking the complete set

T2 = (m̂−mr)
> (

Crr + Ĉm̂m̂

)−1
(m̂−mr) ∼ χ2

u (5)

within a combined statistical test with u degrees of freedom being
the number of parameters. If the test (5) has been rejected it can
be concluded that the accuracy potential of the observations is
not exploited, provided that the reference data mr actually are
correct and thus m ∼ N(mr,Crr).

3 EXPERIMENTS

3.1 Experiments with Synthetic Data

Optimal statistical analysis can only be accomplished with syn-
thetic data because exact measure of the noise is required. A time

constraint has been introduced by limiting the number of sam-
ple objects R to 2,000. The same number of samples was then
permitted to the RANSAC search runs. This is almost two orders
of magnitude larger than the standard textbook literature recom-
mends for quintuple samples at 95% probability for an inlier-only
sample with our 33% outlier rate (Hartley and Zisserman, 2000).
For correspondences uniform distributed all over the image both
methods will yield robust results. In order to elaborate the dif-
ference in the behavior a critical situation was simulated in the
following way: 90% of the correspondences are located within
a small region of the image. Only 10% are uniform distributed
over the entire image (Fig. 1). For the synthetic data the scene
is assumed to be flat. Therefore the correspondences result from
a planar projective homography constraint. While a planar scene
cannot be used for fundamental matrix estimation it should not
pose a problem to essential matrix estimation following (Nistér,
2004).

Fig. 1 shows the generated frame-to-frame point correspon-
dences. The camera motion has no rotational component. Thus
the epipole – sketched as aircraft symbol – is a fixed point giv-
ing the flight direction and the horizon is a straight line of fixed
points. 67% of the data are disturbed by an additive normally dis-
tributed shift error on the position in the second image. 33% of
the data are disturbed by a much larger additive shift error on the
position in the second image. This error is distributed uniformly
within a squared search window eight times larger than the stan-
dard deviation of the inliers. GOODSAC requires assessment val-
ues for the correspondences. In this example, they were chosen
randomly and independent of the outlier property and displace-
ment error. Because the result of the search depends on these ini-
tial assessments the outcome is nondeterministic (as it normally
would be with real assessments), allowing a statistical evaluation.
Therefore the GOODSAC run was repeated 20 times with indepen-
dently drawn assessments.

One GOODSAC result on the particular data set given in Fig. 1 is
displayed in Fig. 2, left. The GOODSAC estimation is based on
a fairly small number of objects K with some outliers included.
These correspondences, however, are well spread over the image,
so that the resulting estimation fits the ground truth neatly. The
epipole is again displayed as aircraft symbol. Almost no rotation
is left. Yaw and pitch rotations are indicated by a line inside the
center of the aircraft symbol showing the resulting displacement
and the roll is indicated by fins on the wingtips. RANSAC is a
non-deterministic method. Therefore we repeated the experiment
20 times for each particular setting of correspondences. Among
these runs there were also examples, where the outcome was
superior to the GOODSAC result. To make our point clearly we
decided to show an example result in Fig. 2 which comes up with
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Figure 3: Empirical distributions for the false positives rates.
Left: RANSAC, right: GOODSAC. For the peak at 33% see text.
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Figure 4: Empirical distribution of the variance ratios (3).
Left: RANSAC, right: GOODSAC.
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Figure 5: Empirical distribution of the Mahalanobis distances
with the χ2

5 distribution. Left: RANSAC, right: GOODSAC.

a fairly low false positive rate but with an unpleasant deviation
of the essential matrix. There are only few black lines visible.
But the estimation is based on a small image region. Thus the
epipole can be displaced considerably from the true position. To
compensate for this a considerable rotation – even in roll angle –
is “invented”.

The quantitative evaluation is based on 40 different settings of
correspondences with 20 GOODSAC searches and 20 RANSAC
searches performed on each. RANSAC always finds the vast
majority of the consensus set inside densely populated areas.
GOODSAC typically spreads the hypothesis generating samples
across the entire image. Fig. 3 shows the distributions of the false
positives rates for the GOODSAC and the RANSAC approach with
a similar shape. The expectation value of 0.12 is caused by the
fact that even in the optimal case about 30% of the outliers fit to
the essential matrix and therefore are not detectable at this stage.
There are rare situations, where almost all correspondence ob-
jects K closest to the image margin are actually outliers. This
may cause the GOODSAC search to fail completely. Even after
2,000 quintuple objects R have been constructed no cluster may
be found at all. Then the procedure falls back on using all corre-
spondences as inliers. These cases lead to a small peak at 33%
false positive rate for the GOODSAC method.

The empirical distribution of test statistics (Eq. (3)) is plotted
in Fig. 4. Note that these values stem from different Fisher distri-
butions since the degrees of freedom are varying with the number
of inliers. The values obviously do not exceed the expectation
value one for both estimation methods. Thus, the outliers have
been removed successfully.

Figure 6: Frame from a forward-looking thermal video captured
from a helicopter.

The empirical distributions of the Mahalanobis distances (5)
shown in Fig. 5 reveal some deviation from the expected (analyt-
ical) probability density function. It can be seen that GOODSAC
is closer to the theoretical distribution than RANSAC. This is be-
cause for a given sample and a corresponding essential matrix,
the essential matrix is extrapolated outside the convex hull of this
sample. While RANSAC maximizes the size of the sample as ex-
pected, this extrapolation leads to lower accuracy in the essential
matrix.

3.2 An Experiment with Real Data

GOODSAC has been designed for applications where non-uniform
distributed features are a common phenomenon. In particular,
aerial forward-looking thermal videos often exhibit large uniform
areas and strongly textured or structured regions often are quite
sparse and small. An example frame is presented in Fig. 6.

Correspondences were obtained from a pair of frames with a suf-
ficient baseline length, so that the displacements allow essential
matrix estimation. Then GOODSAC and RANSAC were applied
to these data under the same conditions that were also used for
the synthetic setup. Quantitative evaluation of this experiment
would need manual labeling of outliers, acquisition of ground
truth, e. g. by an inertial navigation system, and repetition with
a considerable number of image pairs. This has not yet been un-
dertaken. Instead, in this contribution only the tendency of the
outcome can be shown by example results in Fig. 7.

Note that while the sample found as consensus set by RANSAC
has a larger size than the consensus set found by GOODSAC.
However, some correspondences on the margin of the correspon-
dence point cloud are missing in the RANSAC set, but appear in
the set found by GOODSAC. This confirms the tendency found by
the investigations with the synthetic data.

4 DISCUSSION AND OUTLOOK

Concerning the false positive rates on the synthetic dataset
GOODSAC is only a little better than RANSAC. However, the Ma-
halanobis distance plots of the essential matrices resulting from
the same experiments indicate that higher accuracy can be ex-
pected from GOODSAC. This can be explained by the fact that
RANSAC simply tries to maximize the number of inliers which
will only be directly related to the accuracy, if they are uniformly



Figure 7: Typical result of the generated samples. Left: RANSAC, right: GOODSAC.

distributed over the entire image. GOODSAC tries to back the es-
timation by a stable geometric base and trades the sheer number
of measurements for it.

The part-of hierarchy used for essential matrix estimation over-
laps highly with that suitable for planar homography estimation
(Michaelsen and Stilla, 2003). We may just add attributes to the
quadruple objects Q, add a clustering production and balance the
assessment functions accordingly. If the scene is planar, the ho-
mography results will usually be more reliable, else the essen-
tial matrix solution will be better, while both calculations may be
based on the same partial sub-calculations.

An open research problem with respect to this multiple use of
intermediate objects is the choice of the assessment functions.
We did not use any meaningful assessments on the elementary
correspondence objects K here – for reason of fair competition.
But in a real application we would of course use something rea-
sonable: The quality of the match between the first and second
image gives a good criterion related to both the outlier probability
and the expected displacement error of an inlier correspondence.
Or the length of displacement between the two images, because
this estimation will fail on a set of stationary correspondences.

Further research is also needed to compare the two methods on
real data with real inliers and outliers. The used assumptions
on which the distributions of both kinds of correspondences are
based must be verified. Here, we presume the normal distribu-
tion of the inliers to be the smaller problem. The distribution
of real inliers may be deviating due to the pixel structure of the
detector or properties of the matching algorithm, but the devia-
tion may well be tolerable. The distribution of outliers, however,
is probably a more severe problem. Real outliers do not occur
randomly with equal probability anywhere. They are caused by
unpredictable clutter effects. Some of these (e. g. moving objects,
partial occlusions) may be foreseeable but a quantitative predic-
tion is hard. They will, however, have a bias, and the influence
of outliers on either method remains to be studied. However, the
presented statistics based on the simplified assumption on the out-
liers still indicate potential usefulness of the presented method.
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