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ABSTRACT: 

 
  This paper presents a method for semi-automatic 3D positioning of tree tops that can be used for obtaining tree maps of the photo-
visible trees and tree heights. Such spatio-temporal, detailed information is usable for many applications in e.g. forestry and 
landscape management. The method incorporates the use of passive, high-resolution optical images with co-existent low-resolution 
airborne lidar data. The latter is used for confining the search space of image matching to agree with the volume of photo-visible 
trees in the upper canopy and for obtaining an accurate elevation model, which is paramount for reliable tree height estimation. The 
method is presented here and tested with restricted image and field material. 
 

1. INTRODUCTION 

  Remote sensing is applied currently in almost all forest data 
acquisition. Orthoimages and stereopairs of aerial photographs 
are used for stratifying the forest into stands, satellite images are 
employed in the assessment of large areas and airborne laser 
scanning is used for the mapping of topography and canopies. 
Advances in the sensor technologies and analysis methods 
continuously widen the potential scenarios of new forest 
inventory methods that put to use remote sensing (Leckie 1990, 
Baltsavias 1999, Petrie 2003, Naesset et al. 2004). Single-tree 
remote sensing (STRS) that is based on the idea of substituting 
the field measurements and mapping of individual trees with 
cost-efficient airborne observations is an example of a field 
made possible by the development. Digital and automatic, 
image- and/or lidar-based STRS is a topical domain (See 
references in Culvenor, 2003; Korpela, 2004; Pouliot et al., 
2005), although the concept of STRS is not entirely novel 
(Worley and Landis, 1954; Talts, 1977). 
  STRS aims at a detailed description of the growing stock that 
is crucial in most applications of forest inventory. Ideally, it 
provides the size-distribution of the standing trees per species 
with the two- or three-dimensional map of trees. Korpela and 
Tokola (2006) examined the potential of image-based, 2D and 
3D STRS. The DBH (stem diameter at 1.3 m height) and 
volume of individual trees cannot be estimated as accurately 
with STRS as is it possible in the field. The main reason is the 
indirect estimation phase with allometric models that results in 
both random and systematic, tree and stand level errors. The 
model inaccuracies are coupled with photogrammetric 
measurement errors in species, tree height and/or crown width. 
Random errors cancel out effectively, but the aggregate results 
of STRS at the stand level are liable to systematic offsets. 
Inclusion of tree heights, i.e. the use of 3D STRS was found to 
improve the estimation accuracy of both DBH and stem volume 
considerably in comparison to 2D STRS, in which trees are 
measured for species and crown dimensions only. In addition, 
in STRS the growing stock is inherently underestimated since 
some trees always remain unseen − at least by optical sensors.  
  In STRS, field calibration is needed for avoiding the 
systematic errors of the allometric equations. Thus, some field 

visits seem inevitable if very accurate data is wanted. Because 
of the inferior accuracy in comparison to field measurements, an 
applicable STRS system has to provide the measurements and 
estimates with much lower costs, which calls for automatic 
procedures. A complete 3D STRS system solves all of the 
following tasks: (a) tree or crown positioning in 3D, 
measurements of (b) crown dimensions and (c) tree height, (d) 
species recognition and (e) allometric estimation of stem size 
(Figure 1). 

 
Figure 1. An example of the data, tasks and output of a 3D 

image-based STRS-system for stand cruising. 
 
1.1 Hypotheses and objectives 

  This paper addresses the question of using remote sensing for 
3D treetop positioning and height estimation and extends the 
work by Korpela (2000, 2004), in which a semi-automatic 
method for treetop positioning was introduced. It was based on 
the use of multiple image-matching of digitized aerial 
photographs for the purpose of finding treetops inside a 
predefined 3D search space in the canopy volume (Figure 2). 
The algorithm applies template matching for processing the 
aerial images into correlation images, where local maxima 
correspond to 2D image positions of treetops (cf. Pollock, 1996; 
Larsen and Rudemo, 1998). The predefined 3D search space is 



 

processed into a point mesh. The points in the mesh are back-
projected into the correlation images and aggregated for 
volumetric correlation, which is further processed into 3D 
maxima that correspond to candidate treetop positions. The 
algorithm resembles that of Tarp-Johansen (2001), who 
positioned tree bases of oaks in 3D using multiple leaf-off aerial 
images. Here, it is further assumed that correct 3D treetop 
positions will help in solving the other image-based tasks of the 
measurement of the crown dimensions and the interpretation of 
species (cf. Figure 1).  

 
Figure 2. Image matching for 3D tree top positioning (Korpela, 

2004). The search is restricted to a predefined 
volume in the canopy. A DEM/DTM is used for 
height estimation. The scale of the images (N>1) is 
not restricted as such, but the full orientation of the 
images has to be established reliably. 

 
 The discernibility of treetops is a major restriction of optical 
STRS. Only the dominant, co-dominant and intermediate trees 
are visible with a high likelihood. The probability of 
discernibility is an exponential function of the relative height of 
the tree; such probability-of-discernibility curves vary between 
stands according to the density of the stand (Korpela, 2004). In 
most cases trees with a relative height of below 50% are not 
seen at all in the images. The 50% relative height constitutes 
thus a lower limit for the volume from where to conduct the 
manual or automatic search of treetops − at least in closed 
canopies. Respectively, the upper limit is at the maximal height 
of trees. These two parameters vary spatially and it is necessary 
to obtain reasonably accurate estimates of them to avoid 
commission errors by the treetop positioning algorithm 
(Korpela, 2000; 2004) as the locally restricted depth of the 3D 
search space is the geometric (epipolar) constraint that is used 
for the solution of the mathematically ill-posed correspondence 
problem for tree tops. The results can only be optimal if the 
search is set to cover the upper canopy volume (Korpela, 2004; 
p. 35, 65−66).  
  The estimation of tree height is straightforward once the 
treetop is positioned in 3D. A DTM gives the elevation of the 
butt. The error of the height estimate consists thus from possible 
treetop positioning errors and DTM errors. A DTM is also 
needed for defining the lower limit of search space at the app. 
50% relative height level below which treetops cannot be 
expected to be measurable. Korpela (2004) suggested that an 
accurate DTM obtained by means of low-resolution laser 
scanning could be incorporated in the algorithm for the 
delineation of the search space and for accurate tree height 
estimation. Similarly, laser scanning was proposed for the 
estimation of the local, maximal height of trees by a canopy 
height model (CHM). These proposals/theses are put to test here 

with real field, image and lidar data. By combining aerial 
photographs with lidar this paper exploits the principle of the 
photo-lidar approach presented by St-Onge et al. (2004). A low 
sampling rate airborne lidar is used to keep the material costs to 
a minimum. The proposal in this article is that low-resolution 
lidar can be combined with multiple image-matching of aerial 
images for accurate and cost-efficient, semi-automatic tree top 
positioning and tree height estimation.  
 
2. METHOD FOR SEMI-AUTOMATIC 3D TREETOP 

POSITIONING USING AERIAL IMAGES AND 

LIDAR BASED SURFACE MODELS 

  The method consists of the steps 1−9 given below. Automation 
of steps 2 and computations in step 5 have been developed most 
in comparison to the algorithm presented in (Korpela, 2004).  
 
1) Delineation of the area of interest. Here, the tree tops were 
positioned inside circular plots with a radius ranging from 15 to 
20 m. In general, the geometry of the area of interest can vary 
and a homogenous stand would be a natural choice in practice. 
 
2) Delineation of the 3D search space in the upper canopy. This 
is done by analyzing the lidar-DTM and the lidar-CHM such 
that the search space is filled by a 3D point mesh with 0.5 m 
spacing. The maximal elevation or local dominant height in a 
given XY point is given by the CHM, which is multiplied by 
parameter fHDOM ∈ [1, 1.3] to reduce the inherent 
underestimation. Parameter HDepth ∈ [0, 1] defines the depth 
of the search space with respect to the local dominant height of 
trees (HDepth = 1) and the terrain elevation (HDepth = 0). 
 
3) Selection of a sample tree and the measurement of its 3D 
treetop position using manual image-matching. The capture of 
elliptic templates representing the tree in all images (Figure 3). 
 

 
Figure 3. Template-boundaries of a selected and manually 

positioned sample spruce tree with parameters: 
EllipseHeight = 3.0 m, EllipseWidth = 2.6 m and 
EllipseShift = −1.0 m. The shift downwards by 
EllipseShift is seen in the image on the right: the 
image position of the hot-spot i.e. the tree top and 
the template centre deviate. The vertical lines 
connect the measured 3D tree top position and the 
DTM. This photo-lidar height estimate was 15.53 m 
and the field measurement was 15.7 m. 

 
 Object space parameters EllipseShift, EllipseHeight, and 
EllipseWidth define the position, size, and shape of the ellipse 
in the images. EllipseShift shifts the center of the template in the 
Z direction. Using this parameter, the templates are typically 
moved down to capture more of the crown than the background. 
Ellipseheight defines the major axis of the elliptic template, 
which in the images is made parallel to the direction of the Z 
axis (trunks). EllipseWidth defines the length of the shorter axis. 



 

The shape is conditioned to circular i.e. the templates are 
allowed to be elliptic for oblique views only and in the direction 
of the radial displacement (i.e. Z axis, tree trunk). These 3 
parameters take metric values. The actual template images are 
rectangular copies of the aerial images. Pixels that fall outside 
the ellipse are masked out. The location of the treetop inside the 
template, the so called hot-spot, is stored for each template and 
is accounted for in cross-correlation computations that follow.  
 
4) Template matching. Template matching with normalized 
cross-correlation is carried out for each image using the 
template of that aerial image. This procedure maps the aerial 
images into cross-correlation images ρ (x,y) ∈ [-1,1], in which 
high values of ρ indicate good match at image location x,y 
(Figure 4). Ideally ρ (x,y) would consist of very sharp peaks at 
the correct positions of the treetops.  
 

 
Figure 4. Cross-correlation images computed using the captured 

templates and aerial images of Figure 4. High 
correlation is displayed in white. 

 
5) Aggregation of 3D correlation, ρ3D. Each point in the search 
space is back-projected to the cross-correlation images using 
collinear equations and an affine fiducial mark transformation 
with pixel accuracy. ρ3D is computed for each point in the 3D 
search space seen as a geometric mean of the images resulting 
in ρ3D∈ [0, 2]. 
 

 
Figure 5. Illustration of the volumetric, discrete ρ3D data in the 
search space with three transects (slices) superimposed in an 
oblique aerial view. The brightness of the points denotes ρ3D. 
The undulation is due to changes in terrain elevation and local 
dominant height of trees. The white dots that form lines are the 
terrain points. 
 
6) Clustering of the ρ3D data into 3D treetop candidate 
positions. The point set is first sorted in the ascending order of 
ρ3D. Clusters are formed from points with ρ3D above a limit, 
Rlimit. Points are merged into existing clusters while the sorted 
list is processed. Merging is controlled by a planimetric distance 
parameter, XYthin. Points closer than the set value are merged 
into existing clusters and do not form a new cluster. The 3D 

position of the cluster is the mean of the 3D points that belong 
to the cluster and ρ3D is used in linear weighting of the 
coordinates. Rlimit is a parameter that controls the quality of the 
clusters. Only the best clusters are accepted as tree top 
candidates, if Rlimit is set to a high value. In such cases, 
omission errors are few assuming that the search space is set 
correctly. A low value of Rlimit brings about new clusters at the 
cost of commission errors. The merge-parameter XYthin 
controls the density of the clusters. A value that is too large 
causes neighbouring trees to be merged. Similarly, if XYthin is 
set too low it can result in several clusters originating from the 
actual ρ3D response of a single tree.  
 
The description of the steps 7−9 below applies to any practical 
implementation of the algorithm in situations where no ground 
truth exists. In the experiments of this study step 7 was replaced 
by a numerical quality assessment, and steps 8 and 9 were not 
performed. 
 
7) Visual quality assessment of the treetop positioning. The 
visual evaluation of the matching results is based on visual 
examination of the candidates that are superimposed either on 
monoscopic or stereoscopic views. If necessary, the clustering 
algorithm is re-run by adjusting the parameters XYthin and 
Rlimit. Sometimes the procedures have to be repeated from the 
start by selecting and positioning a new model tree. As all 
subsequent steps need to be re-computed it is important to have 
good approximate values for the parameters to avoid 
unnecessary iteration. 
  

Figure 6. Candidate positions and the borders of circular photo-
plot (r=15 m) superimposed in an image pair. The circle is 
drawn at the elevation of the treetop of the model tree.  
 
8) Manual correction of the semi-automatic matching results. In 
it, the bad candidates are removed or corrected for position. The 
unrecognized tree tops are completed manually using stereo 
interpretation (for operators with a good stereo vision) or using 
manual image matching with monocular observations and 
epipolar constraining (Korpela, 2004) 
 
9) Height estimation using the existing DTM.  
 

3. EXPERIMENTS 

3.1 Data 

  The field data in Hyytiälä, southern Finland (61o50'N, 
24o20'E) consists of fully mapped and measured stands 
(Korpela 2004). The field measurement errors for tree positions 
and the basic tree variables are known through repeated 
observations. The positions of the field trees have been 
established with tacheometer and VRS-GPS observations and 
field levelling. The image data consisted of digitized aerial 



 

photographs, which have been orientated in one large multi 
temporal (1946-2004) image block (Korpela 2006). Here, leaf-
on images from summers of 2002 and 2004 were used in the 
experiments. These were taken using standard metric cameras 
with 15 cm and 21 cm lenses and the images have a 14- or 15-
micron pixel size. The experiment allowed for testing the 
following nominal scales: 1:6000, 1:8000, 1:12000, 1:14000, 
1:16000 and 1:30000. The images have forward and side 
overlaps that vary from 60 % to 80 %. Lidar data was from 
August 2004 with an Optech ALTM2033 sensor from a flying 
height of 900 m. The pulses had a footprint diameter of 0.3 m 
and the pulse density was 1.1 m by 1.3 m, on average. The 
instrument recorded 1 or 2 returns. The full geometry of each 
pulse was available: time stamp, position and orientation of the 
lidar, ranges, intensities and positions of the 1 or 2 returns. A 
raster DTM was processed from the lidar returns using a simple 
gradient-based method and a RMSE of 0.30 m was obtained in 
a test set of 10947 tacheometer points representing terrain of 
wooded areas. A raster CHM was constructed from lidar 
maxima in 5 m by 5 m cells. 
 
3.2 Performance of tree top positioning 

   A treetop was considered to be correctly found (hit) if a 
candidate was inside a 2.4-meter wide and a 6-meter high test-
cylinder. The dimensions of the test-cylinder affect the 
performance measures. The field errors in tree positioning using 
tacheometer, in height measurements, errors made in updating 
heights to the time of the photography, possible tree slant and 
sway as well as the stand density of the test sites were 
considered. The test-cylinders can have overlap in dense forests 
and excessive candidates in a test-cylinder or in intersecting 
cylinders were considered as commission errors and trees 
without a candidate were considered as errors of omission. A 
buffer around circular test plots (Figure 7) was used as trees can 
be hit by a candidate from the buffer and vice versa.  
  Hit-rate was the ratio between the number of hits and the total 
number of trees. An accuracy index was computed based on the 
numbers of omission (o) and commission (c) errors and the 
number of trees (n) (cf. Pouliot et al. 2005): AI = [(n − o − c) / 
n] × 100. The 3D-positioning accuracy was evaluated with the 
RMSE that were computed separately for the XY and Z 
although the positioning is entirely 3D. The RMSEs include the 
imprecision of the ground truth and therefore overestimate the 
true inaccuracy. The positioning error-vector [∆X, ∆Y, ∆Z] was 
defined as field−−−−candidate; thus a positive ∆Z indicates 
underestimation. Mean differences of ∆X, ∆Y and ∆Z measure 
systematic offsets. To evaluate the averaging effect of tree 
heights, a regression line was fitted in the ∆Z×tree height 
distribution and the slope coefficient (trend) and its standard 
error were computed. The set of field trees was confined to 
those that were discernible to the operator. This tree set 
represents the potential trees to be found. In some stands such a 
criterion can leave out 50% or more of the trees; however, the 
proportion of the total volume in the non-discernible trees is 
normally small, from 0 % in managed stands to 12 % in natural 
forests (Korpela, 2004). 
 
 
3.3 Tests in a spruce stand 

  Treetop positioning was tried out using image sets in scales 
1:8000-1:16000 (Table 1) in one managed spruce stand. Images 
in the scale of 1:6000 were left out because of the 
computational burden of template matching and scale 1:30000 

was omitted because individual treetops were not well 
measurable in that scale anymore. 
 

  
Figure 7. Results of treetop positioning for a circular test plot. 

Unfilled squares depict the candidate positions for 
correct hits (56), squares with a cross depict missed 
treetop positions (o = 2), and the crosses depict the 
commission errors (c = 1). The AI was [(58-2-
1)/58]×100 = 94.8%. The hit-rate in total stem 
volume was 97.1%, RMSE of ∆XY was 0.55 m, 
RMSE of ∆Z was 0.67 m with a slope coefficient of 
0.055 m per m of tree height. The errors in the DTM 
elevations had an RMS of 0.27 m.  

 
  One model tree was used in all trials, and the parameters 
defining the shape and position of the elliptic templates were 
kept fixed. The exact 3D position of the treetop was measured 
separately for each set of images using manual, monoscopic 
multi-image matching. It varied in Z because of the temporal 
mismatch of the May 2002 and June 2004 images and because 
of small orientation and observation errors. The search space 
was kept fixed with parameters fHDOM and HDepth. Tree heights 
from May 2002 were simply added +0.7 m, which corresponded 
to the average height growth of three summers. Parameters 
Rlimit and XYthin were tuned for obtaining optimal results in 
the AI-measure.  
 
Number of  images, 
scale, overlaps (%), 

focal length (cm) 

AI-
% 

c Mean 
∆Z,  
m 

RMS 
∆Z,  
m 

RMS 
∆XY, 

m 
2   1:8000 60/60 21 61.1 13 −0.04 1.29 0.70 
2   1:8000 60/60 21 77.9 9 −0.39 1.24 0.73 
4   1:8000 60/60 21 85.3 7 +0.06 0.76 0.68 
4   1:8000 60/60 21 88.4 5 −0.21 0.99 0.67 
6   1:8000 60/60 21 85.3 2 −0.08 0.72 0.61 
2 1:12000 70/60 15 82.1 10 +0.22 0.80 0.60 
3 1:12000 70/60 15 91.6 5 +0.13 0.70 0.56 
4 1:12000 70/60 15 88.4 4 +0.31 0.85 0.57 
3 1:14000 80/60 21 87.4 4 −0.09 0.83 0.68 
4 1:14000 80/60 21 87.4 7 −0.20 0.93 0.65 
6 1:14000 80/60 21 94.7 3 −0.15 0.87 0.60 
7 1:14000 80/60 21 93.7 2 −0.12 0.94 0.62 
2 1:16000 60/60 15 85.3 5 −0.25 0.87 0.66 
3 1:16000 60/60 15 88.4 3 +0.15 0.93 0.62 
4 1:16000 60/60 15 74.7 4 +0.42 0.98 0.58 

 
Table 1. Results of treetop positioning using different number 

of images in different scales. Plot S6 with 95 photo-
visible trees in a circular plot with radius of 20 m. 
fHDOM = 1.15, HDepth = 0.65.  

 
 Increasing the number of images usually improved the 
performance in the AI measure; however there were images in 



 

which the crown of the model tree was not seen against a clear 
background, which resulted in a poor cross-correlation image 
that deteriorated treetop positioning. The imaging geometry 
affects treetop positioning; best results were obtained with an 
image set that consisted of six images taken with normal-angle 
cameras at the scale of 1:14000. These images had even large 
overlaps and the elevation of the sun was higher (45o) during 
the photography. These factors affect occlusion and shading in 
aerial views that can impede image matching. It seems that the 
optimal scale for the type of spruce trees in plot S6 (heights 
from 12 to 22 m) is somewhere between 1:10000 and 1:15000. 
The images in 1:8000 had details that did not help in treetop 
positioning, but may be needed for example in species 
recognition with texture measures. 
 Parameter fHDOM corrects the local dominant height given by 
the CHM and thus defines the upper limit of search space. 
Similarly, the parameter HDepth defines the lower height and 
depth of the search space. Treetop positioning was tried at 
different values of these parameters. The optimal values for 
fHDOM were from 1.1 to 1.3, when HDepth was kept at 0.65. All 
performance measures showed best performance in this range. 
Here, the CHM was calculated using a 5 m grid, which may be 
too coarse in sparse stands. Similarly, the density of the lidar 
data will most likely affect the quality of the CHM, which needs 
to be considered in setting the value for fHDOM.  

fHDOM 
AI-
% 

c 
Mean 
∆Z, m 

RMS 
∆Z, 
m 

RMS 
∆XY, 

m 

Trend 
∆Z×h,  
m/m  

0.95 46.3 21 +1.03 1.35 0.71 0.33 
1.00  78.9 11 +0.88 1.28 0.69 0.31 
1.05 88.4 7 +0.48 0.92 0.70 0.24 
1.10  94.7 4 +0.21 0.74 0.69 0.18 
1.15 93.7 5 +0.06 0.74 0.70 0.16 
1.20 89.5 7 −0.09 0.80 0.70 0.17 
1.25 90.5 5 −0.18 0.86 0.71 0.16 
1.30 88.4 5 −0.21 0.85 0.71 0.14 
1.35 85.3 6 −0.32 0.91 0.71 0.13 
1.40 73.7 15 −0.39 0.93 0.72 0.13 

Table 2. Performance of the 3D tree top positioning algorithm 
for different values of the parameter fHDOM. Plot S6 with 95 
trees in a circular plot with radius of 20 m. Rlimit = 1.41, 
XYthin = 1.5 and HDepth = 0.65. Four images in scale 1:12000. 
 
   Parameter HDepth gives the lower height of the search space, 
and this parameter should be adjusted according to stand 
density since in dense stands only the tallest trees remain photo-
visible The dominant height of plot S6 was 20.6 m and the 
shortest discernible tree had a plot-level relative height of 0.53. 
However, the neighboring trees of this 10.6-m high tree had 
heights from 15 to 18 m, which means that the local relative 
height of this tree is approximately 0.6. Best results in AI-% 
were obtained with HDepth at 0.65. Commission errors ("short 
ghost trees") start to appear, if the search space is started from a 
too low height. If the search space is not deep enough, the 
heights of the short trees are overestimated and the averaging 
effect increases. These effects are seen in Table 3.  

  

HDepth 
AI-
% 

c 
Mean 
∆Z, m 

RMS 
∆Z, m 

RMS 
∆XY, 

m 

Trend 
∆Z×h,  
m/m  

0.45 64.2 31 +0.28 0.84 0.72 0.11 
0.50 75.8 22 +0.19 0.77 0.71 0.11 
0.55 88.4 10 +0.12 0.72 0.70 0.12 
0.60 90.5 8 +0.06 0.71 0.70 0.13 
0.65 93.7 5 +0.06 0.74 0.70 0.16 
0.70 92.6 3 +0.01 0.75 0.70 0.19 
0.75 89.5 3 −0.06 0.75 0.71 0.21 
0.80 89.5 2 −0.21 0.77 0.72 0.22 
0.85 82.1 3 −0.42 0.82 0.73 0.22 
0.90 69.5 2 −0.70 0.94 0.74 0.20 

 
Table3. Performance of the 3D tree top positioning algorithm 

for different values of the parameter HDepth. Plot 
S6 with 95 trees in a circular plot with a radius of 20 
m. Rlimit = 1.41, XYthin = 1.5 m, fHDOM = 1.15. Four 
images in scale 1:12000. 

 
4. DISCUSSION 

  Semi-automatic 3D tree top positioning of individual trees 
using image-matching is an alternative or complement to lidar-
based techniques in which trees are found by processing very 
high-resolution lidar data with from 5 to 30 points per m2. The 
method presented here combines optical images and low-cost 
lidar with emphasis on the use of images. The lidar-based 
surface models that approximate the canopy elevation and give 
the terrain relief accurately are a necessity for accurate height 
estimation, since the ground is seldom seen in images taken 
under leaf-on conditions. If the image-matching strategy here is 
compared with common techniques of stereo matching for 
surface modelling, it can be said that the lidar CHM and DTM 
provided a short-cut and gave a good approximation for the 
possible space of solutions, which normally are obtained by 
hierarchical image matching techniques and the coarse-to-fine 
strategy (Schenk, 1999). The results of the experiments gave 
support to the thesis that low-resolution lidar data can be used 
for delineating and bounding the search space in the canopy 
semi-automatically by adjusting the parameters that define the 
relative underestimation of the lidar-CHM (fHDOM) and the 
lowest relative height of the trees that expected to be visible in 
the aerial views (HDepth).  
 
  The implementation described here is not very robust against 
the variation in the size of tree crowns and the results presented 
here were good mainly because the test stand represented a 
rather regular forest. In stands with a large species mixture and 
variation in crown sizes, the results have been found inferior. It 
may be possible to incorporate the use several sample trees (or 
synthetic images of crowns; see Larsen, 1997) in image 
matching to improve the possibilities to detect and position 
trees of varying size. Similarly, it would be desirable, if the 
feature detector, template matching in this case, would yield not 
only the 2D image positions of tree tops but also symbolic 
information similar to what is utilized by an operator when the 
task is performed manually (species, crown size). It would then 
be possible to rule out automatically some of the unpreventable 
commission errors.  
 
 A semi-automatic approach seems to be the only solution to 3D 
tree top positioning using aerial views because of the nature of 
the problem. Occlusion and shading are inherently present in 



 

aerial views and trees vary in size, shape and radiometric 
properties. In the development of the methods presented here, 
the strategy has been to provide a system for measuring as many 
tree tops as possible automatically with a high positioning 
accuracy and a low commission error rate. After manual 
amendment the 3D tree tops provide tree heights and 2D image 
positions that can be used as seed points for the remaining tasks 
of species identification and measurement of crown dimensions, 
which can possibly be solved in the 2D image domain.  
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