
FREEFORM CURVES AND SURFACES IN DBMS: A STEP FORWARD IN SPATIAL
DATA INTEGRATION

S. Zlatanova1, S. Pu2 and W.F. Bronsvoort3

1GISt, OTB, Delft University of Technology, Delft, The Netherlands
s.zlatanova@tudelft.nl

2ITC, Enschede, The Netherlands

spu@itc.nl
3Computer Graphics and CAD/CAM, Delft University of Technology, Delft, The Netherlands

W.F.Bronsvoort@tudelft.nl

Commission IV/8

KEY WORDS: Databases, CAD, GIS, Data structures, Retrieval, Modelling, NURBS

ABSTRACT:

Spatial data integration is of great importance for many applications and particularly for emergency response. Besides the variety of
challenges in 2D, increasing attention is given to integration of CAD and 3D GIS models. Many indoor models (needed for
localisation and evacuation of people) or geological formations (needed for earthquakes or landslides) exist in CAD systems, but are
often difficult (or impossible) to integrate with GIS models. Nowadays, a process of converging functionality is observed, but still
many challenges remain. Amongst all these are the supported primitives. CAD software supports a broad range of primitives such as
cone, sphere, cylinder and free-form curves and surfaces (NURBS, B-Splines, Bezier), which are not present in the GIS world. Open
Geospatial Consortium has recognized the importance of freeform curves and surfaces and has included them in the Abstract
Specifications, but no GIS software supports them. This paper presents our design of six new freeform data types to be considered for
SQL Implementation Specifications.

1 INTRODUCTION

GIS and CAD systems used to differ significantly and this is
logical: the two types of software were designed for different
purposes. Initially, the intention of CAD systems was to provide
3D tools for design of relatively small models (constructions,
industrial parts, cars, etc.) in local coordinates systems. Since
this was design software, a lot of emphasis was given to editing
tools and effective 3D visualization. In contrast, GIS was
designed to represent the real world, and more specifically all
the tasks that used to be performed on paper maps. GIS,
therefore, was developed to maintain points, lines and polygons
with geographic coordinates and corresponding attributes, and
provide specific spatial analysis (very much application-
oriented). Many authors have discussed the similarities and
differences between CAD and GIS and suggested different way
to integrate them (Shepherd 1990, Schutzberg 1995, Plümer
2004, Oosterom et al, 2006). Technology- or application-
driven, many developments have been contributing to seamless
exchange of data between CAD and GIS, which is not yet
completely successful. Despite promising research results
(Arens et al 2005, Penninga 2005), the general problem, i.e.
lack of 3D primitives in GIS environments, remains. This paper
presents an approach of linking the two domains, by providing
3D complex data types at database level.

The developments in this paper follow the formal approach of
specifying geometry used in GIS domain, i.e. the Open
Geospatial Consortium (OGC). Formalization initiatives exist
also in the CAD domain (e.g. ISO 10303). However, this

standard concentrates more on product-related data, coverin
life-cycle aspects in design and manufacturing.

The formal geometry semantics for real-world objects (or
spatial features in OGC terms) is metrically and topologically
described in the OGC Abstract Specifications, (OGC, 2001),
which are identical with ISO 19107. The geometry of spatial
features is described by the basic class GM_Object, which is a
combination of a geometry and a coordinate reference system.
The Abstract Specifications do have an extended support of
primitives as they are used in CAD, including freeform shapes,
i.e. Bézier, B-spline, Cubic-spline, Polynomial spline and
NURBS1. In this paper we present research that goes one step
further. We design a data type for the SQL Implementation
Specifications (i.e. for an implementation in DBMS).

The rest of the paper is organised as follows. Section 2 gives a
brief definition of freeform shapes. Section 3 presents the
conceptual design of the data types. Section 4 presents some
implementations results. The last section concludes on the
obtained results and recommends further developments.

2 BÉZIER, B-SPLINE AND NURBS CURVES AND
SURFACES

There are several methods to represent freeform curves and
surfaces. Bézier, B-spline and NURBS methods are among the

1 This work has discovered an error in the description of NURBS in the
Abstract Specifications. The editor J. Herring has been notified and
corresponding corrections are to be introduced.

mailto:s.zlatanova@tudelft.nl
mailto:spu@itc.nl
mailto:W.F.Bronsvoort@tudelft.nl

most commonly used in practice, and are therefore considered
here too. Bézier, B-spline and NURBS curves and surfaces are
all represented by parametric functions (Piegl and Tiller 1997).
Parametric functions have several advantages over implicit
functions, i.e. functions of the form f(x,y,z)=0. Some of the
most important advantages are:

•

•

They have more degrees of freedom to model shapes
than implicit functions have.

Points on a curve or surface can be evaluated
reasonably fast by numerically stable and accurate
algorithms.

The simplest of the three methods to represent a freeform curve
discussed here is the Bézier curve. Its shape is basically defined
by a sequence of n+1 control points Pi (i=0..n) in 3D space. A
Bézier surface is, similarly, defined by a grid of (n+1)*(m+1)
control points Pi,j (i=0..n, j=0..m). One of the major problems
with Bézier curves and surfaces is that one usually wants to
keep the degree(s) low, i.e. preferably not higher than 3 or 4,
and therefore one has to model complex shapes by a
composition of several curves or surfaces. This, in turn, requires
specific configurations of control points to guarantee a certain
order of continuity.

B-spline curves and surfaces, which are generalizations of
Bézier curves and surfaces, do not have this problem, because
here the degree can be defined independently from the number
of control points, and continuity of the curve or surface is
realized automatically. A B-spline curve of degree p, or order
k=p+1, is defined by a sequence of n+1 control points Pi
(i=0..n) in 3D space, and a knot vector of n+k+1 knots. It is a
piecewise polynomial curve.

A B-spline surface of degrees p and q, or orders k=p+1 and
l=q+1, in u respectively v is, similarly, defined by a grid of
(n+1)*(m+1) control points Pi,j (i=0..n, j=0..m), and two knot
vectors U and V. The choice of the knot vectors has quite some
influence on the resulting shapes, including the degree of
continuity at the knots. In particular, one can take uniform or
non-uniform knot vectors; in a uniform knot vector, all knots
are chosen at equal intervals. See Piegl and Tiller 1997 for more
details.

Figure 1: NURBS curves (above) and surface (bellow)

Though Bézier and B-splines are widely used representations,
the most popular method for representing freeform shapes is
nowadays the NURBS method (Figure 1). NURBS are a
generalization of B-splines. The main difference between

NURBS and B-splines is that the control points of a NURBS
curve or surface each have a weight, which determines how
much the control point contributes to the curve or surface. This
gives extra degrees of freedom for modelling curves and
surfaces. The most important properties of NURBS curves are:

A NURBS curve is a piecewise rational polynomial
curve, and has the same continuity conditions at knots
as a B-spline curve.

•

•

•

•

•

NURBS curves are projective invariant, i.e. one can
apply affine and projective transformations by
applying these to the control points.

NURBS curves can exactly represent conic sections,
such as circles and ellipses.

NURBS curves are, just like B-splines curves, locally
modifiable and contained within the convex hull of
their control points.

Similar properties are valid for NURBS surfaces. In particular,
these can exactly represent quadratic surfaces, such as a
spherical surface.

Altogether, the NURBS method is one of the most powerful
methods for representing freeform curves and surfaces. NURBS
have been included in many geometric standards, and are
supported by many mainstream CAD systems.

3 CONCEPTUAL DESIGN

The most important information from the previous section for
modelling a new freeform data type is on the parameters that
have to be maintained for the data type. It is clear that NURBS
curves require the largest number of parameters, i.e. control
points, knot vector, degree and weights. Bézier curves require
only control points and degree. B-spline curves need a knot
vector in addition to the parameters of a Bézier shape.

In fact, all the parameters discussed in the previous section for
Bézier and B-spline curves and surfaces can be defined as
attributes in the classes. Bézier and B-spline are to be defined as
instances of GM_BsplineCurve (an abstract class for curves and
surfaces). A Bézier curve can be described as a B-spline curve
in which the knot vector contains a special sequence of values.
There are two other optional attributes, i.e. curveForm and
isPolynomial mentioned in the OGC Abstract Specifications,
which are used to indicate the type of curve to be approximated
and whether a curve is polynomial.

3.1 Bézier, B-spline and NURBS data types

The conceptual model has been created with respect to the
mathematical definitions, considering the OGC Abstract
Specifications and OGC Implementation specifications for SQL
(Figure 2). Optionally, the definition of the new NURBS data
type can strictly follow the existing OGC formalism by creating
a new class for NURBS. NURBS can be considered a
generalization of B-spline and Bézier and, consequently, the
NURBS class can be defined as a super class of
GM_SplineCurve. However, from implementation point of
view (and considering Simple Feature Specifications for SQL),
this approach is not that practical due to the following
considerations:

Being the most complex type, NURBS require more
parameters to be defined as attributes, which leads to
a complicated hierarchy between the three curves. It
will mean maintaining empty values for some
parameters.

Most of the algorithms (important for developing
functions and operations) are different for Bézier, B-
spline and NURBS curves and surfaces. A typical
example is computing the offset of NURBS curves
and surfaces.

•

Figure 2: UML schema of four implemented data types
(GM_BsplineSurface and GM_ BézierSurface are not shown)

Therefore six new classes have been created as sub-classes of
GM_SplineCurve: three for the curves and three for the
surfaces. GM_SplineCurve is the super-class for
GM_BézierCurve, GM_BSplineCurve and GM_NURBSCurve.
Control points, knots and degree are attributes of
GM_SplineCurve, and they are inherited by the other three
curves. GM_KnotVector is the class for knot vector, which is
used in GM_SplineCurve, GM_NURBSCurve and
GM_NURBSSurface. GM_PointArray and GM_WeightArray
are simple array types, which enumerate real values and are
used to represent correspondingly control points and weight
values in NURBS. GM_Trim represents the trim values for
GM_NURBSCurve and GM_NURBSSurface; trim values are
used to represent a part of a curve or surface.

3.2 Functions on freeform data types

Besides the data types, a set of operations on freeform shapes
has to be also available, but a formalism for this has still not
been developed within the GIS domain. OGC Abstract
Specifications discuss only derived topological operations and
suggest using three different formalisms for it (Boolean,
Egenhofer and Clementini operators). OGC Implementation
Specifications refer to an enlarged set of operators and
functions, including metric operators (distance, area, etc.),
proximity operators (within distance) and even creation of
aggregates, but they are specified only for simple features.
Assuming that freeform curves and surfaces should be dealt
with as any other geometry data type (although more complex),
operators similar to those for simple features have to be
provided. This is to say that operations for validation, detecting
topological relationships, metric computations (length, distance,
area, etc.), proximity (distance between two features, objects
within distance, etc.), operations creating new geometries

(intersection, difference, union, buffer, etc.) might be
considered.

Other operations that are important for freeform curves and
surfaces are rotation, translation and scaling. Such functions are
needed for integrating newly designed constructions (usually in
local coordinate systems) with real world models (using
geographical coordinate systems). Conversion functions
between Bézier, B-spline and NURBS curves will be
appropriate as well, because different CAD applications support
different freeform data types.

The question which functions should be available at DBMS
level is very relevant (Zlatanova and Stoter 2006). On the one
hand, DBMS are not designed for heavy computations. On the
other hand, various complex algorithms are already available in
the CAD domain. In fact, the same strategy should be followed
for freeform shapes as for simple features: generic functions
have to be available in DBMS, and complex computations at
application level. For example, an important operation is curve
evaluation, but the algorithms are complex and they are
available in nearly all CAD systems (AutoCAD, MicroStation).

The functions developed within this research are relatively
simple and aiming at demonstrating the use of the developed
data types. They include functions for: validation, simple
transformations, conversion between different freeform shapes,
computing distance between two freeform curves, and retrieving
parameters of NURBS such as knots, control points and their
number.

The validation function for NURBS is derived from the
mathematical description of the curves and surfaces and checks
whether all needed parameters are present, i.e. coordinates for
control points, degree value, weight values and knot vector.
Moreover the following conditions should also be satisfied:
degree > 1, number of control points >3, degree = number of
knots - number of control points – 1, number of weight values is
equal to the number of control points, each weight value > 0,
knot vector is non-decreasing and has more than 1 knot, and
upper trimming value > lower trimming values.

4 IMPLEMENTATION IN ORACLE SPATIAL

We have selected to implement the new geometries as
individual data types as recommended by OCC specifications,
and therefore outside the SDO_GEOMETRY model. There are
two major advantages of mapping the conceptual model into
separate freeform data types: 1) the data types are very clear and
explicitly defined, and 2) little redundant information is stored
since every data type has its own attributes. Adapted data types
can be easily inherited from existing prototypes, and functions
on prototype types will be also operational for inherited types.
This object-oriented mechanism is quite important for
developing new applications. But there are also a few
disadvantages. For example, different kinds of geometries have
to be stored in separate table columns. This may lead to a
practical inconvenience. A model normally consists of different
geometry types, and it is desirable to have all the information
stored in the same table column (as is the case with
SDO_GEOMETRY). Furthermore, certain programming codes
are required to create new data types. For example, Java or C or
PL/SQL code is required in Oracle Spatial for user-defined data
types.

4.1 Implementation

New data types can be designed in Oracle using natively
supported data types, such as object types, REFs, VARRAYs,
and Nested tables. Here we are only interested in object types

Table created. and VARRAYs. The user-defined data types in Oracle can be
declared using the SQL statement CREATE TYPE. The
implementation of the declaration can be PL/SQL, Java or C++.
In our implementation, Java has been selected due to the good
support of Oracle Spatial. The overall procedure for creating
data types using Java can be subdivided into three main steps:
1) Java class creation, 2) loading of the classes in Oracle spatial,
and 3) declaring the data type in Oracle using the SQL
statement CREATE TYPE. The mapping between Java classes
and Oracle Spatial data types is quite straightforward: Java
classes map to Oracle spatial data types as Java attributes map
to data type attributes. Further details on the Java
implementation can be found in Pu (2005).

A B-spline curve with ID=3, degree equal to 4, 5 control points
and uniform knot vector is inserted in the table TEST1;

SQL> insert into test
values(3,GM_BSplineCurve(4,GM_PointArray(1,2,10,
1,2,3,9,2,3,5,7,6,4,4,4,9,0,4)
,GM_KnotVector(Vector(0,0,0,0,0,0.5,1,1,1,1,1),N
ULL),NULL));
1 row created.

SQL> select * from test1;
ID

GEOM(DEGREE, CONTROLPOINTS, KNOTS(KNOTS,
WEIGHTS), ISPOLYNOMIAL)

The functions on freeform data types have been implemented
either as SQL methods (unary operations) or as SQL functions
(binary operations). The implemented unary operations are:
Num, NumV, NumU (number control points of curve and
surface in u and v directions), Degree, DegreeV, DegreeU
(degree of curve and surface in u and v directions), Cpoints (list
of control points), IsClosed, Centroid (mass point of control
points), ConvexHull (convex hull of control points) and
BoundingBox (MinMax Bounding Box of control points). The
transformation functions are Rotate, Translate and Scale as the
computations are with respect to the control points. The
implemented binary functions are: DistanceS2S (distance
between surfaces), DistanceC2C (distance between two curves)
and AnyIntersect. The distance functions are implemented as
the distance between the centroids of the geometries. The
function AnyIntersect checks whether two freeform geometries
may intersect with each other. This operation is implemented by
checking whether their convex hulls of the control points
intersect (Figure 3). If convex hulls do not intersect, then the
two freeform geometries do not intersect either; otherwise they
might or might not intersect.

--

3
GM_BSPLINECURVE(4,
GM_POINTARRAY(1,2,10,1,2,3,9,2,3,5,7,6,4,4,4,9,0
,4),
GM_KNOTVECTOR(VECTOR(0,0,0,0,0,0.5,1,1,1,1,1),
NULL), NULL)

Let us now create a second table TEST2 with 2 columns. The
column GEOM is of the freeform surface type:
GM_NURBSSurface.

SQL> create table test2 (id number, geom
GM_NURBSSurface);
Table created.

A NURBS surface is inserted into the table TEST2. The
parameters of this NURBS surface are: 3 control points in u
direction, 5 control points in v direction; degree 2 in u direction;
degree 2 in v direction; knot vector in both u and v directions;
15 weight values; no trimming value.

SQL> insert into test2 values(1,
GM_NURBSSURFACE(3, 5, 2, 2,
GM_POINTARRAY(5.1469375, 1.83903125, 1. 744375,
5.14721875,2.24558333, 1.722375, 5.1475, 2.421,
1.98245833, 5.40390625,1.83903125,1.744375 ,
5.371125, 2.2166875, 1.759125, 5.33834375,
2.421, 1.9854375, 5.660875,1.83903125, 1.744375,
5.5950 3125, 2.18780208, 1.795875, 5.5291875,
2.421, 1.98841667, 5.910875,1.83903125,
1.744375, 5.81545833 , 2.15890625, 1.832625,

Figure 3: Example of AnyIntersect: the convex hull of the
curves is used

5.72003125, 2.421, 1.99139583, 5.910875,
1.83903125, 1.994375,5.910875, 2.1 3002083,
1.994375, 5.910875, 2.421, 1.994375),

4.2 SQL examples with created freeform data types

Following we give several examples to show how freeform data
types in Oracle can be manipulated using SQL commands. The
following SQL statements show the components of the
GM_NURBSCurve data type

GM_WEIGHTARRAY(1, 1, 1, 1, 1, 1, 1, 1, 1,
.707106781, .853553391,1, 1, 1, 1),
GM_KNOTVECTOR(VECTOR(0, 0, 0, 1, 1, 1), NULL),
GM_KNOTVECTOR(VECTOR(0, 0, 0, .5, .5, 1, 1, 1),
NULL),NULL,NULL)); SQL> desc GM_NURBSCurve
1 row created. GM_NURBSCurve extends GM_SPLINECURVE

Name Type The implemented unary operation NumU supplies the number
of control points in the u direction: --- ------

DEGREE NUMBER
CONTROLPOINTS GM_POINTARRAY SQL> select a.geom.NumU from test2 a;
KNOTS GM_KNOTVECTOR geom.NUMU
WEIGHTS GM_WEIGHTARRAY ----------
TRIM GM_TRIM 3

A table TEST1 is created with two columns ID and GEOM. The
column GEOM is intended for GM_BsplineCurve. The implemented unary operation DegreeV applied to the same

table gives the ID of the NURBSsurface(s) with degree 2 in the
v directions: SQL> create table test1 (id number,geom

GM_BSplineCurve);

SQL> select a.id from test2 a where
a.geom.degreeV=2;
ID

1

The following SQL statement checks whether the B-spline
curve from the table TEST1 is valid:

SQL> select a.geom.validation() from test1 a;
A.GEOM.VALIDATION()

1

Value 1 means that the curve is valid (with respect to the rules
defined in Section 3.2).

Let us now demonstrate the validation function for three
NURBS curves.

SQL> create table test3 (id number, geom
GM_NURBSCurves);
Table created.

SQL> insert into test
values(1,GM_NURBSCurve(6,Null,Null,Null,NULL));

1 row created.

SQL> insert into test
values(2,GM_NURBSCurve(4,GM_PointArray(1,2,3,1,2
,3,9,2,3,5,7,6,4,4,4,9,0,4),
GM_KnotVector(Vector(0,1),NULL),GM_WeightArray(1
,1,1,1),NULL));

1 row created.

SQL> insert into test
values(3,GM_NURBSCurve(3,GM_PointArray(1,2,10,1,
2,3,9,2,3,5,7,6,4,4,4,9,0,4),G
M_KnotVector(Vector(0,0,0,0,0,0.5,1,1,1,1,1),NUL
L),GM_WeightArray(1,1,1,1,1,1)
,NULL));

SQL> select id, a.geom.validation() from test a;

ID A.GEOM.VALIDATION()
---------- ------------------
1 0
2 0
3 0

The first NURBS curve is invalid (return value 0) because an
insufficient number of parameters is stored; the second is
invalid because the number of weights is not equal to the
number of control points ((length of GM PointArray)/3); the
curve with number 3 is invalid because the third geometry rule
(relation between degree, number of control points and number
of knots) is violated.

4.3 Visualisation in CAD software

The freeform data types in Oracle Spatial can also be accessed
by CAD software. The way to do this (when no native support
is available yet) is to use an application that ‘translates’ the
internal CAD representation into the developed data types (and
vice versa) via a database connectivity bridge. We have
experimented with Microstation and AutoCAD. In the case of
Microstation, the tools used were Java Microstation Developing
Language (JMDL) (Bentley, 2005) and Java Database
Connectivity (JDBC) Bridge (Oracle, 2003a); for AutoCAD
these were ObjectARX (C++ based language), (AutoCAD,
2005) and Open Database Connectivity (ODBC) bridge (Oracle

2003b). Taking Microstation as example, a freeform model can
be imported from Microstation to Oracle Spatial as follows:

1. A JMDL program checks all the shapes in the
Microstation model, and constructs an instance of the
corresponding freeform class (if a freeform geometry
is found).

2. Instances of freeform classes in JMDL are
reorganized according to the format of freeform types
in Oracle, and inserted into Oracle using JDBC
Bridge.

Importing data types from Oracle Spatial to Microstation is just
the other way around. The procedure is similar for AutoCAD
and Oracle Spatial. Further details on implementation can again
be found in Pu (2005).

Figure 4: The Dutch Flower festival, Haarlemmermeer 2002

The data types have been tested with the building of the
Netherlands pavilion, built for the Flower Festival 2002 in
Harlemmermeer (Figure 4). The building was originally
designed in Maya, using 6 large NURBS surfaces, several other
smaller ones, and a number of planes. The model was imported
in Microstation using the IGES file format. The data type used
for storage of the geometries is GM_NURBSSurface. The
planes are represented by the SDO_GEOMETRY type polygon.

Figure 5: The 3D model retrieved in Microstaion from Oracle

Spatial.

As mentioned before, the new data types cannot be stored in the
same column containing the SDO_GEOMETRY types.
Therefore the model was stored in two different tables:
SIMPLE_GEOM and NURBS_GEOM. The polygons and
complexes of them are stored in the table SIMPLE_GEOM and
the surfaces in another table NURBS_GEOM. The geometries
of both tables were successfully retrieved and visualised in
Microstation and AutoCAD (Figure 5).

5 CONCLUSIONS AND RECOMMENDATIONS

We have shown that NURBS is a very general representation of
freeform shapes, and we recommend it to be considered for
including in the Implementation specifications of OGC.
NURBS, Bézier and B-splines are already recognized in the
CAD domain as flexible geometries for modelling new designs.
These geometries can also play an important role in GIS for
maintaining complex surfaces obtained from reconstruction of
real-world objects.

Tests have convincingly demonstrated that appropriate data
types for efficient management of freeform curves and surfaces
can be created at DBMS level. The new data types have been
prototyped for Oracle Spatial, but outside the Oracle Spatial
SDO_GEOMETRY model, which means that they can be
readily used for any spatial DBMS (PostGIS, MySQL,
Informix, etc.). The design is compliant with OGC Abstract
Specifications.

This research is only the first step toward managing freeform
data types in a spatial DBMS and GIS. Many issues have to be
further investigated. For example, the validation rules for
freeform curves and surfaces have to be further specified. The
current implementation of validation functions is derived
straightforward from the mathematical definitions.

Further research is needed to determine relevant functions for
support at DBMS level. The implemented set of prototype
functions is relatively basic and not sufficient. For example, the
implemented function AnyIntersect uses the convex hulls of the
control points of two shapes to investigate the intersection.
More accurate conclusions on the intersection of the shapes
would require exhaustive computations. A separate data type for
error messages would be of great help since the freeform shapes
are much more complex than the simple features. It can be
included as an error number attribute and an error message
attribute within the data type.

Although NURBS can represent conic sections (circle, ellipse,
hyperbola, parabola), still separate data types have to be
designed to represent these simple shapes in their simplest form.
The parameters needed to store, for example, a circle as a
NURBS shape are considerable. However, the properties of
NURBS still can be used to perform operations only on NURBS
data types.

This research did not consider indexing of freeform shapes. As
it is well know, a spatial index can make spatial queries much
more efficient. The current spatial indexing mechanism of
DBMS works on existing simple geometries and cannot be used
for prototype data types. Further investigations are needed to
develop an indexing mechanism for freeform geometries.

The data types do not yet resolve modelling of freeform shapes
in GIS applications. Presently the only possibility is
approximation of freeform shapes with simple features (sets of
lines and polygons) only for visualization with 3D GIS models.
Alternatively, GIS models stored in DBMS can be integrated
with CAD freeform models and further explored (and modelled)
in CAD applications. In this manner, a first real integration of
typical CAD shapes with GIS shapes can be realized.

ACKNOWLEDGEMENTS

We are thankful to the developers of Bentley Inc for their
support and constructive discussions. This research was
performed at the Geo-Database Management Centre at GISt,
OTB, Delft University of Technology, The Netherlands.

REFERENCES

ARENS, C., J.E. STOTER, AND P.J.M. VAN OOSTEROM, 2005,
Modelling 3D spatial objects in a geo-DBMS using a 3D
primitive. Computers & Geosciences, 2, pp. 165-177

AUTODESK, 2005, ObjectARX Developer’s Reference.
Available online at www.autodesk.com (accessed 02.01.2006)

BENTLEY, 2005, JMDL Developer’s Guide, Available online at
www.bentley.com/support (accessed 02.01.2006)

BREUNING, M. AND S. ZLATANOVA, 2006, 3D Geo-DBMS. In
Large-scale 3D Data Integration: Challenges and
Opportunities, Zlatanova and Prosperi (Eds.), pp. 88-113 (Boca
Raton: Taylor&Francis, 2006)

OGC, 2001,OpenGIS Consortium, The OpenGIS Abstract
Specification, Topic 1: Feature Geometry (ISO 19107 Spatial
Schema), OpenGIS Project Document Number 01-101,
Wayland, Mass., USA.

OOSTEROM, VAN P., J. STOTER, W. QUAK AND S. ZLATANOVA,
2002, The balance between geometry and topology. In 10th
International Symposium on Spatial Data Handling,
D.Richardson and P.van Oosterom (Eds.), pp. 209-224 (Berlin:
Springer-Verlag, 2002)

OOSTEROM, VAN P., J. STOTER, AND E. JANSEN, 2006. Bridging
the worlds of CAD and GIS. In Large-scale 3D Data
Integration: Challenges and Opportunities, Zlatanova and
Prosperi (Eds.), pp. 9-36, (Boca Raton: Taylor&Francis, 2006)

ORACLE, 2003a, Oracle JDBC developer’s guide 10g release 1.
Available on-line at
http://www.oracle.com/technology/documentation, (accessed
02.01.2006)

ORACLE, 2003b, Oracle ODBC developer’s guide 10g release 1.
Available on-line at
http://www.oracle.com/technology/documentation, (accessed
02.01.2006)

PENNINGA, F., 2005, 3D Topographic Data Modelling: Why
Rigidity Is Preferable to Pragmatism, in ‘Spatial Information
Theory’, Cosit’05’, Vol. 3693 of Lecture Notes on Computer
Science, Springer, pp. 409–425

PIEGL, L. AND TILLER W., 1997, The NURBS Book 2nd Edition,
Springer-Verlag

PLÜMER, L., 2004, Bridging the gap between GIS and CAAD
— geometry, referencing, representations, standards and
semantic modelling, GIM International, 12–15, July 2004.

SCHUTZBERG, A., 1995 Bringing GIS to CAD — A Developer’s
Challenge, GIS World, 8 (5), pp. 48–54

SHEPHERD, I.D.H., 1990, Mapping with desktop CAD: a critical
review, Computer-Aided Design, Vol. 22(3), pp. 136-150

PU, S. 2005, Managing Freeform Curves and Surfaces in a
Spatial DBMS, MSc Thesis, TU Delft, 2005, 77 p. Available at
http://www.gdmc.nl/publications (accessed 02.06.2006)

ZLATANOVA, S. AND J. STOTER, 2006, The role of DBMS in the
new generation GIS architecture. In Frontiers of Geographic
Information Technology, S.Rana and J. Sharma (Eds.), pp. 155-
180 (Berlin: Springer-Verlag, 2006)

http://www.autodesk.com/
http://www.bentley.com/support
http://www.gdmc.nl/publications

