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ABSTRACT 
 
There are several reasons why public health communities do not use information from Earth observations routinely. Most notable 
among them are: (1) they need science results that verify, validate, and benchmark the statistical and economic benefits from these 
exotic inputs; and, (2) they lack the systems that would deliver such reliable information economically and swiftly in their already 
heavy workloads. The Public Health Applications in Remote Sensing (PHAiRS) project is engineering elements of an enhanced 
disease surveillance system for dust-related respiratory diseases in the desert southwest of the United States. Several Earth 
observations (EO) data sets are replacing parameters traditionally used in dust forecasting models to improve simulations of 
particulate matter entrainment, timing of entrainment, concentrations, and subsequent movement. Output from the enhanced dust 
forecasting model is nested within a regional version of the National Centers for Environmental Prediction (Eta version) model 
(NCEP/Eta). Simulations using the enhanced dust model have been compared to actual dust episodes recorded by NCEP/Eta’s 
atmospheric patterns and by dust data from a ground-based Continuous Air Monitoring System (CAMS). The simulations were re-
run after replacing the land cover layer with land cover classes derived from MODIS (MOD-12). For the CAMS test cases, this 
resulted in a significant improvement in dust episode patterns. Additional EO data assimilations investigate whether further 
improvements can be gained by replacing the topographic layer with higher resolution digital elevation data from SRTM, dust-
generating areas derived from MOD-15’s Fraction of Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI) data, 
soil moisture data from AMSR-E, and aerodynamic surface roughness. Ongoing simulations aim eventually to measure hourly, 
daily, and weekly model improvements from EO data replacements that are refreshed on a weekly, seasonal, or inter-annual basis. 
The overall aims are to: (a) combine the measured improvements from several EO data series that optimize dust forecast scenarios 
for public health authorities; (b) benchmark each step in the process to document the benefits of EO data inputs into respiratory 
health care; and (c), develop retrospective and forecast statistics from model runs that boost system reliability and user confidence. 
 

1. INTRODUCTION 

Medical communities, governments, and societal best interests, 
demand new disease surveillance systems that link health care 
reporting at the individual and community levels (disease 
detection and transmission) with robust relational databases 
(socioeconomics, demographics), and with global and regional 
Earth observations data (weather forecasts, disaster 
monitoring). Modern medical diagnoses, treatment, reporting, 
and containment in the face of potentially devastating 
emerging infectious diseases like avian flu (H5N1), require 
readily available historical information, as well as forecasts of 
future conditions that might accelerate an epidemic. There is 
widespread interest in disease surveillance systems covering a 
wide array of communicable diseases and medical conditions 
that allow health care professionals to query databases for 
similar cases reported locally, regionally, and globally. These 
new systems represent the enabling technology for and 
protecting, the lives of people, and thereby the economies and 
resources of nations. 
 
1.1 Global Agenda 

No emerging infectious diseases have received more attention 
from governments, international bodies, or the medical and 
scientific communities than SARS and Avian Flu. They have 
the ability to become global epidemics at lightening speeds. 

Other diseases like malaria, polio, and HIV/AIDS are of 
immense concern; and relative new-comers like West Nile 
Virus are receiving close scrutiny. What they all have in 
common is that their transmission is related to both social and 
environmental factors, some of which are well known or 
suspected, but few of which, until recently, have figured 
prominently in medical planning, preparedness, or mitigation. 
 
As evidence for global climate change mounts, and as the 
global economic and medical consequences of natural disasters 
become better understood, it is clearly in the best interests of 
humanity to share health information in such ways as to 
connect even the most remote areas of the world. It is now 
commonly accepted among people everywhere that enormous 
societal benefits will accrue from the combined capabilities of 
remote sensing, geographic information systems, and position, 
navigation, and timing (PNT) technologies, especially those 
applied to disease surveillance. Toward this end, the Group on 
Earth Observation (GEO) has been joined by many concerned 
nations, international bodies, and associated professional 
societies to serve as a nexus for addressing these common 
needs in context of geospatial analysis and Earth observations. 
These needs encompass, among many others: 

•  vector- and raster-based technology; 
•  system and data interoperability; 
•  surveys of user needs for geospatial data 



 
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX 

•  mechanisms for more rapid data and information 
sharing; and, 

•  plans for disaster and public health response. 
 
1.2 PHAiRS 

Most of the rich literature describing the roles and benefits of 
EO data in public health is based on anecdotal inferences de-
rived from traditional image interpretation. Public health 
communities cannot rely on this evidence because they need 
science results that verify, validate, and benchmark the statis-
tical and economic benefits from these exotic inputs; and be-
cause they lack surveillance systems that can deliver reliable 
information economically and swiftly. An effective infrastruc-
ture for data discovery and sharing does not yet exist. 

To begin developing an infrastructure, the Public Health 
Applications in Remote Sensing (PHAiRS) project is 
engineering an integrated vector- and raster-based system that 
can be accessed as a web-based service by health care 
professionals. It is initially designed for the desert region of 
the American southwest where several respiratory conditions 
and diseases occur. PHAiRS has three parallel thrusts: (1) 
assimilate EO data into an atmospheric dust model; (2) iterate 
model inputs to optimize model outputs; and, (3) undertake a 
beta-test program with public health authorities to assess 
relationships between dust episodes and increased respiratory 
complaints. 
 
Project documentation and results to date can be found in 
Morain and Budge, 2006; Morain, 2006; Budge et al., 2006; 
Morain and Sprigg, 2005. This paper describes the general 
strategy for geospatial and EO data assimilation, and the 
experimental design for assessing quality of model outputs. 
 

2. DATA ASSIMILATION 

2.1 Definitions 

Data assimilation and data fusion are different processes for 
integrating or enhancing geospatial databases with EO data. 
Provisional definitions for the PHAiRS project are:  
 

• Assimilation: The process of replacing selected static 
parameters in an Earth system model with digital 
pixel values from Earth observation data to improve 
the model’s performance and convert it into a more 
dynamic (forecasting) form without changing its 
intended purpose. 

 
• Fusion: The process of including EO image products (at 

any of several levels of processing) into a GIS 
architecture in such a way that both vector and raster 
data sets are geospatially registered at a specified 
scale. This requires sub-setting, re-projection and 
rescaling of fused data. 

 
2.2 Models 

Most models available for Earth system science, are not 
designed for EO data. Compatibility issues arise, among which 
are: (a) measurement units, (b) x,y,z,t resolution, (c) map 
projection and ease of re-projection to fit model requirements, 
(d) file formats, (e) error and error propagation, and (f) validity 
of the data set as a replacement input. These issues must be 

reconciled before assimilation of each candidate data set can 
be performed, and before iterations of multiple data sets can be 
statistically evaluated. It is assumed that overall improvements 
in model outputs will result from accumulated incremental 
improvements from each assimilated data set (Morain, 2006; 
Morain and Budge, 2006). 
 
PHAiRS employs the National Centers for Environmental 
Prediction (Eta version) regional weather forecasting model 
(NCEP/Eta) for mapping weather events in America’s desert 
southwest. Within this model, the project has nested the Dust 
Regional Atmospheric Model (DREAM) developed by 
Nickovic et al. (2001), Janjic (1984), Mesinger et al. (1988) 
and Janjic (1994). Both models have been adapted for use in 
the region, and their performance has been tested and 
validated using observed weather patterns and dust events 
(Morain, 2006, Morain and Sprigg, 2005; and Yin et al., 
2005). DREAM is a desert dust cycle model consisting of two 
modules: (a) an atmospheric simulator; and (b) a dust cycle 
simulator. The atmospheric simulator parameters include land 
surface processes, turbulent mixing, convection, large-scale 
precipitation, lateral diffusion, and radiation. 
 
The dust cycle module simulates dust production, advection 
and turbulent diffusion, and dry and wet deposition (Nickovic 
et al., 2001; Shao et al., 1993; Georgi, 1986). The module 
consists of three static surface parameters.  

•  soil texture classes at 2’x2’ resolution (Cosby et al., 
(1984); 

•  vegetation cover at 10’ resolution (Olson World 
Ecosystems); and, 

•  elevation at 1x1 km resolution (GTOPO30). 
Two of these, land cover and elevation, are candidates for 
replacement by EO data products assimilated into DREAM 
 
2.3 Process 

The disease surveillance system in PHAiRS is designed for the 
stated needs of epidemiologists, school nurses, doctors, and 
veterinarians, among others (Figure 1). The objective is to 
augment traditional medical data and information (health 
questions) with web-based services that provide a geographical 
and environmental context for the broader implications of 
reported cases that might otherwise be static, individual case 
records. PHAiRS is modelling primarily mineral dust and 
respiratory diseases, but water-borne and vector-borne diseases 
like malaria and typhoid can be modelled also. In concept, the 
web-based service system would not only provide doctors and 
clinicians with a rapid response capability at the case level; 
but, would also provide public health authorities with longer 
range forecast capabilities that protect the public at large. 
 



 
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 34, Part XXX 

 
 

Figure 1. Disease surveillance system concept 
The process is familiar to geospatial analysts. Conceptually, 
the aim is to select candidate parameters from the array of data 
types that drive DREAM and to physically replace them with 
higher spatial and temporal resolution data derived from space 
sensors (Figure 2). The goals are to: 

•  replace selected trays in the rack with regularly 
refreshed EO digital data from the “terrain,” “surface 
conditions,” and “atmospheric” parameters that drive 
DREAM; 

•  improve model output without altering the validity of 
the model’s original function; and, 

•  convert the model to a more dynamic forecast. 
 

 
 

Figure 2. Concept for data assimilation into models 
 
2.4 Sample Model Runs 

The process just described has challenges aside from the data 
quality and compatibility issues described in Sec. 2.2. Included 
are: (a) how to measure small incremental model improve-
ments using single parameter replacements; and, (b) how to 
measure improvements using sequences of model parameters. 
Table 1 shows a series of model runs using different sets of as-
similated data. Replacement parameters were: MOD-12 (Terra 
MODIS-12), 1km spatial resolution land cover; SRTM (Shuttle 
Radar Topography Mission), 1km spatial resolution elevation; 
NASA z0, aerodynamic surface roughness (Blonski et al., 

2005); FPAR (Fraction of Photosynthetically Active Radia-
tion), class 253, 1km spatial resolution barren or sparsely 
vegetated; and AMSR-E (Advanced Microwave Sounding Ra-
diometer-E), 0.26 degree spatial resolution soil moisture.  
 

Run # MOD-12 SRTM NASA z0 FPAR AMSR-E 
Baseline No assimilated EO data 
Run 2c ü     
Run 4a ü ü    
Run 5a ü ü ü   
Run 5b ü ü ü   
Run 6a ü   ü  
Run 10a ü ü ü  ü 
Run 15a ü    ü 
 
Table 1: NCEP/ETA-DREAM model runs 
 
Run 10a (bold/italic) was used to generate the statistics given 
in Table 2. Their graphic representation is given in Appendix 
A. Table 2 compares three parameters in DREAM before and 
after EO data assimilation. The agreement indices in the 
bottom row indicate that only a slight improvement is achieved 
for wind speed and wind direction by assimilating EO data, but 
that a significant improvement is achieved in the surface 
temperature parameter. Overall, the higher index values 
improve the ability of the model to forecast dust entrainment. 
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Table 2. DREAM performance before and after EO data 

assimilation; values in italic are before EO data 
assimilation; other values are after assimilation. For 
the equations M = modeled; O = observed 

 
Appendix A is a series of charts comparing agreement indices 
for surface wind speeds, wind directions, temperatures, PM10 
concentrations, and PM2.5 concentrations as modelled for two 
dust storms over New Mexico and Arizona on December 8-10 
and December 15-16, 2003. The charts show for example, that 
run10a had similar model performances in surface wind speed, 
wind direction, and temperature as the other model runs 
having one or more NASA sensor data sets included. For case 
2, run10a (which included all of the assimilated EO data 
products except FPAR) showed better performance in surface 
wind than run6a or run15a. However, run10a did not show 
better performance in PM10 and PM2.5 compared to other model 
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runs that used fewer EO data products. The PM2.5 model 
performance of run10a was not as good as run2c, which only 
replaced the static land cover parameter with a higher 
resolution MOD-12 product. It is apparent that non-linear 
interactions of data sets with model performance exist. 
Consequently, a thorough experimental design is required to 
understand the interactions. 
 

3. EXPERIMENTAL DESIGN 

PHAiRS has adopted an experimental design to address non-
linearities and to assess quantitatively its model runs. Among 
the challenges in this design are that: 

•  newer versions of EO data products are constantly being 
released, most without adequate metadata to assess 
the impacts of their use in a given model, or to 
determine whether the older version should be 
retained; 

•  models, themselves, are being upgraded and refined as 
progress in data inputs improve their performance; 

•  new sensor and platform technologies lead to previously 
unavailable data sets whose candidacy for 
assimilation must be cycled in. 

 
To date, PHAiRS has focused on assessing six EO data 
products as candidates for assimilation into NCEP/Eta-
DREAM. These are MOD 12 (land cover); SRTM-30 
(elevation); AMSR-E (soil moisture); aerodynamic surface 
roughness (derived from MOD12); MOD-11 (soil 
temperature); and AMSU-A (humidity). When these products 
are adequately prepared for assimilation, they will be run 
sequentially in non-duplicating combinations to measure their 
affect on the performance of the nested model. This will 
require six sets of model runs as follows 

•  Iteration I: 6 model runs, 1 parameter at a time; 
•  Iteration II: 15 runs, 2 parameters at a time; 
•  Iteration III: 10 runs, 3 parameters at a time; 
•  Iteration IV: 6 runs, 4 parameters at a time; 
•  Iteration V: 3 runs, 5 parameters at a time; and, 
•  Iteration VI: 1 run, all six parameters. 

 
4. CONCLUSIONS 

The need for geospatial data in disease surveillance systems 
has been established at the highest levels in public health 
communities. There is growing interest also in linking EO data 
and products to these systems as a means for up-dating local, 
regional, and global environmental conditions, especially 
short-lived phenomena that bear directly on specific disease 
transmission mechanisms. Research results are making 
progress in developing web-based services that augment rapid 
data and information sharing, but it will take additional 
research effort to bring these capabilities to operational status. 
 
It is necessary to convince public health authorities that 
disease surveillance systems enhanced with geospatial data 
provide useful, accurate, and verifiable information. Without 
statistical evidence and validation, information derived from 
relational databases, including those employing satellite 
observations, is still too novel to warrant more than research 
interest. Practicing medical and health professionals are still 
reluctant to make decisions on the basis of geospatial 
technologies because the risks of making bad decisions 
currently out-weigh any perceived benefits. Public health 

organizations will more than likely need to add qualified 
information technologists to their staff to take full advantage of 
emerging digital communication systems. 
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7. APPENDIX A: GRAPHIC RESULTS OF MODEL 
RUNS FOR TWO OBSERVED DUST STORMS 
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