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ABSTRACT:

Trajectories extracted from an object tracker are a valuable source ofinformation to derive describing parameters for traffic situation
analysis. In order to ensure the quality of these parameters, the tracker’s output has to be evaluated. This is a challenging task, since
the choice of the metrics and the choice of the matching — of ground truth tracks and the output of the tracker — influences the
results considerably. We present the evaluation of a Kalman-filter basedtracker using ground truth data of traffic scenes. The Kalman-
Filter is object space based and uses observations obtained from multiple camera views. In the evaluation, a two level approach is
employed. The first level assesses the ability to correctly locate the objects. The second one evaluates the consistent identification of
objects throughout the scene. Matching of tracks is done using a spatial overlap measure. Subsequently, several metrics are applied,
whose properties are outlined. The results for simulated and real trafficdata are presented. Finally, the implications of aggregation and
normalization of these metrics in order to estimate the algorithm’s performance are discussed.

1 INTRODUCTION

Traffic scene analysis using image sequences is an important ap-
plication of image processing and research in this field has re-
sulted in a wealth of techniques (Kastrinaki et al., 2003). The
goal of this analysis is the derivation of traffic parameters. In
order to do this objects have to be tracked in the scene. These ob-
jects possess a wide range of behavior and appearance, ranging
form vehicles that drive, turn or stop at traffic lights to pedestri-
ans strolling around. Often a multitude of objects is present at the
same time and due to the restrictions in camera placement they
tend to occlude each other in the image sequence. The coaction
of these conditions mentioned turn the analysis of such scenes
into challenging task.

A necessary precursor to object tracking is their detection. Of-
ten, this is performed by preliminary image processing providing
information about detected objects like positions, shape, color
or salient features. The task of object tracking is the integra-
tion of these possible erroneous data by producing trajectories
of the tracked objects. In traffic scenarios, these are used to cal-
culate traffic parameters as speed measurement or as input data
for congestion or incident detection. As quality assurance is an
essential requirement, object tracker’s output has to be evaluated.
Despite being object tracking an advanced field in computer vi-
sion, surprisingly no standard for evaluation has been developed
yet. We present here shortly the evaluation framework devel-
oped in (Smith et al., 2005), incorporate some metrics consid-
ered as useful, and give results as well for simulated as real-world
data. There are several key criteria considering the performance
of multi-object trackers:

1. exact tracking of objects at every time step (correct number
of objects at the correct positions)

2. consistent tracking of objects

3. clutter resistance (e.g. occlusion, illumination changes)

4. exact estimation of application-specific parameters

5. the ability to work in real-time despite a large number of
tracked objects

Item 4 deals with application-independent evaluation. Item 1
considers theconfigurationof the objects at a certain time step
and item 2 theiridentification. Using them we can measure item
3 indirectly in scenes containing a different amount of clutter.
Item 5 treatsspeedandscalabilityof the algorithm. The frame-
work presented here will concentrate on evaluating configuration
and identification using ground-truth data. Application depen-
dent evaluation as well as speed and scalability examinations are
beyond the scope of this paper.

Various approaches for generic tracker evaluation have been pro-
posed recently (Senior et al., 2001, Black et al., 2003, Need-
ham and Boyle, 2003, Erdem et al., 2004, Brown et al., 2005,
Smith et al., 2005). The majority of them rely on the existence of
ground-truth annotationsof the sequences used. These contain
information concerning position and shape of the tracking targets
throughout the whole sequence. As annotations are difficult to
obtain and often produced in a highly manual process prone to
errors — though tools as ViPER (Doermann and Mihalcik, 2000)
are available — approaches not relying on ground-truth data and
ground truth creation are additional research goals. (Black et al.,
2003) uses the distance of object centroids to match objects and
trackers. The object’s shape is not taken into consideration in the
matching process. Using this matching a number of metrics as
a mean positional error, tracker detection rate or false alarm rate
are defined. Furthermore the use of pseudo-synthetic video for
ground-truth generation is proposed. (Senior et al., 2001) uses
a similar matching approach as the one mentioned above, but
in addition, it incorporates velocities in the minimized distance.
Among others the object detecting lag metric is defined, which
is used here as well. (Needham and Boyle, 2003) concentrates
on accuracy measures for position and velocity of the tracked ob-
jects. Before evaluating those, the trajectories are temporally and



spatially aligned to the ground truth to purge the influence of con-
stant time and/or positional displacements. (Erdem et al., 2004)
proposes tracking metrics without the need of ground-truth and
validates them in different scenarios. The approach in (Brown et
al., 2005) is the most related to the one presented here. It uses
a spatial overlap measure to match the trajectories in a two-level
process. Some of the derived metrics for configuration and iden-
tification share the same philosophy as the work of (Smith et al.,
2005), but there are several distinctions.

2 PRESENTATION AND DISCUSSION OF THE WORK
OF SMITH ET. AL

In this chapter we present and discuss the basic concepts of eval-
uation framework developed in (Smith et al., 2005). The notation
is therefore identical to the referred paper. We refer to objects or
targets asground truth objects(GT ). Tracker outputs are referred
to asestimates.

Coverage Test To examine whether tracking is successful at a
certain time step a spatial overlap measure is used. It is based
on the harmonic mean of therecall ρ andprecisionν measures
stemming from the field of information retrieval (Baeza-Yates
and Ribeiro-Neto, 1999). If the harmonic mean exceeds a de-
fined threshold, tracking is considered to be successful and the
coverage testis passed. This notion of tracking weighs the errors
made by over- or underestimating the shape of an object equally.
Another possibility would be to use the so called E-measure (van
Rijsbergen, 1979):

E = 1 −
1 + b2

1

ν
+ b2

ρ

(1)

This measure is a parametrized form of the inverse harmonic
mean, allowing the user to specify its preferences. Forb = 1
is equal to the inverse harmonic mean. Values greater than one
indicate a stronger interest in precision than recall while values
lower than 1 indicate the opposite.

Matching Process Based on this test, a two level matching pro-
cess is executed. The first level considers configuration and is
evaluated at every frame. An association between ground truth
objects and estimates is thereby established if the coverage test is
passed, i.e. the ground truth objectis tracked bythe estimate at
this frame. The second level considers identification, looking at
the whole sequence, using the matching of the first level as input.
Another possibility for matching is followed by (Porikli, 2004).
There, markov-chains models are constructed out of ground-truth
tracks and estimates. The probability calculated that one chain
model generates the other one is used as a distance measure. In-
stead of the bottom-up process applied in (Smith et al., 2005) a
one-level matching is used which might provide a better simi-
larity measure at the cost of a more complex evaluation and the
lack of information on configuration errors. The results of the
matching process enable the calculation of the following config-
uration/identification errors and metrics.

Configuration Errors and Metrics The first possible configu-
ration error (cf. figure 1) is caused by a system creating an output
that does not exist (false positive,FP). On the other side it may
not detect a present object (false negative,FN). Furthermore
the system may track an object with multiple estimates (multi-
ple tracker,MT). One estimate may also track more than one
object (multiple object,MO), which is an error as well. Those
errors are counted in each frame and normalized by the number
of ground truth objects present. This accounts for the increasing
difficulty of scenes containing more objects.
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Figure 1: Types of configuration errors: localization error
(LE), false positive(FP), false negative(FN), multiple tracker
(MT), multiple object(MO) — estimates are shown as dashed
rectangles and numbered, ground truth objects are labeled with
characters
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Figure 2: Identification errors: falsely identified tracker (FIT),
falsely identified object (FIO)

Identification Errors and Metrics Two types of identification
errors are considered in (Smith et al., 2005) (cf. 2) Firstly, it is
possible that the system tracks a ground truth objectGT j at a
certain point by another estimateEk, while it is tracked for the
longest time by estimateEi, which identifiesit. In the example,
objecta is tracked by estimate2, while it was previously iden-
tified by estimate1. This type of error is referred to as afalsely
identified trackerFIT. The second error occurs if aEi tracks
a GT j at first but than locks on to anotherGT k (estimate 3 in
figure 2, calledfalsely identified object— FIO). The tracker
swaps from one target to an other, a common failure in object
trackers. Of further interest is the rate of consistency achieved
in object tracking. Object purity (OP) is the rate of successful
identifications of anGT j by the estimateEi, that identifies it. A
high object purity means that this object is tracked continuously
by one tracker at the indicated rate. Tracking purity (TP) is the
ratio of successful identifications of anEi that identified aGT j .
A higher TP value means that less tracker swapping occurs, with
it being completely absent at the tracker purity of 1.

3 EXTENSIONS AND OWN IMPLEMENTATION

In this chapter the extensions and adaptions in our re-implement-
ation of the framework proposed by (Smith et al., 2005) are high-
lighted.

(Smith et al., 2005) uses shapes in image space to evaluate the
tracking. As we want to evaluate multi-camera-tracking as well,
we used ortho-projected shapes of the tracked objects as input
for the coverage test. Therefore, the interior and exterior orien-
tation of the cameras has to be known. In a multi-camera setup,
weak exterior and/or interior orientation should be avoided, as the
errors introduced could lead to failure of the evaluation. A advan-
tage of this approach is that spatial overlap measures have a clear
interpretation and there is no influence caused by occlusion.

Configuration Metrics The location errorLE is considered to
be worth being determined as well. It is defined as the centroid
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Figure 3: Localization error as additional configuration metric —
beingN t

GT being the number of ground truth objects present at
instantt, N

t,c
GT

the number of tracked ground truth objects,d(·, ·)
the euclidean distance of the centroids of arguments andn the
number of frames

CVj =
ntracked(j)

nj

, CV =
1

NGT

NGTX
j=1

CVj (5)

ODLj =

(
tfirst(GT j , Eij

) − tstart(GT j) , Eij
exists

0 , otherwise
(6)

ODL =
1

NGT

NGTX
j=1

ODLj

∆t
(7)

Figure 4: Additional identification metrics — calculation and
normalization:ntracked(j) is the number framesGT j is tracked,
nj the number of framesGT j exists, tstart(·) is the start time,
tfirst(·, ·) is the first time, the arguments pass the coverage test,
Eij

is the estimate that identifiesGT j , ∆t is the mean difference
of two successive frames,NGT the number of ground truth tracks
andNE the number of estimates

distance between a ground truth object and the estimate(s) that
it is tracked by in a frame, i.e. the mean of the distances to all
estimates that pass the coverage test. If no estimate is associated
as the object is not tracked, the localization error is zero. Nor-
malization by the number of objects present at this time seems
natural (LE in figure 3), but as we will see later is not optimal.
A better normalization can be achieved by the number of objects
tracked at this timeN t,c

GT
(LE

′
).

Identification Metrics In addition to the purity measure for
ground truth objects, the metriccoverageCVj of a ground truth
objectGT j is taken into consideration (this is a widespread mea-
sure cf. for example (Black et al., 2003)). It is defined as the
number of framesGT j is tracked to the total number of frames
it occurs in, giving an overview of the difficulty imposed by the
object to be tracked. It thereby stresses the importance of track-
ing an object, not continuous tracking as the object purity does.
Finally we define theobject detection lag(ODL ) (cf. (Senior et
al., 2001)) of anGT j as the time difference between the first ap-
pearance of the object and the point in time the tracking is started
by the estimateEji

that identifies it. That means, it is not the first
time it is being tracked by someEk but the first time it is tracked
by Eji

. If GT j was never tracked, in this case the lag is set to
zero as the object was never detected. Normalization is done by
dividing the values by the mean time difference of two consecu-
tive frames. This is done in order to enable a fair comparison of
tracking algorithms run at different frame rates.

4 EXPERIMENTS AND RESULTS

This section is organized as follows: At first the tracking algo-
rithm is presented briefly. The generation of simulation data and
a discussion of the simulation results follows. This includes rea-
soning about correct normalization and aggregation of the metrics
as well. Finally, results with real traffic data are presented.

4.1 The Tracking Algorithm

There are various perceptions of the ideaobject tracking. Some
conceive this as a totality ofsensor network, sensor calibration,
data acquisition, object recognitionandchronological object map-
ping, others as a aggregation of some of these modules. In this
paperobject trackingis referred to as the last one:chronological
object mapping(see figure 5).
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Figure 5: Tracking principle

In our evaluation tests the tracking algorithm suggested in (Döring,
2005) is used. It consists basically of the prediction algorithm
Kalman Filter, an object mapping routine based on significance
tests and several filtering and memory based techniques to mini-
mize effects like occlusion, clustering or segmentation.

Every imagek of a sensor used provides position data for every
objectRk. The aim is to map the belonging measurement – the
observation– to an existing object and update its state values
describing the object itself, e.g. position or shape (see figure 6),
based on the measured data.
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Figure 6: Mathematical view

The tracking process described in (Döring, 2005) provides the
possibility of pseudo-fusing data acquired from different sensors.
The algorithm is independent from the sensor providing the data
as long asit is acquired inone joint coordinate system (see fig-
ure 7). Normally this is achieved by transforming the measured
image coordinates into theobject coordinate systemusing cali-
bration and exterior orientation parameters.

The quality of the resulting objects state is highly correlated to the
quality of the observation accuracy values provided by the cam-
eras and their transformation algorithms. Thus, it is important to
take ground resolution and camera quality into account.

4.2 Simulation

The simulation is based on traffic data generated by the software
VISSIM, which uses the psycho-physical driver model developed
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Figure 7: Pseudo data fusion

Figure 8: Simulated crossing with camera positions

in (Wiedemann, 1974). As it models driver behavior, physical
restrictions to vehicle movement and the influence of crossings,
different types of vehicles, traffic lights, etc., a realistic simula-
tion of a crossing is possible (see figure 8). They traffic simula-
tion’s output, consisting of lists of object positions and shapes in
world coordinates at every simulated time step, is used as input
for a simplistic simulation of the image acquisition and process-
ing steps which occur in real world scenes.

Image acquisition and processing The simulation positions
virtual cameras in the virtual scene that process the object po-
sitions created by the traffic simulation (figure 9). Every camera
is characterized by interior and exterior orientation, frame rate,
jitter, sensor noise and presence of static occlusions in its field of
view (e.g. traffic lights, signs, street lights). Image processing is
modeled as a detection process including clustering and/or seg-
mentation. This models dynamic occlusions to a certain extent,
as they manifest them self in clustering and/or segmentation in
the image processing step. The strength of the approach lies in
the ease of definition of a multi-camera setup and the possibility
to study the influence of certain parameters on the tracking per-
formance before starting a possibly costly campaign to acquire
data on a real-world crossing. Trackers, operating on images and
not on world coordinates, would need a sufficiently realistic ren-
dering of the traffic data, which would complicate the simulation
considerably.

Experiments The experiments were conducted with a sequence
of 153 vehicles (cars, trucks, buses, bikes) of 300 seconds length.
In the basic setup one camera (camera 1) is used with a frame
rate of 10 Hz looking at the scene (field of view in figure 8). Its
parameters for simulated image acquisition and processing are
image noiseσR = 2px, detection probabilitypd = 0.95, cluster
distanceσc = 5px, segmentation probabilityps = 0.005 and
segmentation distanceσa = 20px. These values shall serve as
a baseline, defining not ideal, but very good environmental con-
ditions and nearly perfect image processing. The tracker param-
eters were initialized with to standard values and the maximum
speed expected wasvmax = 70km/h.

Results The results show a good but not superior performance
of the algorithm. Especially high values for false negatives on the
one hand and a low coverage and bad object purity on the other

1. If t equals shutter time, get object coordinatesxi from traf-
fic simulation

2. Test for each object whether it is visible for the camera by
projection on the image plane and a check for static occlu-
sion. If the test is passed, then add object to the objects
seen by the camera and transform coordinates into pixel
coordinates

3. For each seen object sensor noiseR is addedR ∼

N (0, σR) to its chip location

4. An objectxi is detected by the image processing, ifpd >

D ∼ U(0, 1) .

5. Two objectsxi,xj are clustered, if the euclidean distance
d(xi,xj) < C ∼ N (0, σc).

6. An objectxi is segmented, ifps > S ∼ U(0, 1). For
every segmented object two new objects will be created,
their positions beingxi with N (0, σa) noise added.

7. Transformation into world coordinates

Figure 9: Simulated image acquisition processing for a virtual
camera

FP FN MT MO LE
mean 0.039 0.213 0.032 0.075 0.343

σ 0.002 0.004 0.004 0.002 0.009
(a) configuration metrics

FIT FIO ODL OP TP CV
mean 0.104 0.087 24.720 0.657 0.908 0.740

σ 0.014 0.007 1.864 0.008 0.010 0.010
(b) identification metrics

Table 1: results simulation (mean of 10 simulations)

made a further inspection necessary. The identified cause turned
out to be the algorithm’s tendency to cluster objects when the are
driving in parallel. This initialization issue should be resolved
using additional features like color cues. In further experiments
different parameters like image noise, detection rate or clustering
rate were varied (figure 13) to study their influence. In addition,
this was done to check whether the variation of the metrics was
consistent with the expectations, which was the case if the frame
rate was varied. Tracking performance degrades progressively
with a lower frame rate with 10 Hz being a good compromise
between effort and results.

In general the interpretation of tracking purityTP is difficult.
A decrease in this metric would be expected if the performance
of the tracking algorithm gets worse, but at least for the tested
tracker, it sometimes increases with degradation of overall perfor-
mance. This is due to the fact that the tracker does not predomi-
nantly swap targets, rather than loosing them and then a reinitial-
ization is triggered.

Aggregation and normalization While varying the frame rate,
the mean of the object detection lagODL showed abnormal in-
crease. Looking at a histogram of one pass in figure 11 it can
clearly be seen that some outliers with a very high object detec-
tion lag render the mean misleading. The median gives a better
aggregate estimate of the overall detection lag.

The other deviation from the expected values occurred at the lo-
calization errorLE . It decreased as the detection rate fell (fig-
ure 13(b)). Normalization can be improved to prevent this behav-
ior. As ground truth objects that are not tracked at a time step have
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a localization error of zero and the sum of all localization errors
is normalized by the number of all present ground truth objects,
situations with very bad tracking (for example only 1 out of 10
objects present is tracked) lead to a localization error of nearly
0. An improved normalization is given byLE

′
(figure 13(b) and

13(c)). The normalization factor isN t,c
GT

, the sum of all tracked
ground truth objects. Another possibility is the the introduction
of a penalty term for every uncovered trajectory. This would cre-
ate another parameter in the evaluation process, which in its pure
form has the advantage that it only depends on one parameter, the
coverage thresholdtC .

4.3 Traffic Data

Performance on real traffic data is shown by a sequence of gray-
value images taken at a crossing with dense traffic (figure 12).
It was recorded with 6Hz at challenging exterior conditions. The
length of the sequence is 600 frames at a resolution of 1024x1024
pixels. In total, 134 vehicles appear in the scene. Reference
tracks were created by manual annotation (figure 14(a)). In some
parts of the scene, vehicle localization seems to be difficult even
for humans, leading to a high centroid variance. Using the frame-
work, the combination of two different image processing systems
and the Kalman filter was evaluated (result tracks in figure 14(b)
and 14(c)).

Figure 12: Traffic scene

Figure 15: Influence of shadow inclusion on shape centroid:
green — reference, red — output of image processing 1

FP FN MT MO LE LE
′

ip 1 0.46 0.68 0.007 0.004 0.67m 2.01m
ip 2 0.55 0.71 0.05 0.012 0.35m 1.66m

(a) configuration metrics

FIT FIO med(ODL) OP TP CV

ip 1 0.09 0.07 5.00s 0.23 0.41 0.31
ip 2 0.52 0.05 10.02s 0.18 0.36 0.24

(b) identification metrics

Table 2: results traffic scene:ip1 — image processing 1,ip2 —
image processing 2, med(·) is the median

Due to the quality of the reference data, an absolute measurement
of tracker performance was not possible. Reference data would
have to be improved/and or filtered to allow this. In comparison,
results of combination 1 are clearly superior (see figure 14(b)),
as it produces longer tracks, less outliers and has better coverage.
However, the results of the metrics do not reflect this completely
(table 2). Reported values for false negatives are too high, the
ones for object purity and coverage are too low, possibly due to
the quality of the reference data. Interestingly the localization
error is a lot higher for the better combination. A closer look
at the object detection results revealed that image processing 1
included significant parts of the vehicle shadows in the reported
shapes leading to a increased localization error and a problem
in the matching process, as spatial overlap was insufficient. The
use of a spatial alignment as suggested in (Needham and Boyle,
2003) is not possible, as the visibility of shadows is dependent in
the orientation and shape of the vehicles and therefore not con-
stant in the scene (see figure 15). Reliable shadow removal al-
gorithms rely on color information (for a review article see (Prati
et al., 2003)) and therefore cannot be applied. Thus, using the
framework to gray-level sequences poses restrictions to the va-
lidity of the metrics in the presence of shadows.

5 CONCLUSIONS

We presented a framework for the evaluation of object tracking
algorithms in a multi-camera setup. Emphasis was especially put
on the incorporation of additional metrics into an existing frame-
work. Validation was achieved by using traffic simulations and
real traffic scenes. Finally the implications of aggregation and
normalization were discussed.
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