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ABSTRACT 
 
A novel approach is presented for automatic camera calibration from single images with three finite vanishing points in mutually or-
thogonal directions (or of more independent images having two and/or three such vanishing points). Assuming ‘natural camera’, esti-
mation of the three basic elements of interior orientation (camera constant, principal point location), along with the two coefficients 
of radial-symmetric lens distortion, is possible without any user interaction. First, image edges are extracted with sub-pixel accuracy, 
linked to segments and subjected to least-squares line-fitting. Next, these line segments are clustered into dominant space directions. 
In the vanishing point detection technique proposed here, the contribution of each image segment is calculated via a voting scheme, 
which involves the slope uncertainty of fitted lines to allow a unified treatment of long and short segments. After checking potential 
vanishing points against certain geometric criteria, the triplet having the highest score indicates the three dominant vanishing points. 
Coming to camera calibration, a main issue here is the simultaneous adjustment of image point observations for vanishing point esti-
mation, radial distortion compensation and recovery of interior orientation in one single step. Thus, line-fitting from vanishing points 
along with estimation of lens distortion is combined with constraints relating vanishing points to camera parameters. Here, the prin-
cipal point may be considered as the zero point of distortion and participate in both sets of equations as a common unknown. If a re-
dundancy in vanishing points exists – e.g. when more independent images from the same camera with three, or even two, vanishing 
points are at hand and are to be combined for camera calibration – such a unified adjustment is undoubtedly advantageous. After the 
initial adjustment, the points of all segments are corrected for lens distortion to allow linking of collinear segments to longer entities, 
and the process is repeated. Data from automatic single-image calibrations are reported and evaluated against multi-image bundle ad-
justment with satisfactory results. Finally, further interesting topics of study are indicated. 
 
 

1. INTRODUCTION 
 
Camera calibration methods relying on the existence of vanish-
ing points on single images have been presented in photogram-
metry (Gracie, 1968; van den Heuvel, 1999; Bräuer-Burchardt 
& Voss, 2001; Grammatikopoulos et al., 2003) but also compu-
ter vision (Caprile & Torre, 1990; Liebowitz et al., 1999; Cipol-
la et al., 1999; Sturm & Maybank, 1999). Basically, this type of 
approach exploits parallelism and orthogonality among 3D lines 
commonly present in man-made environments. Indeed, the pri-
mary elements of interior orientation (camera constant and prin-
cipal point) of single images can be estimated, together with the 
camera rotation matrix, from three orthogonal vanishing points 
(Merritt, 1958; Gracie, 1968). In this framework, results have 
also been reported using historic images (Karras & Petsa, 1999; 
Bräuer-Burchardt & Voss, 2001). 
 
In computer vision, vanishing points in three orthogonal direc-
tions are often used for computing the image ω of the absolute 
conic, in order to subsequently decompose its expression for ex-
tracting the camera internal parameters as a ‘calibration matrix’ 
(Liebowitz et al., 1999; Sturm & Maybank, 1999); the same out-
come is obtained by exploiting properties of the rotation matrix 
(Cipolla et al., 1999). In fact, as shown in Grammatikopoulos et 
al. (2004), such types of approach are essentially equivalent to 
the analytical photogrammetric scheme of Gracie (1968). 
 
The authors have reported and assessed a formulation involving 
three vanishing points, in which the processes of line fitting, ca-
mera calibration (including radial lens distortion) and recovery 
of image attitude are all combined in one single step (Gramma-
tikopoulos et al., 2003). However, imagery with pairs of vanish-

ing points is much more common than that with three vanishing 
points suitable for camera calibration (e.g. none close to infini-
ty). Without additional object constraints (see Bräuer-Burchardt 
& Voss, 2001), this kind of imagery can only supply the camera 
constant on the assumption of a fixed principal point (as used in 
Petsa et al., 1993, for rectifying historic images of demolished 
façades). Yet, a combination of more such images might supply 
equations sufficient for camera calibration purposes. Obviously, 
such images may well depict entirely different scenes as long as 
identical interior orientation is assumed. 
 
Pursuing this thought, the authors recently developed a camera 
calibration algorithm which exploits the existence of vanishing 
points in two orthogonal directions on several independent, i.e. 
single, images (Grammatikopoulos et al., 2004). Using the rela-
tion of such pairs of vanishing points with the camera parame-
ters, this algorithm relied on direct geometric reasoning regard-
ing the locus of the projection centre in the image system. The 
centre of this hemispherical locus on the image plane lies half-
way between the vanishing points, which also fix its diameter. 
This non-linear equation – which is independent of camera ro-
tations – involves explicitly the interior orientation elements to-
gether with the image coordinates of the two vanishing points. 
Combination of such equations with line-fitting allowed simul-
taneous adjustment of all points on all lines of all views for esti-
mating the three basic interior orientation elements, two coeffi-
cients of lens distortion and, optionally, image aspect ratio. 
 
Here, this basic approach is extended to accommodate a single 
image with three vanishing points, but also sets of independent 
images with three and/or two vanishing points in orthogonal di-
rections. Furthermore, the process runs now fully automatically, 



by using an adaptation of the vanishing point detection method 
presented by Rother (2000). 
 
Hence, camera calibration (with estimation of radial lens distor-
tion) is carried out here iteratively in a unified least-squares ad-
justment of all points on imaged lines which concur in the three, 
or two, automatically detected vanishing points of the scene, on 
the hypothesis that these pertain to orthogonal directions in 3D 
space. Our algorithm thus differs from approaches in which pa-
rameter estimation is divided into two steps, with the calibration 
following an independent estimation of vanishing point location 
and lens distortion (van den Heuvel, 1999; Bräuer-Burchardt & 
Voss, 2001). In such instances, distortion refers to its point of 
‘best symmetry’ (or simply to the image centre), and not to the 
image principal point P(xo, yo) since the latter also participates 
as unknown in the next (calibration) step. Although it could also 
accommodate a distinct point of best symmetry, our unified al-
gorithm accepts the principal point as the zero-point of distor-
tion, which is the choice made in most practical situations. 
 
However, more significant is the advantage of the simultaneous 
adjustment when there exists a redundancy in vanishing points, 
notably if more independent images – sharing the same camera 
geometry – with three and/or two vanishing points are at hand. 
In this case, the unified approach is advantageous (compared to 
two independent least-squares adjustment processes), since re-
dundant vanishing points are constrained to reflect a unique ca-
mera geometry. Additionally, this approach might also be use-
ful for images of a scene which are unsuitable for bundle adjust-
ment (taken from standpoints close to each other, for instance). 
 
 

2. CALIBRATION ALGORITHM 
 
2.1 Line-fitting 
 
In section 3 an automatic process for edge extraction, edge link-
ing and detection of vanishing points is outlined. This results in 
groups of image line segments which converge to dominant va-
nishing points V(xV, yV). If x, y are the observed image coordi-
nates of an individual point on such a line segment, introduction 
of coefficients k1, k2 of radial symmetric lens distortion into the 
parametric equation of a 2D line gives: 
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with r denoting the radial distance of this particular image point 
from the principal point (xo, yo). Eq. (1) represents the observa-
tion equation for the common adjustment of all line segments. It 
relates the observed quantities x, y (whose sum of squared resi-
duals is to be minimised), the coordinates of the corresponding 
vanishing point, the principal point coordinates and the coeffi-
cients of radial lens distortion. 
 
2.2 The ‘calibration sphere’ 
 
Concerning camera calibration itself, Grammatikopoulos et al. 
(2004) have pointed to the fact that every pair V1, V2 of vanish-
ing points of orthogonal directions constraints the image projec-
tion centre O on a geometric locus, from whose points the seg-
ment V1V2 is seen under a right angle. This hemisphere (‘cali-
bration sphere’) has the midpoint of segment V1V2 as its centre 
and the distance V1V2 as its diameter. All points on this surface 
represent a possible projection centre, whose distance from the 
image plane provides a corresponding camera constant c, while 

its projection onto it fixes the principal point P (for a more de-
tailed geometric reasoning see Grammatikopoulos et al., 2004).  
 
The analytical equation of this sphere can be written as:  
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whereby c is the camera constant, (xo, yo) is the principal point, 
(x1, y1), (x2, y2) are the two vanishing points, while (xm, ym) is 
the centre of the sphere and R its radius. Three pairs of vanish-
ing points of orthogonal directions fix three such spheres; their 
intersection fixes the projection centre in image space (Fig. 1). 
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Figure 1. Projection centre O as intersection of three calibration 

spheres and principal point P as its projection on the image. 
 
This minimum of three pairs of vanishing points may be drawn 
either from a single image with three vanishing points or, equi-
valently, from three separate images each having two vanishing 
points (in the second case it is assumed that these three separate 
images do not produce spheres which are close to coincidence). 
While three such vanishing points allow estimating only the pri-
mary internal camera elements (c, xo, yo), other parameters such 
as the image aspect ratio may be estimated if an additional pair 
of vanishing points is known (Grammatikopoulos et al., 2004). 
Clearly, any additional pair of vanishing points beyond the mi-
nimal requirement gives rise to a redundant ‘calibration sphere’. 
 
2.3 The calibration adjustment 
 
The calibration adjustment involves the observation equations – 
one Eq. (1) for each point of all line segments passing through a 
vanishing point – and the constraint equations Eq. (2); the latter 
introduce the camera constant as an additional unknown. Shared 
unknowns are the coordinates of all vanishing points and those 
of the principal point. In our experience, if Eqs. (2) are treated 
as observation equations with very large weights rather than as 
strict constraints, it appears that in many cases initial values for 
distortion coefficients k1, k2 may be simply set to zero. 
 
 

3. DETECTION OF VANISHING POINTS 
 
As mentioned already, the camera calibration phase is preceded 
here by the automatic extraction, linking and grouping of image 
edges which concur to vanishing points. A large literature exists 
on automatic detection of vanishing points, after Barnard (1983) 
first introduced the use of the Gaussian Sphere as an accumula-



tion space (e.g. Magee & Aggarwal, 1984; Quan & Mohr, 1989; 
Gallagher, 2002). A comparison of parameterisation models of 
the Gaussian Sphere with respect to noise is found in Wenzel & 
Grigat (2006). Other approaches include, for instance, those of 
Straforini et al. (1993), Shufelt (1999), Antone & Teller (2000), 
Rasmussen (2004). The procedure adopted here, which relies on 
Rother (2000), comprises the steps of edge extraction and link-
ing and that of vanishing point detection. 
 
3.1 Edge extraction and linking 
 
Initially image edges are extracted with sub-pixel precision and 
then linked to line segments through polygonal approximation. 
A suitable threshold for edge ‘straightness’ (Thormaehlen et al., 
2003) regulates the tolerated distance of edge points from a line 
segment. Line parameters are estimated with least-squares line-
fitting, while very short segments are discarded. The size of the 
latter threshold is reduced after the first estimation of the radial 
lens distortion polynomial (see Section 3.3). 
 
Next, extracted line segments are to be clustered in groups cor-
responding to dominant space directions. The orthogonality cri-
terion of space line directions is used for establishing vanishing 
points of three mutually orthogonal directions (van den Heuvel, 
1998; Rother, 2000). 
 
3.2 Vanishing point detection 
 
The intersections of all possible pairs of line segments represent 
potential vanishing points. Rother (2000) allows every segment 
s to vote for each such point with the sum of two weighted con-
tributions (a voting scheme also adopted in Bauer et al., 2002). 
The first refers to the angle α (if it falls below a threshold α0) 
between s and the line joining its midpoint M with the potential 
vanishing point. The other weighted component is proportional 
to segment length. The added votes from all accepted segments 
produce the final strength of a potential vanishing point. Rother 
(2002) gives empirical values for the two weighting factors. 
 
Here, a uniform treatment of long and short segments dispenses 
with weighting factors. The covariance matrix of the initial line-
fitting adjustment gives an estimate for the standard error σθ of 
the slope angle of each line. However, this can also be regarded 
as the uncertainty of α (Fig. 2). Thus, α + σθ is a realistic esti-
mation of angle α formed by segment s and line VM. 
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Figure 2. Angle α (formed by segment s and the line joining its
midpoint M with potential vanishing point V) and error σθ. 
 
The standard error σθ reflects the effect of noise as well as that 
of the geometry of the line-fitting adjustment, in which segment 
length plays a central role. In this sense, vote v of each segment 
for a particular vanishing point may be simply computed as 
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whereby α0 is a threshold value. Votes from all segments with 
(α + σ) < α0 for some potential vanishing point are summed to 

produce the total score for this particular candidate. The contri-
bution of the error of segment midpoint M to the uncertainty of 
α is regarded as negligible compared to that of line slope. 
 
Potential vanishing points along with their final scores are next 
checked, after Rother (2000), against geometric criteria for de-
termining three dominant vanishing points of orthogonal space 
directions. If one vanishing point is at infinity, only the locus of 
the principal point may be found (segment of the vanishing line 
defined by the other two points); if only one vanishing point is 
finite, it represents the principal point (yet the camera constant 
remains undetermined). Since our primary concern here is a full 
camera calibration, only triplets of finite vanishing points which 
form acute triangles are considered in the search process (ortho-
gonality criterion). Besides, a principal point (orthocentre of the 
triangle defined by the vanishing points) is expected to be close 
to the image centre. Finally, computed camera constants should 
have ‘reasonable’ values (camera criterion). All vanishing point 
triads which meet these criteria are accepted and sorted accord-
ing to total score; that with the highest score is selected as the 
final triad of dominant vanishing points. 
 
3.3 Edge linking after correction of lens distortion 
 
Obviously, the extracted edges and subsequent edge linking are 
affected by radial lens distortion. To reduce this effect, the co-
efficients of radial lens distortion estimated in the first iteration 
of the calibration adjustment are used for correcting the initially 
extracted edge points. Next, with a lower threshold on ‘straight-
ness’, edge linking is repeated to produce longer line segments. 
The search among the new potential vanishing points results in 
a final triplet. Their position is optimized in a least-squares ad-
justment to refine the values for line slopes. In order to identify 
in a group of convergent line segments those actually belonging 
to the same line, all segments are checked in pairs. If the overall 
RMS distance of all points of both segments from the fitted line 
equation of the other segment does not exceed a threshold, such 
line segments are seen as parts of the same image line and are 
treated as such in the next iteration. 
 
 

4. PRACTICAL EVALUATION 
 
The six 800×600 images of Fig. 3 were used in an experimental 
evaluation of the approach. The camera has a moderate field of 
view (~ 60°), while all vanishing points of the vertical space di-
rection are indeed far from the image centre. This allows testing 
the method under realistic conditions. Examples for line extrac-
tion and clustering are seen in Fig. 4 (for the last image of Fig. 
3). On the left, initial extracted edges above the length threshold 
of 20 pixels are shown. Among them, those edges converging to 
the three dominant vanishing points were singled out by means 
of an angular threshold α0 = 2° (centre). The final segments, ge-
nerated after correction of radial lens distortion and used for the 
final calibration, are presented on the right. Two segments were 
treated as parts of the same line if the overall RMS distance of 
their points from the line equation of the other segment did not 
exceed 2 pixels. Calibration results from single images as well 
as from their common adjustment are shown in Table 1, where 
σo represents the standard error of adjustments (the rather large 
values of σo are due to the threshold for segment linking). 
 
However, it is generally difficult to quantify the performance of 
calibration approaches exclusively with real images, due to lack 
of ground truth (Swaminathan & Nayar, 2000). The consistency 
of results from different images is a significant indication for 
repeatability, though not for ‘closeness to truth’. Available cali-
bration data from other methods may also be used for checking, 
yet it is noted that parameter values may be tied to each other 



by strong correlations. Probably, direct comparisons in terms of 
3D model reconstruction is a more conclusive criterion. With this 
in mind, the nine images of Fig. 5 (among them four of those 
taking part in single-image calibration) were used in a self-cali-
brating bundle adjustment without external control, based on 30 
tie points. Results are also seen in Table 1. 
 

Figure 3. Images used for calibration from vanishing points. 
 

Table 1. Calibration results 

images  c 
(pixel) 

xo 
(pixel) 

yo 
(pixel) 

k1
 

(×10−8) 
k2 

(×10−13)
σο 

(pixel)
1 

124 lines 
896.17 
± 0.80 

    6.81 
± 0.63 

−15.35 
± 0.88 

  −8.65 
± 0.59 

  −1.64
± 0.25 0.45 

2 
134 lines 

897.31 
± 0.81 

  11.41 
± 0.70 

−10.92 
± 1.09 

  −9.03 
± 0.63 

  −2.38
± 0.26 0.44 

3 
88 lines 

908.17 
± 1.66 

  14.17 
± 2.12 

  −6.81 
± 1.45 

−11.67 
± 0.97 

  −1.39
 ± 0.42 0.40 

4 
94 lines 

900.20 
± 1.23 

  13.93 
± 1.62 

  −8.29 
± 0.75 

  −4.30 
± 0.83 

  −3.97
± 0.33 0.39 

5 
84 lines 

902.52 
± 1.40 

    3.48 
± 1.79 

  −5.54 
± 1.14 

  −7.67 
± 0.80 

  −2.68
± 0.29 0.36 

6 
88 lines 

903.60 
± 1.28 

  18.49 
± 1.89 

  −2.57 
± 0.83 

  −7.47 
± 0.70 

  −3.41
± 0.26 0.39 

all 
612 lines 

899.21 
± 0.39 

  10.67 
± 0.35 

  −8.99 
± 0.33 

  −7.82 
± 0.29 

  −2.56
± 0.12 0.42 

bundle 
adjustment 

905.63 
± 3.15 

   9.22 
± 1.42 

  −6.00 
± 1.60 

  −8.31 
± 1.07 

  −2.79
± 0.49 0.26 

 
Calibration data from vanishing points of single images appear 
as coherent. Individual values for the camera constant c deviate 
by less than 1% from their mean value and from that of the so-
lution with all images. Further, all c-values are within the range 
c ± 3σc of bundle adjustment. In fact the values for c which cor-
respond to the calibrated distortion curves (see Fig. 6 below) are 
somewhat more coherent. In general, differences of few pixels 
in principal point location should be expected (as it often occurs 
also in different bundle adjustments). It is notable that (given 
that the vanishing point of the vertical space direction is indeed 
‘weak’) the first two images in Fig. 3, acquired with a 90° rota-
tion, gave for xo the closest values to that of bundle adjustment, 
whereas these same images display the largest differences in yo 
– a fact pointing to the importance of geometry. 

 
Figure 4. Initial edges (above), segments grouped in vanishing 

points (middle), segments after correction of distortion (below).
 

Figure 5. Images used in self-calibrating bundle adjustment 
 
Calibration from vanishing points leads here to almost identical 
curves of radial distortion, which also practically coincide with 



that from bundle adjustment. Fig. 6 shows the calibrated curves 
of radial lens distortion Dr. 
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 Figure 6. Calibrated distortion curves from vanishing points 
and from bundle adjustment (dark line). 

 
The actual impact of differences between the calibration results 
is probably best assessed in terms 3D reconstruction, since dis-
crepancies may solely be attributed to different calibration data. 
Thus, model coordinates of all tie points were determined in true 
scale with bundle adjustments using calibration results from va-
nishing points as fixed. They were then compared with tie point 
coordinates from the self-calibrating solution. Standard errors σ 
of the 3D similarity transformation between object points recon-
structed with pre-calibration using vanishing points and self-ca-
libration are seen in Table 2. The values have also been reduced 
to the mean pixel size in object space. 
 

Table 2. Accuracy of 3D reconstruction 
calibration data σ (cm) σ (pixel) 
from image 1 2.1 1.2 
from image 2 2.0 1.1 
from image 3 0.9 0.5 
from image 4 0.8 0.5 
from image 5 1.0 0.6 
from image 6 1.2 0.7 

from all images  1.1 0.7 
 
The above results indicate that calibration values obtained auto-
matically from individual images with no external control have 
allowed satisfactory 3D reconstruction in the case of an object 
with significant extension in depth. In fact, taking into conside-
ration that the data which served as ‘ground truth’ (from a self-
calibrating bundle adjustment) are also subject to uncertainty, 
one may assert that here the precision of reconstruction is about 
1 pixel in object space. 
 
 

5. CONCLUSION 
 
An automatic camera calibration approach, which is based on at 
least three pairs of vanishing points of orthogonal space direc-
tions (on one, or more, images from the same camera) has been 
developed, implemented and tested. A main feature here is that 
camera constant, principal point location, two coefficients of ra-
dial-symmetric lens distortion as well as image vanishing points 
are all estimated iteratively in a unified least-squares adjustment 
of all image points belonging to lines which converge in the do-
minant vanishing points. Furthermore, this algorithm may well 
accommodate independent imagery of totally different scenes. 
The approach is intended exclusively for camera calibration, i.e. 
it does not involve image rotation matrices. Line segments are 
extracted and associated with a particular vanishing point in a 
fully automatic mode, based on a modification of the method of 
Rother (2000); edges are re-linked after correction for lens dis-
tortion as estimated in the first iteration. 

Obviously, evidence from further experiments is needed. How-
ever, the evaluation against self-calibrating multi-image bundle 
adjustment (with no external control) has indicated that results 
from the automatic calibration approach with vanishing points 
reported here may, in principle, provide information on camera 
geometry which is definitely suitable for initialisation purposes, 
but apparently also as pre-calibrated camera parameter values in 
tasks of ‘moderate’ accuracy requirements. 
 
Of course, further questions also need to be addressed. These 
include the introduction of robust estimators into the adjustment 
(Aguilera et al., 2005), the issue of vanishing points tending to 
infinity, an investigation regarding the effect of noise as well as 
an extension of the geometric model for full camera calibration 
including image skewness. Nevertheless, one has to admit that 
such calibration approaches – which rest on a mere assumption 
of mutually orthogonal space directions – are inherently subject 
to notable limitations and seek to reconcile rather contradictory 
aspects. For instance, their accuracy depends, among others, on 
the distribution of extracted line segments over an image frame, 
but at the same time also on an ‘adequate’ perspective distortion 
of the imaged scene (or, put more generally, on the shape of the 
triangle defined by three vanishing points of orthogonal space 
directions). Such questions, too, outline an interesting field for 
further study. 
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