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ABSTRACT:

In this paper, we describe an automatic approach for a terrestrial line scanner calibration. The system is calibrated with prior knowledge
of the exterior orientation of the camera in an unknown coordinate system. This data is acquired by tracking the moving sensor
platform with an infrared camera tracking system (ARTtrack2) along a calibration scene. The calibration of a line scanner includes
the determination of the transformation parameters to the known control point coordinate system (translation and rotation) and three
parameters of the one-dimensional distortion model (simplified BROWN) for the sensor array. The focal length of the camera is assumed
to be known. After a first rectification of the data with the tracking observations, photogrammetric targets are automatically detected
and decoded. Finally, the distortion parameters of the camera and the transformation between world- and tracking coordinates are
iteratively estimated.

1. INTRODUCTION

The recent years’ growing activity in remote sensing applications
for airborne and terrestrial applications allows for remote high-
accuracy measurement of cultural heritage, architecture, build-
ings (Maresch, 1998), indoor and outdoor setups including traffic
or crime scenes e.g. for 3D reconstruction purpose. Image data
acquiring can be done with CCD-matrix and line sensors. Though
line sensors provide a high resolution image, an additional sensor
motion of the CCD-line is required to achieve the second image
dimension. However, in order to use optical sensors for these
purposes a calibration has to be done.

An overview about different calibration techniques can be found
e.g. in (Grün, 2001). One approach is to determine the inte-
rior orientation of the camera with a given exterior orientation
and known control points in a world coordinate system (Sehovic,
2001; Scheele, Krüger, and Schuster, 2005). Approaches that can
do without a priori knowledge of absolute exterior orientation or
control points are referred to as self-calibration techniques.
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Figure 1. Automatic line scanner calibration

Thus, for a calibration knowledge about a defined calibration
object such as a photogrammetric target field or geometric con-
straints of the scene is needed. This is done by measuring coor-
dinates of features or special targets in both world- and image-
coordinates of the sensor. The same principle holds for line-
sensor cameras. In (Schneider and Maas, 2003; Parian and Grün,
2005) a line sensor calibration with a panoramic camera model is

described. Below a calibration approach with an arbitrary but
known motion trajectory with respect to an unknown coordinate
system will be proposed.

Fig. 1 shows a overview of the used approach. The sections in
this paper will be following that structure.
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Figure 2. Line scanner mounted on platform

The first section describes the data acquisition and the resulting
data basis. Next, the preprocessing for image data rectification is
introduced, followed by section 3., dealing with target detection
and identification of the targets’ codes. Section 5. describes the
parameter derivation and estimation of the global transformation
between the used tracking system and world coordinates.

2. DATA ACQUISITION

For the Calibration three different types of data basis are used.
Two of them are introduced in (Reulke, Wehr, and Griesbach,
2004). First, the ARTtrack2 tracking system provides the po-
sitioning and orientation data of the used camera. This data is
stored in ASCII data format (see figure 3).

Second, the data recorded by the line sensor camera consists of
binary raw data in which three color channels of every line with
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frame 3 ts 47285.686 nbodcal -1 nbod 1 nfly 0 nmea 0 nmar 0  
bod 0 qu 1.000 loc -75.98 694.57 2218.64  
ang -0.45 -3.16 -0.06  
rot 0.998 -0.001 0.055 0.001 1.000 -0.008 -0.055 0.008 0.998 
  
frame 4 ts 47285.786 nbodcal -1 nbod 1 nfly 0 nmea 0 nmar 0  
bod 0 qu 1.000 loc -75.96 694.57 2218.65  
ang -0.45 -3.16 -0.06  
rot 0.998 -0.001 0.055 0.001 1.000 -0.008 -0.055 0.008 0.998  
 
frame 5 ts 47285.886 nbodcal -1 nbod 1 nfly 0 nmea 0 nmar 0  
bod 0 qu 1.000 loc -75.97 694.46 2218.53  
ang -0.32 -3.15 -0.05  
rot 0.998 -0.001 0.055 0.001 1.000 -0.006 -0.055 0.006 0.998  
 
frame 6 ts 47285.986 nbodcal -1 nbod 1 nfly 0 nmea 0 nmar 0  
bod 0 qu 1.000 loc -76.12 694.45 2218.45  
ang -0.28 -3.15 -0.05  
rot 0.998 -0.001 0.055 0.001 1.000 -0.005 -0.055 0.005 0.998  

Figure 3. Tracking Data

10,298 pixels and 16 bits each are stored in band interleaved
mode.

The third data basis is the control point data providing defined
world coordinates.

The fact, that the camera position and orientation is known in
the tracking coordinate system but unknown in the control point
world coordinate system can be interpreted as a known relative
orientation between the particular image lines but an unknown
exterior orientation of the whole imaging set. With these known
information the unknown parameters can be determined:

• coordinate and orientation offset between the two coordinate
systems (PS and TS)

• distortion parameters of the used camera
• optional: principle point of the used camera

To keep the number of unknown parameters low only the radial
symmetric part of BROWN’s distortion model (Brown, 1986) is
accounted. Furthermore, the principle point coordinates are pre-
sumed to be zero.

After the imaging and tracking process the image coordinates of
the control points are measured with an autonomous target recog-
nition algorithm. Due to the motion disturbance of the camera
platform (see Fig. 4 a) the image data has to be spatially rectified.

Preprocessing

Therefor the line image data is read in successively line by line.
The recorded tracking data is used to project every pixel of every
line on a defined reference plane which is parallel to the average
image plane with no regard to any distortion using the collinear-
ity equations as described in section 5.. The result is an geometri-
cally corrected image. One constraint for the target recognition is
that the control points are completely visible in the processed im-
age. Thus, he resolution of the processed image has to be equiv-
alent to the sampling distance of the camera.

As it can be seen in Fig. 4 b) the resulting picture is still distorted
due to remaining error of the tracking data. However, the tar-
get recognition used in this approach can cope with distortion of
moderate degree.

3. TARGET RECOGNITION

The recognition and identification of targets can be done in this
preliminary rectified image. Two types of targets are used. Un-
coded targets consist only of a white central disc on a black back-
ground. Additionally there exist different types and designs of

(a) (b)

Figure 4. Camera data

coded targets. The used coded targets have a code on a concentric
ring (van den Heuvel and Kroon, 1992; Schneider and Sinnreich,
1992) invariant to affine transformations, i.e. translation, scaling,
skew, rotation, and are insensitive to image noise, speckle and
even geometric distortions of moderate degree.

Fig. 5 shows the scheme of the recognition approach described
below. After performing a global thresholding of the data, seg-
ments of a particular roundness are labeled and extracted as cen-
ter disc candidates. Uncoded targets are verified easily by cal-
culation of the centroid (surrounding black segment, no white
neighbors inside and centroids very close), while coded targets
have to be read out, the profile processed and the label of the tar-
get identified. Further readings are found in the references (Clarke,
1994).

global
thresholding

segmentation centroid
calculation

code readout pattern shift
analysis binarization

Figure 5. Sequence of processing steps for target extraction

Segment based global thresholding

Thresholding has to be done for the segmentation of the image.
A suitable thresholding value is essential for successful segmen-
tation (Pavlidis, 1982).
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Figure 6. Plots of a) histogram of input image and b) segment
number results from thresholding
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Unlike many histogram (Fig. 6 a) based algorithms to derive a
global thresholding value the proposed approach uses additional
knowledge about the scene, concerning reasonable number of
segments found. It scales down the original image data, then per-
forms a bundle of thresholding operations for different values.
For each bimodal result, the number of segments in the image is
counted and plotted with the thresholding values on the x-axis, as
can be seen in Fig. 6 b).

Because not all results are suitable for segmentation a generous
range was defined between 10 and 200 segments (all of the pat-
terns used had a maximum of 150 segments for 50 targets) in a
picture as a strong hint for a good thresholding result. The re-
maining task would be to chose a value from the plateau at about
90 segments in Fig. 6 b). Global or local minima turned out not
to yield optimal thresholds. For the optimal value, we calculated
the mean value of all threshold values that lead to good results.
However, this approach may fail if the center of mass accidentally
falls near to local maxima in the segment plot.

Region labelling

After binarization of the image the labelling of connected seg-
ments (also known as ”blob coloring”) is done. In our implemen-
tation, the standard algorithm with 4-connectedness is used. The
resulting map has the same size as the original image, carrying
the segment indices.

Coded Photogrammetric Targets

The targets used are 78 mm x 82 mm in size and have a a white
center disc and a code ring around it on a black background, to
provide the highest possible contrast in a scene. The radius of the
center disc r is also the width of the code ring, which consists of
12 segments corresponding to a 12 bit code, running around the
center between 2r and 3r from the centroid.

black background

codering

center disc

target label

centroid

rrr
2r

Figure 7. Coded photogrammetric target

Furthermore the targets provide a centroid mark in the middle of
the center disc and a label for manual determination of the target
number.

Uncoded targets are 38 mm x 41 mm in size with a wite center
disc on a black background and a small label carrying an identi-
fication number for manual evaluation.

Subpixel accuracy determination of target center

A variety of techniques for the subpixel accuracy localization of
target centers is known. A comparison of some techniques is
given by (Shortis and Short, 1994). We used a greyscale centroid
approach. In lower scale images, Gauss least square or ellipse
fitting would be a better choice. The weighted algorithm is of

reasonable computational cost and highly precise because of the
large target size in our close-range line scanner data. The centroid
position of the segment is calculated by considering all pixels Pi

belonging to the segment with

Pi = (xi|yi), i = 1 . . . n (1)

and n is the boolean area of the segment, i.e. the number of pixels
in the segment. With the intensity of each pixel given as

I(Pi) = intensity of Pi (2)

the centroid position Xc = (xc|yc) with

xc =

nP
i=1

(xi · I(Pi))

nP
i=1

I(Pi)
(3)

yc =

nP
i=1

(yi · I(Pi))

nP
i=1

I(Pi)
(4)

is calculated as the sum of the x and y positions of all pixels,
weighted and normalized with their pixel intensities and the over-
all intensity sum of the whole segment. The membership of pixels
to the segment is decided in the thresholding step of the process.

Readout of the Identifier

Given the exact position of the target centroid Pc and the area A
of the segment, a circular readout of the code ring is performed.
From the segments’ area A the radius results to be

r =

r
A

π
, (5)

and the readout radius chosen for the circular scan is 2.5 times r
since the codering runs between 2r . . . 3r around the center seg-
ment.
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Figure 8. Codering readout a) before and b) after lock algorithm

Code extraction from brightness profile

When having extracted a brightness profile with the correct radius
around the target center, spatial shifts and distortions, as well as
blur and rotational mismatches occur. Several approaches can
be used to extract a binary sequence from the brightness profile
together with a number expressing the degree of convincedness a
valid sequence has been found.
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Algorithm 1 Profile shift analysis
Initialization:
set up variance sum array

for κ = 0 to 30◦ step 0.5◦ do
- shift profile κ degrees
for i = 1 to n do

- calculate µsi and σ2
si

for all segments
- save

P
n

σ2
si

in array

end for
end for

optimal shift value← arg minκ(
P
n

σ2
si

)

confidence value← C =
max(

P

n
σ2

si
)

min(
P

n
σ2

si
)2

In this algorithm, the brightness profile is divided into n = 12
equidistant sections si, i = 1 . . . n, representing the 12 bits
of data encoded into the target. For each section, the brightness
information is collected and the variance σ2

si
calculated. If the

matching grid is not properly aligned with the code, high variance
values will occur in some segments. In sparse codes, only few
section values show activity. Summing up all variance valuesP
n

σ2
si

ensures that every derivation from the optimal lock will

show up in the final value. Varying the rotational shift κ, changes
the variance sum. The result will repeat itself for shifts above
30◦ (which is 360◦

n
). Therefor, the algorithm performs 60 steps

at 0.5◦, calculates all variance sums and chooses the shift value
κ that yields the minimum value as the best shift.

(a)

Figure 9. Brightness profile of target center and corresponding
locking mask

As a measure for the convincedness C of the algorithm, the final
minimum value is brought into relation to the maximum variance
sum found in the process:

C =

max(
P
n

σ2
si

)

min(
P
n

σ2
si

)2
. (6)

This value is used to determine if the target center and readout
radius have been well chosen or if there is a target in the vicin-
ity at all. The convincedness is not a sufficient condition, but a
necessary one to confirm a successful readout and lock.

Code Matching

With a successful lock on the profile, the 12 segments are av-
eraged and thresholded in the middle of the absolute minimum
and maximum values of the profile. Having extracted a binary
code string in that way, it has to be compared to the codes in the
database. All coded targets in the scope of this work have codes
with an invariant header suitable for detection of the beginning of
the code.

target 3 label 4 bitcode 1000 xc 5443.324 yc 2009.482 
  
target 4 label 14 bitcode 0110 xc 9002.387 yc 2012.384  
 
target 5 label 8 bitcode 1100 xc 5439.016 yc 6103.905 
  
target 6 label 0 bitcode 0000 xc 7138.328 yc 2010.384 
 
target 7 label 26 bitcode 0011 xc 8999.184 yc 6111.176 
  
target 8 label 0 bitcode 0000 xc 7253.837 yc 6099.394 

Figure 10. Image coordinates of recognized targets data

The input code string is shifted until the code header leads the
string. It is then compared to the codes in the database to extract
the assigned target label. As the result of the target recognition,
a list of targets, their labels and positions in image coordinates
is produced, containing coded and uncoded photogrammetric tar-
gets.

4. STARTING VALUES OF THE ESTIMATION

The automatically determined pixel coordinates in the geometri-
cally corrected image have to be transformed back to the image
coordinate system of the camera. Each image pixel may corre-
spond to multiple image coordinates of the camera. These rela-
tions are stored in the preprocessing. Thus, the image coordinates
of the targets can easily be transformed back.

The estimation of the unknown parameters requires starting val-
ues. Preliminary derivations of these values occurs in two steps.
The first step is to calculate the unknown Z-values for every
measured control point r with more than one measurement with
respect to the tracking coordinate system using spatial intersec-
tion (Kraus, 1996).

Algorithm 2 Derive exterior orientation starting values
for all measurements of every rl do

compute XTS and YTS using Equ. (7) and (8) with Zr

end for
solve least-squares estimation for best fit parameters of the 6
parameter euclidian transformation (PS) → (TS) using all
calculated XTS and known XPS

In the second step approximations for the translation and rota-
tion parameters of the unknown exterior orientation are calculated
with an Gauss-Markov least-squares estimation.

The result of Alg. 2 are the starting values for tX , tY and tZ as
well for ω, ϕ and κ. As for the distortion parameters the starting
values are set to zero.

5. PARAMETER DERIVATION MODEL

The parameters which have to be derived should completely de-
scribe the transformation and projection respectively from the
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control points world coordinates to the image coordinates. The
derivation of the particular parameters is based on the standard
collinear equations.

XTS = X0 + (ZTS − Z0) ·
Zx

N
(7)

YTS = Y0 + (ZTS − Z0) ·
Zy

N
(8)

with 2
4 Zx

Zy

N

3
5 = R−1

ω,ϕ,κ

2
4 x− x0

y − y0

−c

3
5 (9)

where ω, ϕ and κ are the orientation angles of the camera with re-
spect to the tracking coordinate system, XTS , YTS and ZTS the
control point world coordinates in the tracking coordinate sys-
tem, X0, Y0 and Z0 the center of projection coordinates (in the
tracking coordinate system, too), x and y the rectified image co-
ordinates and x0 and y0 the principle point.

The unknown transformation between the control points known
in the control point coordinate system (PS) and the tracking co-
ordinate system (TS) can be described with

XTS = Qα,β,γ ·XPS + T (10)

The distortion model is given with

x = (xd − x0) · fd (11)

y = (yd − y0) · fd (12)

with
fd =

�
1 +

�
r2K1 + r4K2 + r6K3

��
(13)

and
r =

q
(xd − x0)

2 + (yd − y0)
2 (14)

where xd and yd are the distorted image coordinates and x0 and
y0 the image principle point.

Thus, the projection model can be extended to

2
4 XPS

YPS

ZPS

3
5 = Q−1

α,β,γ

2
64

X0 + (ZTS − Z0)
Zx
N
− tX

Y0 + (ZTS − Z0)
Zy

N
− tY

ZTS − tZ

3
75 (15)

with 2
4 Zx

Zy

N

3
5 = R−1

ω,ϕ,κ

2
4 (x− x0) · fd

(y − y0) · fd

−c

3
5 (16)

and ZTS given by (10).

As it can be seen from (13) and (15) there are nine unknown
parameters which have to be derived. These parameters are

p = [tX , tY , tZ , α, β, γ, K1, K2, K3] .

To determine these parameters the Gauss-Markov least-squares
theorem

dx̂ =
�
AT A

�−1

AT L (17)

will be used, where A is equal to the design matrix and L to the
observations vector. In this article it is assumed, that the con-
trol point world coordinates are observations. That is because

it turned out that the use of the measured image coordinates as
observation leads to an unstable geometry and thus to a highly
multi-modal convergence set especially with respect to the Z co-
ordinates. Consequently, the estimation model is not quite correct
since ZTS is calculated using these observations.

Since this model is based on linear equations (15) has to be lin-
earized. Therefor the following Taylor series is proposed:

XPS = FX

�
p0�

+
∂XPS

∂tX
· dtX +

∂XPS

∂tY
· dtY +

∂XPS

∂tZ
· dtZ

+
∂XPS

∂α
· dα +

∂XPS

∂β
· dβ +

∂XPS

∂γ
· dγ

+
∂XPS

∂K1
· dK1 +

∂XPS

∂K2
· dK2 +

∂XPS

∂K3
· dK3

(18)

and the same for YPS and ZPS .

The design matrix A is set up with

A ∈ R3m×n

with elements

aij =
∂oi

∂pj
, 1 ≤ i ≤ 3m, 1 ≤ j ≤ n (19)

where m is the number of control points, n the number of un-
known parameters – here n = 9 – and observation equations

o ∈ R3m, oi =

8>><
>>:

XPS |k if i = 3k − 2,

YPS |k if i = 3k − 1,

ZPS |k if i = 3k.

(20)

The observation vector L is given with

L ∈ R3m, Li =

8>><
>>:

Xk
PS − F k

X

�
p0
�

if i = 3k − 2,

Y k
PS − F k

Y

�
p0
�

if i = 3k − 1,

Zk
PS − F k

Z

�
p0
�

if i = 3k.

(21)

where p0 is the approximation vector of the unknown parameters.

After the calculation of dx̂ the unknown vector p will be updated
with

p = p0 + dx̂ (22)

and the approximation vector for the following iteration step will
be p0 = p.

6. RESULTS

To test the proposed algorithms a simulation program was imple-
mented. This programm simulates the whole calibration process
beginning with the generation of a defined grid of control points
(using uncoded and coded targets). Furthermore the motion of
the platform, the tracking of its position and orientation as well
as the image recording is simulated.

To verify the quality of the calibration process the control point
image measurements are transformed to the world coordinate sys-
tem (PS) using the derived parameters and the known Z coordi-
nate. After that, two values are calculated:
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(a) the standard deviation of the world coordinates with respect
to its mean values and

(b) the standard deviation with respect to the expectation values,
the given control points.

The point of failure is the tracked position and orientation data
accuracy. Thus, the position data (Fig. 11), the orientation data
(Fig. 12) and both (Fig. 13) were randomly distorted with increas-
ing standard deviations.
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Figure 11. Calibration accuracy with declining position data ac-
curacy
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Figure 12. Calibration accuracy with declining orientation data
accuracy
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Figure 13. Calibration accuracy with declining position and ori-
entation data accuracy

The achieved accuracy with perfect position and orientation data
was about σX = σY = 0.2mm. Fig. 11 shows the linear pro-
portionality of the camera and the resulting point position data
accuracy. This fact is obvious since (15) shows this linearity to
the displacement vector, too. The visible peaks are due to failing
iteration convergence. Fig. 12 is surprising at first. It seems that
the results are less stable with a lower degree of orientation error
than with a higher one. Further analysis of the derived param-
eters indicates that the oscillating accuracy is due to systematic
geometric characteristics of the recorded scene. Angular errors
leads to different but mathematically right results of the ambigu-
ous solutions of the calibration problem. At a low level of this
error the ambiguity applies more to the tZ parameter which leads
to two different intersection conditions (leading to two different
result accuracy). The higher the orientation error the more the
ambiguity applies to the tY parameter (and less to the tZ ) and
accordingly to ω. This leads to a more random accuracy distribu-
tion.

The target recognition approach proved to be flexible for different
lighting conditions, but not immune to local illumination dynam-
ics. A badly illuminated calibration grid brings this approach to

an abrupt end. The centroid location calculation worked accurate
and quickly. The recognition and decoding of the targets’ codes
showed an impressing resistance to noise distortion and a moder-
ate handling of the jittering. The image point accuracy depends
on the provided image resolution and is in the range of a tenth
of a pixel. In the upcoming work, we want to provide a compre-
hensive sensitivity analysis for variation of different experimental
parameters (e.g. platform stability, tracking accuracy).

7. CONCLUSION AND OUTLOOK

We described a fully automatic self-calibration approach for a
moving terrestrial line-scanner. The data is rectified with tracking
observations. Control points for the parameter derivation are au-
tomatically recognized through photogrammetric targets decod-
ing. All steps of this approach have been tested in a variety of
changing conditions. An integrated setup and a comprehensive
analysis of the implemented approach’s performance and sensi-
tivity to critical parameters is still to be done.

In further test the calibration will be evaluated with real data in a
known environment to examine the convergence behavior and the
stability of the iterations. Furthermore, the parameter set should
be extended, to allow for a more accurate estimation of a better
distortion model.
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