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ABSTRACT:  
 
This paper discusses the evolution of algorithms and procedures for network orientation that have accompanied the transition of 
close-range photogrammetry from a film-based to a digital image-based measurement process suited to partial or full automation. A 
brief mathematical background to orientation models derived via perspective projection and projective geometry is first presented, 
and the issue of generating initial values for image orientation parameters is discussed. The potential for employing linear models 
from projective geometry in the orientation process is also considered. Developments over the past few decades in multi-image 
network orientation processes are then reviewed, with the current state of the art being indicated by way of the discussion. 
 
 

1. INTRODUCTION 

Digital cameras have had a profound impact upon close-range 
photogrammetry, not just in terms of CCD cameras replacing 
metric film cameras. To varying degrees, virtually all off-the-
shelf digital cameras can be considered metric. Unmodified 
SLR-type models can yield 3D measurement accuracy to better 
than 1:50,000 and now form the data acquisition component of 
some automated vision metrology systems. Moreover, 
inexpensive consumer-grade cameras can be employed for a 
host of lower accuracy multi-image photogrammetric 
measurement tasks, which may involve either manual image 
measurement and step-wise data processing, or fully automatic 
operation in instances where special targetting strategies are 
adopted. While the photogrammetric community has readily 
adapted so as to make full use of digital imaging technology, it 
nevertheless still relies on well-proven mathematical models, 
the last significant innovations in this area being the bundle 
adjustment in late 1950s and the concept of camera self-
calibration in the early 1970s. 
 
The two underlying models for photogrammetric orientation 
remain the well-known collinearity and coplanarity models, 
which form the basis of relative, absolute and exterior 
orientation. Both are non-linear and initial or ‘starting’ values 
are required for the iterative least-squares solution of the 
parameters. The requirement to determine these starting values 
has had a considerable influence upon network orientation in 
close-range photogrammetry. As most photogrammetric 
triangulation projects culminate in a bundle adjustment, it could 
be said that the evolution within network orientation has 
primarily been a story of evolving algorithms and procedures to 
optimise the automated recovery of the initial values of exterior 
orientation and object point coordinates, and occasionally 
interior orientation (IO) parameters as well. 
 
Along with photogrammetry, the disciplines of machine vision 
and computer vision (CV) maintain a keen interest in 3D scene 
reconstruction from digital imagery. The models employed in 
CV are primarily based on projective geometry and they 
typically do not emphasise rigorous Euclidian reconstruction. 
Linear models are preferred, in spite of the questionable 
computational stability and reliability of their application to 
other than ‘ideal’ stereo vision geometry (i.e. low or no 
convergence and a small base/depth ratio). One motivation for 

direct, linear orientation models is that they circumvent the 
need to provide initial values for the orientation parameters. 
 
This paper reviews the evolution in algorithms and procedures 
for close-range photogrammetric network orientation. A brief 
mathematical background to orientation models based on 
perspective projection and projective geometry is first offered. 
This is followed by a review of the different network 
orientation scenarios that have been employed over the past 25 
years, i.e. in the period of development of stand-alone 
measurement systems designed for a broad range of 
applications. The potential role of projective geometry models 
for determining initial values of image orientation parameters is 
also considered. This paper, which is a modified version of 
Fraser (2005), also reports on the state of the art in close-range 
photogrammetry and vision metrology, which is represented by 
systems ranging from fully automatic to those with on-line 
orientation to support manual measurement of images recorded 
with off-the-shelf digital cameras. 
 

 
2. MATHEMATICAL BACKGROUND 

 
2.1 Collinearity Model 
 
Taking into account that all image points lie within the focal 
plane and corrections are required to image coordinates for 
principal point offset and lens distortion, the 7-parameter 
similarity transformation between the Cartesian image (x, y, z) 
and object (X, Y, Z) spaces can be recast to the well-known 
perspective projection form as: 
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where λ is a scale factor, c the principal distance and xp, yp the 
coordinates of the principal point. The rotation matrix R is 
formed as the product of three rotations, identified here as 
azimuth α, elevation ε and roll κ, and the translation terms Xc, 
Yc and Zc are with respect to the object space system. The terms 
dx and dy represent the corrections for so-called departures 
from collinearity, with the principal perturbation to image 
coordinates being radial lens distortion. 

(1) 
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The CV community employs projective geometry, where Eq. 1 
can be recast into the following model:   
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Here, the 3x4 matrix P is termed the projection matrix and C 
the ‘calibration’ matrix, even though it typically does not take 
into account the lens distortion corrections represented by dx 
and dy. There is no distinction between the homogenous 
representation of Eq. 2 and the formulation of Eq.1, except for 
the lens distortion corrections being absent from the second 
expression. However, there is a marked distinction between the 
CV and photogrammetric approaches to solving the image-to-
object space transformation.  
 
Starting with the photogrammetric approach, a simple division 
of the first and second rows of Eq. 1 by the third gives rise to 
the well-known collinearity equations 
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The solution of the non-linear equation system generated by 
bundles of intersecting rays from multiple images is via a linear 
least-squares approach, which requires linearization of Eq. 4 to 
the general form of the photogrammetric bundle adjustment: 
 

      1 1 2 2 3 3 0v A A A wδ δ δ− + + + + =  
 
Here, v is the vector of observational residuals (residuals in 
image coordinate measurements); Ai are matrices of partial 
derivatives; w is a discrepancy vector and δ1, δ2 and δ3 comprise 
the corrections to starting values for the six exterior orientation 
parameters (α, ε, κ, Xc

, Yc, Zc), three object point coordinates 
(X, Y, Z) and the camera calibration parameters.  It is not the 
intention here to develop the bundle adjustment formulation any 
further, as the reader can find this in modern textbooks on 
photogrammetry (e.g. Luhmann et al., 2006; Krauss, 2000; 
Mikhail et al., 2001). Important to this discussion is, firstly, that 
the solution to Eq. 5 is rigorous in a functional and stochastic 
sense (it is a maximum likelihood solution) and, secondly, that 
in order to recover estimates for δi, appropriate starting values 
for the parameters are required. The initial values related to δ1 
and δ2 will be termed O and X, where 
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for the m images and n points. Of the self-calibration 
parameters in δ3, generally only the principal distance requires 
an initial value other than zero for frame-centred image 
coordinates.   
 
Practical solutions for Eq. 5 require an efficient means to 
determine starting values. As will be discussed later, the most 

common approach has traditionally involved separately solving 
for δ1 and δ2. Under the assumption that a given number of 
‘control points’ (known in XYZ) are available, δ2 and δ3 can be 
suppressed and δ1 is solved image by image in a series of spatial 
resections. Having determined the image orientation, δ1  and δ3 
are suppressed and δ2 is solved by spatial intersection. With the 
initial values O and X in place, a full self-calibrating bundle 
adjustment solution follows.  
 
The requirement to determine initial values has been viewed 
outside the photogrammetric community as an impediment to 
the adoption of rigorous (non-linear) orientation models. This 
has also been the case with both the explicit requirement for 
image coordinates referenced to the nominal principal point, 
and the implicit necessity of accounting for calibration 
corrections such as lens distortion. Projective geometry 
formulations, as represented by Eq. 2, have thus appeared as 
potential alternatives because they can be solved in a linear 
manner. This assumes that the elements pij of the projection 
matrix P are linearly independent, which of course they cannot 
be if the equivalence of Eqs. 1 and 2 is to hold true. The first 
proposed linear orientation model, which predated early 
developments in CV approaches by a decade, was the well-
known direct linear transformation (DLT) which was 
introduced to close-range photogrammetry by Abdel-Aziz & 
Karara (1971). The DLT modelled the projective geometry 
relationship between image coordinates (x’, y’) of arbitrary 
scale, orientation and origin, and object space coordinates.  
 
Exterior orientation via the DLT is generally a two-step 
process, equivalent to spatial resection followed by intersection, 
though a ‘bundle adjustment’ formulation is possible. Of the 11 
parameters involved, only 9 are independent. Difficulties can 
therefore be expected with certain configurations of camera 
stations and object points, the most obvious being that the DLT 
will not accommodate planar or near planar object point arrays. 
As a consequence of the two non-linear constraints implicit in 
its formulation being ignored, the DLT has a tendency to be 
numerically unstable, especially in situations of low 
observational redundancy, say with 10 or fewer ‘known’ object 
points; a minimum of 6 is required. The DLT can accommodate 
calibration corrections dx and dy, but only where ‘true’ image 
coordinates (x, y) are employed, rather than (x’, y’). 
 
2.2 Coplanarity Model 
 
A second fundamental mathematical model, which has long 
been the basis of relative orientation (RO) in stereo 
photogrammetry, is the coplanarity model.  This states that the 
two intersecting rays to an object point from two images must 
lie in a single plane, the epipolar plane, which also includes the 
baseline vector between the two perspective centres. The 
coplanarity condition can again be formulated using Eq. 1, for 
the case of one image being relatively oriented to a second, as 
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      ( )Ti i p i pu x x dx y y dy c= − + − + −  
 

Here, the matrix R2 describes the rotation of the second image 
with respect to the first and by and bz are translations. The 
translation bx, which lies in the base line, can be assigned an 
arbitrary value since scale cannot be recovered from the model. 
Note also that object coordinates do not explicitly appear. 

   (2) 

           (4) 

   (3) 

    (5) 

       (6) 
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The coplanarity condition, Eq. 6, can also be recast into 
homogeneous form, along the same lines as Eq. 2:   
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where K represents the skew-symmetric matrix of Eq. 6 and C 
is again the calibration matrix (without consideration of dx or 
dy). Further substitution for matrix products leads to 
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where E is called the essential matrix, and F the fundamental 
matrix. The distinction between them is the assumption that the 
IO is known for the essential matrix expression (Hartley & 
Zisserman, 2000; Faugeras & Luong, 2001). The non-iterative 
algorithm for relative orientation (RO) via the essential matrix, 
which is widely used in CV, has been attributed to Longuet-
Higgins (1981). However, it had already been known to 
photogrammetrists for at least two decades, as illustrated by 
Thompson (1959) and Stefanovic (1972). 
 
Once again, the projective geometry models for RO, which 
centre upon the essential and fundamental matrices, are 
equivalent to the coplanarity condition, at least when the lens 
distortion corrections dx and dy are ignored. However, the 
solution of Eq. 8 by linear methods, which assume that the 
elements comprising E and F are independent, is not at all the 
same as solving Eq. 6 via a linearized Gauss-Markov model. 
The linear solution for the three rotations and two translations 
of RO via the essential matrix, which is more appropriate in a 
photogrammetric context than the fundamental matrix, is 
generally a two-step process. The elements eij of E are first 
solved via the expression 
 

       0=eA  
where 
         ( )ii yxyyyyxxxyxxA 1112212122121=  
 

and 
          Teeeeeeeeee ),,,,,,,,( 333231232221131211=  
 
after which E is decomposed into its constituent component 
matrices K and R2. 
 
In much the same way as was previously described for the 
collinearity equations, the linear least-squares model for the 
coplanarity condition is given as (Mikhail et al., 2001): 
 
      0=++ wABv δ  
 
where A and B are matrices of partial derivatives with respect to 
the parameters and image coordinates, respectively; v and w are 
as previously defined for Eq. 5; and δ is the vector of 
corrections to the initial values for the two translations and 
three rotation angles, taken this time as ω, ϕ, κ. These initial 
values are represented by the vector Δ: 
 
      Tbzby ),,,,( 00000 κϕω=Δ  

For convergent imaging configurations with arbitrary image 
orientation (e.g. images orthogonally rotated), determination of 
appropriate initial values Δ can be very challenging, hence the 
appeal of linear models such as Eq.10. One can read not only of 
the recovery of RO parameters from a stereo pair of images via 
the projective geometry approach, but also of the simultaneous 
determination of certain IO elements, for example the focal 
lengths associated with each image. Photogrammetrists would 
state that this is not feasible, at least in practical and metric 
terms, in spite of the elegance of the mathematics involved in 
deriving the solutions for E and F and subsequently 
decomposing these matrices to determine the projection matrix 
P in Eq. 2. However, it is widely recognised that ‘noisy’ data, ie 
redundant observations and real measurements, can lead to 
numerically unstable solutions for E and F, and consequently to 
unreliable results.  
 
In the two-step solution process for the projection matrix P,  E 
(or F) is typically determined through either a homogenous 
linear equation solution with normalised coordinates for the 8 or 
more points involved (Hartley, 1997) or a singular value 
decomposition (SVD). A RANSAC approach (Fischler & 
Bolles, 1981) can also be employed in cases where there are 
many corresponding point pairs available. The rotation matrix 
and translations are then recovered via SVD (Hartley, 1992), 
which for the essential matrix of Rank 2 should in theory yield 
two equal singular values and a third which is zero. 
 
The projective geometry approaches to RO are considered in 
this discussion not because they present a potential alternative 
to the coplanarity model, but more because they might appear 
to offer possible practical approaches to the determination of 
initial values Δ, O and X. The implementation of such an 
approach has been reported by Roth (2004). One must keep in 
mind, however, the difficulties associated with the reliable 
recovery of RO via projective geometry models in cases of 
‘difficult’ (eg highly convergent) imaging geometry. Moreover, 
like the DLT, these approaches do not work in instances of a 
near planar array of object points and they can yield ambiguous 
solutions. The words of Horn (1990a) are worth recalling here: 
“Overall, it seems that the two-step approach to RO, where one 
first determines an essential matrix, is the source of both 
limitations and confusion”. Alternative RO algorithms 
employing closed-form initial parameter determination are 
available (e.g. Horn 1990b).  
 
The foregoing mathematical background provides an insight 
into the developments in network orientation for close-range 
photogrammetry over the past three decades. The common 
endpoint of the orientation process for metric applications is - 
and should be - the bundle adjustment model of Eq. 5. Critical 
to its implementation, however, is the generation of initial 
values. This aspect has greatly influenced the practical 
development of close-range photogrammetric systems, 
especially since the emergence of digital cameras and process 
automation.  
 

 
3. NETWORK ORIENTATION SCENARIOS 

 
3.1 Range of Camera Station Configurations 
 
Shown in Figs. 1 to 3 are examples of camera station 
configurations encountered in close-range photogrammetry. 
The first exemplifies a mix of ‘stereo’, implying low 
convergence or near parallel optical axes, and convergent 

              (7) 

            (8) 

               (9) 

                 (10) 

          (11) 

           (12) 
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geometry. A typical multi-station convergent configuration, 
exemplifying strong network geometry, is shown in Fig. 2. 
Finally, Fig. 3 represents a photogrammetrically challenging 
network geometry where the camera stations and most object 
points are near to being in a single plane. This configuration is 
very representative of those encountered in traffic accident 
reconstruction, which is a fast growing application area for 
digital close-range photogrammetry (Fraser et al., 2005). 
Reference will be made to these network configurations in the 
following discussion.  
 
3.2 The Traditional Approach 
 
As analytical photogrammetry evolved, the ‘traditional’ 
orientation scenario of analog stereo restitution remained 
popular. This was a two-step process, appropriate for two-
image configurations: 
 
 
 
 
 
 
 

The RO was via the coplanarity model (Eq. 6) or, less 
frequently, the collinearity model (Eq. 4). The absolute 
orientation (AO) was performed with a 3D similarity 
transformation. Thus, the first issue typically concerned how to 
determine initial values Δ. This is relatively straightforward for 
stereo geometry. Although certain constraints apply to the 
degree of convergence between the camera axes, two rotations 
can be assigned an initial value of zero, and the relative rotation 
about the optical axis can be estimated from the image point 
distribution. The initial values for bx and bz translations are 
most often taken as zero. For AO, closed-form and quasi least-
squares solutions for 3D similarity transformation are well 
known, and thus computing rigorous AO via a linear least-
squares solution does not pose any practical difficulties.  
 
3.3 Early Days with Multi-Image Networks 
 
Given that the approach above was effectively limited to stereo 
pairs, and that stereo geometry is not optimal from an accuracy 
standpoint, an alternative was sought to accommodate the 
convergent multi-image geometry shown in Fig. 2. This gave 
rise to a second orientation scenario, as follows: 
 

  
 
 
 
 
 
 
 
 
 
 
 
 

A number of object points (minimum of 4) were assigned 
preliminary XYZ coordinates (measured or arbitrary), and from 
these, two or more images could be resected via closed-form 
resection (e.g. Fischler & Bolles, 1981). Thus, O was 
established for these images. Spatial intersection would follow 
to provide the XYZ coordinates of object points (X). From the 
new object point coordinates, further images were resected and 

further points intersected, until initial values were established 
for all parameters. Bundle adjustment then followed to refine 
the approximate values. This process suited the sequential, 
monoscopic measurement of images, yet it had two main 
drawbacks – which were not viewed as such at the time. These 
were that initial XYZ coordinate values for at least 4 points 
were needed and a careful labelling of image points was 
required to ensure correct correspondences between images.  
 
This approach was not optimal for all situations, as seen in Fig. 
3, where not only would the geometry pose difficulties for 
resection, but many cycles of resection/intersection would be 
required to determine all initial values for O and X. 
Nevertheless, the approach was adopted in the 80s for industrial 
photogrammetry systems, and it remains in common use today.  
 
At the same time the CV community were engaged in 
popularising the essential matrix approach, albeit two images at 
a time. Why, one might ask, were the methods of 
photogrammetric orientation not adopted in CV? Of the no 
doubt many contributing factors, five come to mind:  
• There was no desire whatever to get involved with manual 

point labelling; correspondences were to be determined 
automatically, with a percentage of these accepted as being 
potentially erroneous.  

• The need to assign object point coordinates and determine 
initial values was to be avoided.  

• There was a preference to work with pixel coordinates and 
to ignore lens calibration. 

• Metrically accurate results were not being sought. 
• Because of the wide use of zoom lenses, prior estimates of 

focal length might not be known. 
 

 Nevertheless, some developments in CV were curious given the 
then state of the art in photogrammetry. For example, the camera 
calibration approach of Tsai (1987) requires not only the provision 
of an object point array with known XYZ coordinates, but also a 
multi-stage process involving closed-form solutions and initial 
value generation for iterative non-linear optimization. Moreover, 
there were different requirements relating to planar and non-planar 
3D object point arrays. At the time, a fully rigorous single or 
multi-camera self-calibration could be obtained with much less 
effort and much greater model fidelity and accuracy via a self-
calibrating bundle adjustment, Eq. 5. 
 
3.4 The Exterior Orientation Device and Coded Targets 
 
The introduction of digital cameras opened the door to full 
automation of the exterior orientation (EO) process. Images could 
be scanned for targets, and after initial resection (computation of 
O), a correspondence determination based on, say, epipolar 
constraints or spatial intersection criteria could be employed to 
provide initial values for object point coordinates. To facilitate 
the initial resection, the EO device was introduced (e.g. Ganci & 
Handley, 1998; Fraser, 1997). The EO device, examples of which 
are shown in Fig. 4, is a pattern of targets of known 3D 
coordinates, which is automatically detected and recognized 
within an image. The scenario for orientation then follows that of 
the previous section, except that the sequence is automatic. 
 
After resection for the images that ‘see’ the EO device, 
intersection follows to determine initial values X of object point 
coordinates. What happens with images in which the EO device 
does not appear? This is where coded targets come in. These were 
first proposed for close-range photogrammetry in the late 1980s. 

Manual image measurement 

Relative Orientation  

Absolute Orientation  

Manual or automatic image       
point measurement 

Resection 

Spatial intersection 

Bundle adjustment 

 (Absolute orientation) 
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Figure 1: Mixed stereo and convergent image geometry. 

 
 
 

 
Figure 2: Convergent multi-image network and near-planar array. 

 

 
 

   Figure 4: Multi-image geometry with camera stations near to the effective plane of the object, typical in accident reconstruction. 
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If there are coded targets distributed on the object, which are 
automatically recognised and triangulated in the initial spatial 
intersection, then groups of these become, effectively, EO 
devices. Once again, an iterative process of 
resection/intersection and possibly initial bundle adjustment is 
pursued until starting values for all parameters are determined. A 
final bundle adjustment is then performed. 
 

    
 

Figure 4: Examples of EO devices. 
 

This scenario affords fully automatic network orientation and 3D 
coordinate determination of targeted object points. The word 
‘target’ here is important, for targets are essential, along with 
favourable illumination conditions (usually provided via a strobe 
flash) to ensure that the resulting image points will be 
automatically detected and accurately measured. Whereas from a 
CV standpoint the provision of targets is something to be 
avoided, one can surmise that the EO device/coded target 
approach would go a long way to alleviating camera calibration 
concerns in applications such as motion tracking and object 
modelling, since the process is simple, fully automatic and 
produces an accurate, scene independent calibration. 
 
3.5 Coded Targets Alone 
 
In spite of the benefits of the EO device it does display 
shortcomings. For very large objects, a physically large EO 
device is needed to ensure success in the initial closed-form 
resection. Moreover, the camera station geometry and EO 
device location must be such that robust detection and 
measurement is provided in enough images (minimum of two) 
with suitable geometry to support reliable initial spatial 
intersection. A scenario in which coded targets are employed, 
but the EO device is not, is considered.  
 
As with the previous process, the images would be scanned and 
the coded and uncoded targets measured. Because the coded 
targets provide point correspondences, there need only be a 
sufficient number of pairs of homologous points between two 
images to facilitate RO. This first step in the orientation process 
now requires a solution of the coplanarity equations (initial 
values Δ), with the full scenario becoming: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Following the initial RO, resection follows for those images 
‘seeing’ enough of the codes included in the RO. A bundle 
adjustment can then be used to refine the network, after which 
correspondence determination and spatial intersection follow to 
establish additional object coordinates (X). This is followed by 
a final bundle adjustment and AO. There may be a number of 
resection/intersection stages in the building of the network, 
though these occur fully automatically and the user can be 
oblivious to the number of cycles performed. This process is 
followed, for example, in the ongoing development of the 
Australis software system, and also in iWitness (Photometrix, 
2006; Fraser et al., 2005) albeit only for sensor calibration in 
fully automatic form in iWitness (Cronk et al., 2006). While the 
approach has proven to be robust and reliable for providing 
initial values O and X for the bundle adjustment, the provision 
of starting values Δ for the initial RO proved a quite 
challenging problem. 
 
Given the considerable amount of literature on the essential 
matrix/fundamental matrix model for image orientation, one 
would be left with the impression that this was a viable 
‘working’ approach for RO. Experience suggests otherwise, and 
indeed it is consistent with the observation by Horn (1990a) 
quoted earlier. Put simply, reliable and reasonably representative 
values for the five parameters of RO cannot be expected with a 
sufficient degree of confidence, especially in convergent imaging 
configurations with a modest number of point correspondences 
(say 8-10) and object arrays which display limited depth in 
proportion to their lateral extent. The networks in Figs. 2 and 3 
provide examples of such cases. 
 
As an alternative approach to determining initial values Δ for 
RO, a Monte Carlo type strategy can be adopted in which a 
very large number of possible RO solutions are assessed for the 
available image point pairs. The refined solution in each case is 
obtained via the coplanarity model using combinations of 
plausible initial values (there could be many of these). From the 
number of qualifying solutions obtained for the first five point 
pairs considered, the most plausible are retained. However, RO 
may not be final at this time, as there could be quite a number 
of possible solutions in cases of weak geometry. This will be 
compounded by the presence of random image measurement 
errors, however small. The entire process takes only a fraction 
of a second.  
 
3.6 On-line Orientation for Manual Image Measurement 
 
A favourable characteristic of adopting an initial RO in the 
orientation process, much as is done with stereo model 
restitution, is that it is quite well suited to on-line initial 
network orientation. This is where the measurement of image 
coordinates involves interactively referencing points in image 
pairs rather than labelling them for later off-line computation of 
orientation. As soon as enough image points are referenced, RO 
can automatically take place, in the background. It is quite 
conceivable that in cases of very poor geometry, such as 
represented by Fig. 3, there may be multiple plausible solutions 
to the RO when only 5 to 8 points are available. The RO 
process must then keep track of these possible solutions and 
examine every one as each additional point is referenced. The 
correct solution is generally isolated with no more than ten 
points, whereas for a strong geometry a successful RO can 
usually be reported to the operator after 6 points are referenced. 
The orientation process can then be summarized as: 
 
 

Automatic image measurement 

RO using coded targets 

Resection 

Bundle Adjustment 

Spatial intersection 

Bundle adjustment 

Absolute orientation  
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The on-line network orientation process is a feature of iWitness. 
It also extends to the system’s other computational processes 
related to orientation (resection, bundle adjustment, AO). At no 
time need the operator select a key such as ‘compute’; 
processing occurs immediately enough information is available. 
Enhanced error detection is also a feature of this approach since 
blunders are recognised, and corrected, as they occur. 
 

 
4. CONCLUDING REMARKS 

Underlying the different orientation and sensor self-calibration 
algorithms and computational procedures in close-range 
photogrammetry are two basic functional models which have 
served photogrammetry well: the collinearity and coplanarity 
models. Although non-linear, both are solved via linear least-
squares, thus requiring the determination of initial values for the 
parameters. The reason for the different computational 
sequences that have evolved over the years is closely related to 
the different approaches to initial value determination.  
 
It is also for this reason that one hears justification for the 
developments of alternative, linear solutions to image 
orientation. The author has attempted to demonstrate that while 
generation of initial values may have been viewed as an 
impediment in the past, it has never been much more than a 
necessary nuisance. Moreover, with closed-form solutions and 
alternative approaches to solving RO and EO in an approximate 
manner, orientation systems requiring neither operator input nor 
provision of additional object space information are readily 
realisable. For example, the provision of coded targets, not in 
any required configuration, is sufficient to enable fully 
automatic EO and camera calibration, as exemplified by the 
iWitness camera calibration process (Cronk et al., 2006).  
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Mark points of interest in a single image 
 

Reference these to a 2nd image (no point labels 
necessary); RO automatically computed and 
updated on-line with each new point after first 5 
 
Reference a new image to any of the referenced 
images and resect after 4-6 points referenced; 
bundle adjustment computed and updated on-line 
with every new point added 
 
Repeat third step; self-calibration can be initiated 
when the network is judged internally to be 
geometrically strong enough  
 
Final AO to obtain XYZ coordinates in desired 
reference system 
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